mirror of
				https://git.proxmox.com/git/mirror_spl-debian
				synced 2025-10-31 20:26:24 +00:00 
			
		
		
		
	 efcd0ca32d
			
		
	
	
		efcd0ca32d
		
	
	
	
	
		
			
			After the emergency slab objects were merged I started observing timeout failures in the kmem:slab_overcommit test. These were due to the ineffecient way the slab_overcommit reclaim function was implemented. And due to the additional cost of potentially allocating ten of thousands of emergency objects and tracking them on a single list. This patch addresses the first concern by enhansing the test case to trace all of the allocations objects as a linked list. This allows for a cleaner version of the reclaim function to simply release SPLAT_KMEM_OBJ_RECLAIM objects. Since this touches some common code all the tests which share these data structions were also updated. After making these changes slab_overcommit is reliably passing. However, there is certainly additional cleanup which could be done here. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
		
			
				
	
	
		
			1332 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1332 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*****************************************************************************\
 | |
|  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
 | |
|  *  Copyright (C) 2007 The Regents of the University of California.
 | |
|  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
 | |
|  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
 | |
|  *  UCRL-CODE-235197
 | |
|  *
 | |
|  *  This file is part of the SPL, Solaris Porting Layer.
 | |
|  *  For details, see <http://github.com/behlendorf/spl/>.
 | |
|  *
 | |
|  *  The SPL is free software; you can redistribute it and/or modify it
 | |
|  *  under the terms of the GNU General Public License as published by the
 | |
|  *  Free Software Foundation; either version 2 of the License, or (at your
 | |
|  *  option) any later version.
 | |
|  *
 | |
|  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
 | |
|  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | |
|  *  for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License along
 | |
|  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  *****************************************************************************
 | |
|  *  Solaris Porting LAyer Tests (SPLAT) Kmem Tests.
 | |
| \*****************************************************************************/
 | |
| 
 | |
| #include "splat-internal.h"
 | |
| 
 | |
| #define SPLAT_KMEM_NAME			"kmem"
 | |
| #define SPLAT_KMEM_DESC			"Kernel Malloc/Slab Tests"
 | |
| 
 | |
| #define SPLAT_KMEM_TEST1_ID		0x0101
 | |
| #define SPLAT_KMEM_TEST1_NAME		"kmem_alloc"
 | |
| #define SPLAT_KMEM_TEST1_DESC		"Memory allocation test (kmem_alloc)"
 | |
| 
 | |
| #define SPLAT_KMEM_TEST2_ID		0x0102
 | |
| #define SPLAT_KMEM_TEST2_NAME		"kmem_zalloc"
 | |
| #define SPLAT_KMEM_TEST2_DESC		"Memory allocation test (kmem_zalloc)"
 | |
| 
 | |
| #define SPLAT_KMEM_TEST3_ID		0x0103
 | |
| #define SPLAT_KMEM_TEST3_NAME		"vmem_alloc"
 | |
| #define SPLAT_KMEM_TEST3_DESC		"Memory allocation test (vmem_alloc)"
 | |
| 
 | |
| #define SPLAT_KMEM_TEST4_ID		0x0104
 | |
| #define SPLAT_KMEM_TEST4_NAME		"vmem_zalloc"
 | |
| #define SPLAT_KMEM_TEST4_DESC		"Memory allocation test (vmem_zalloc)"
 | |
| 
 | |
| #define SPLAT_KMEM_TEST5_ID		0x0105
 | |
| #define SPLAT_KMEM_TEST5_NAME		"slab_small"
 | |
| #define SPLAT_KMEM_TEST5_DESC		"Slab ctor/dtor test (small)"
 | |
| 
 | |
| #define SPLAT_KMEM_TEST6_ID		0x0106
 | |
| #define SPLAT_KMEM_TEST6_NAME		"slab_large"
 | |
| #define SPLAT_KMEM_TEST6_DESC		"Slab ctor/dtor test (large)"
 | |
| 
 | |
| #define SPLAT_KMEM_TEST7_ID		0x0107
 | |
| #define SPLAT_KMEM_TEST7_NAME		"slab_align"
 | |
| #define SPLAT_KMEM_TEST7_DESC		"Slab alignment test"
 | |
| 
 | |
| #define SPLAT_KMEM_TEST8_ID		0x0108
 | |
| #define SPLAT_KMEM_TEST8_NAME		"slab_reap"
 | |
| #define SPLAT_KMEM_TEST8_DESC		"Slab reaping test"
 | |
| 
 | |
| #define SPLAT_KMEM_TEST9_ID		0x0109
 | |
| #define SPLAT_KMEM_TEST9_NAME		"slab_age"
 | |
| #define SPLAT_KMEM_TEST9_DESC		"Slab aging test"
 | |
| 
 | |
| #define SPLAT_KMEM_TEST10_ID		0x010a
 | |
| #define SPLAT_KMEM_TEST10_NAME		"slab_lock"
 | |
| #define SPLAT_KMEM_TEST10_DESC		"Slab locking test"
 | |
| 
 | |
| #ifdef _LP64
 | |
| #define SPLAT_KMEM_TEST11_ID		0x010b
 | |
| #define SPLAT_KMEM_TEST11_NAME		"slab_overcommit"
 | |
| #define SPLAT_KMEM_TEST11_DESC		"Slab memory overcommit test"
 | |
| #endif /* _LP64 */
 | |
| 
 | |
| #define SPLAT_KMEM_TEST12_ID		0x010c
 | |
| #define SPLAT_KMEM_TEST12_NAME		"vmem_size"
 | |
| #define SPLAT_KMEM_TEST12_DESC		"Memory zone test"
 | |
| 
 | |
| #define SPLAT_KMEM_TEST13_ID		0x010d
 | |
| #define SPLAT_KMEM_TEST13_NAME		"slab_reclaim"
 | |
| #define SPLAT_KMEM_TEST13_DESC		"Slab direct memory reclaim test"
 | |
| 
 | |
| #define SPLAT_KMEM_ALLOC_COUNT		10
 | |
| #define SPLAT_VMEM_ALLOC_COUNT		10
 | |
| 
 | |
| 
 | |
| static int
 | |
| splat_kmem_test1(struct file *file, void *arg)
 | |
| {
 | |
| 	void *ptr[SPLAT_KMEM_ALLOC_COUNT];
 | |
| 	int size = PAGE_SIZE;
 | |
| 	int i, count, rc = 0;
 | |
| 
 | |
| 	while ((!rc) && (size <= (PAGE_SIZE * 32))) {
 | |
| 		count = 0;
 | |
| 
 | |
| 		for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
 | |
| 			ptr[i] = kmem_alloc(size, KM_SLEEP | KM_NODEBUG);
 | |
| 			if (ptr[i])
 | |
| 				count++;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
 | |
| 			if (ptr[i])
 | |
| 				kmem_free(ptr[i], size);
 | |
| 
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST1_NAME,
 | |
| 			   "%d byte allocations, %d/%d successful\n",
 | |
| 			   size, count, SPLAT_KMEM_ALLOC_COUNT);
 | |
| 		if (count != SPLAT_KMEM_ALLOC_COUNT)
 | |
| 			rc = -ENOMEM;
 | |
| 
 | |
| 		size *= 2;
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int
 | |
| splat_kmem_test2(struct file *file, void *arg)
 | |
| {
 | |
| 	void *ptr[SPLAT_KMEM_ALLOC_COUNT];
 | |
| 	int size = PAGE_SIZE;
 | |
| 	int i, j, count, rc = 0;
 | |
| 
 | |
| 	while ((!rc) && (size <= (PAGE_SIZE * 32))) {
 | |
| 		count = 0;
 | |
| 
 | |
| 		for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
 | |
| 			ptr[i] = kmem_zalloc(size, KM_SLEEP | KM_NODEBUG);
 | |
| 			if (ptr[i])
 | |
| 				count++;
 | |
| 		}
 | |
| 
 | |
| 		/* Ensure buffer has been zero filled */
 | |
| 		for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
 | |
| 			for (j = 0; j < size; j++) {
 | |
| 				if (((char *)ptr[i])[j] != '\0') {
 | |
| 					splat_vprint(file,SPLAT_KMEM_TEST2_NAME,
 | |
| 						  "%d-byte allocation was "
 | |
| 						  "not zeroed\n", size);
 | |
| 					rc = -EFAULT;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
 | |
| 			if (ptr[i])
 | |
| 				kmem_free(ptr[i], size);
 | |
| 
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST2_NAME,
 | |
| 			   "%d byte allocations, %d/%d successful\n",
 | |
| 			   size, count, SPLAT_KMEM_ALLOC_COUNT);
 | |
| 		if (count != SPLAT_KMEM_ALLOC_COUNT)
 | |
| 			rc = -ENOMEM;
 | |
| 
 | |
| 		size *= 2;
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int
 | |
| splat_kmem_test3(struct file *file, void *arg)
 | |
| {
 | |
| 	void *ptr[SPLAT_VMEM_ALLOC_COUNT];
 | |
| 	int size = PAGE_SIZE;
 | |
| 	int i, count, rc = 0;
 | |
| 
 | |
| 	while ((!rc) && (size <= (PAGE_SIZE * 1024))) {
 | |
| 		count = 0;
 | |
| 
 | |
| 		for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
 | |
| 			ptr[i] = vmem_alloc(size, KM_SLEEP);
 | |
| 			if (ptr[i])
 | |
| 				count++;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
 | |
| 			if (ptr[i])
 | |
| 				vmem_free(ptr[i], size);
 | |
| 
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST3_NAME,
 | |
| 			   "%d byte allocations, %d/%d successful\n",
 | |
| 			   size, count, SPLAT_VMEM_ALLOC_COUNT);
 | |
| 		if (count != SPLAT_VMEM_ALLOC_COUNT)
 | |
| 			rc = -ENOMEM;
 | |
| 
 | |
| 		size *= 2;
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int
 | |
| splat_kmem_test4(struct file *file, void *arg)
 | |
| {
 | |
| 	void *ptr[SPLAT_VMEM_ALLOC_COUNT];
 | |
| 	int size = PAGE_SIZE;
 | |
| 	int i, j, count, rc = 0;
 | |
| 
 | |
| 	while ((!rc) && (size <= (PAGE_SIZE * 1024))) {
 | |
| 		count = 0;
 | |
| 
 | |
| 		for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
 | |
| 			ptr[i] = vmem_zalloc(size, KM_SLEEP);
 | |
| 			if (ptr[i])
 | |
| 				count++;
 | |
| 		}
 | |
| 
 | |
| 		/* Ensure buffer has been zero filled */
 | |
| 		for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
 | |
| 			for (j = 0; j < size; j++) {
 | |
| 				if (((char *)ptr[i])[j] != '\0') {
 | |
| 					splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
 | |
| 						  "%d-byte allocation was "
 | |
| 						  "not zeroed\n", size);
 | |
| 					rc = -EFAULT;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
 | |
| 			if (ptr[i])
 | |
| 				vmem_free(ptr[i], size);
 | |
| 
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
 | |
| 			   "%d byte allocations, %d/%d successful\n",
 | |
| 			   size, count, SPLAT_VMEM_ALLOC_COUNT);
 | |
| 		if (count != SPLAT_VMEM_ALLOC_COUNT)
 | |
| 			rc = -ENOMEM;
 | |
| 
 | |
| 		size *= 2;
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| #define SPLAT_KMEM_TEST_MAGIC		0x004488CCUL
 | |
| #define SPLAT_KMEM_CACHE_NAME		"kmem_test"
 | |
| #define SPLAT_KMEM_OBJ_COUNT		1024
 | |
| #define SPLAT_KMEM_OBJ_RECLAIM		1000 /* objects */
 | |
| #define SPLAT_KMEM_THREADS		32
 | |
| 
 | |
| #define KCP_FLAG_READY			0x01
 | |
| 
 | |
| typedef struct kmem_cache_data {
 | |
| 	unsigned long kcd_magic;
 | |
| 	struct list_head kcd_node;
 | |
| 	int kcd_flag;
 | |
| 	char kcd_buf[0];
 | |
| } kmem_cache_data_t;
 | |
| 
 | |
| typedef struct kmem_cache_thread {
 | |
| 	spinlock_t kct_lock;
 | |
| 	int kct_id;
 | |
| 	struct list_head kct_list;
 | |
| } kmem_cache_thread_t;
 | |
| 
 | |
| typedef struct kmem_cache_priv {
 | |
| 	unsigned long kcp_magic;
 | |
| 	struct file *kcp_file;
 | |
| 	kmem_cache_t *kcp_cache;
 | |
| 	spinlock_t kcp_lock;
 | |
| 	wait_queue_head_t kcp_ctl_waitq;
 | |
| 	wait_queue_head_t kcp_thr_waitq;
 | |
| 	int kcp_flags;
 | |
| 	int kcp_kct_count;
 | |
| 	kmem_cache_thread_t *kcp_kct[SPLAT_KMEM_THREADS];
 | |
| 	int kcp_size;
 | |
| 	int kcp_align;
 | |
| 	int kcp_count;
 | |
| 	int kcp_alloc;
 | |
| 	int kcp_rc;
 | |
| } kmem_cache_priv_t;
 | |
| 
 | |
| static kmem_cache_priv_t *
 | |
| splat_kmem_cache_test_kcp_alloc(struct file *file, char *name,
 | |
| 				int size, int align, int alloc)
 | |
| {
 | |
| 	kmem_cache_priv_t *kcp;
 | |
| 
 | |
| 	kcp = kmem_zalloc(sizeof(kmem_cache_priv_t), KM_SLEEP);
 | |
| 	if (!kcp)
 | |
| 		return NULL;
 | |
| 
 | |
| 	kcp->kcp_magic = SPLAT_KMEM_TEST_MAGIC;
 | |
| 	kcp->kcp_file = file;
 | |
| 	kcp->kcp_cache = NULL;
 | |
| 	spin_lock_init(&kcp->kcp_lock);
 | |
| 	init_waitqueue_head(&kcp->kcp_ctl_waitq);
 | |
| 	init_waitqueue_head(&kcp->kcp_thr_waitq);
 | |
| 	kcp->kcp_flags = 0;
 | |
| 	kcp->kcp_kct_count = -1;
 | |
| 	kcp->kcp_size = size;
 | |
| 	kcp->kcp_align = align;
 | |
| 	kcp->kcp_count = 0;
 | |
| 	kcp->kcp_alloc = alloc;
 | |
| 	kcp->kcp_rc = 0;
 | |
| 
 | |
| 	return kcp;
 | |
| }
 | |
| 
 | |
| static void
 | |
| splat_kmem_cache_test_kcp_free(kmem_cache_priv_t *kcp)
 | |
| {
 | |
| 	kmem_free(kcp, sizeof(kmem_cache_priv_t));
 | |
| }
 | |
| 
 | |
| static kmem_cache_thread_t *
 | |
| splat_kmem_cache_test_kct_alloc(kmem_cache_priv_t *kcp, int id)
 | |
| {
 | |
| 	kmem_cache_thread_t *kct;
 | |
| 
 | |
| 	ASSERTF(id < SPLAT_KMEM_THREADS, "id=%d\n", id);
 | |
| 	ASSERT(kcp->kcp_kct[id] == NULL);
 | |
| 
 | |
| 	kct = kmem_zalloc(sizeof(kmem_cache_thread_t), KM_SLEEP);
 | |
| 	if (!kct)
 | |
| 		return NULL;
 | |
| 
 | |
| 	spin_lock_init(&kct->kct_lock);
 | |
| 	kct->kct_id = id;
 | |
| 	INIT_LIST_HEAD(&kct->kct_list);
 | |
| 
 | |
| 	spin_lock(&kcp->kcp_lock);
 | |
| 	kcp->kcp_kct[id] = kct;
 | |
| 	spin_unlock(&kcp->kcp_lock);
 | |
| 
 | |
| 	return kct;
 | |
| }
 | |
| 
 | |
| static void
 | |
| splat_kmem_cache_test_kct_free(kmem_cache_priv_t *kcp,
 | |
| 			       kmem_cache_thread_t *kct)
 | |
| {
 | |
| 	spin_lock(&kcp->kcp_lock);
 | |
| 	kcp->kcp_kct[kct->kct_id] = NULL;
 | |
| 	spin_unlock(&kcp->kcp_lock);
 | |
| 
 | |
| 	kmem_free(kct, sizeof(kmem_cache_thread_t));
 | |
| }
 | |
| 
 | |
| static void
 | |
| splat_kmem_cache_test_kcd_free(kmem_cache_priv_t *kcp,
 | |
| 			       kmem_cache_thread_t *kct)
 | |
| {
 | |
| 	kmem_cache_data_t *kcd;
 | |
| 
 | |
| 	spin_lock(&kct->kct_lock);
 | |
| 	while (!list_empty(&kct->kct_list)) {
 | |
| 		kcd = list_entry(kct->kct_list.next,
 | |
| 				 kmem_cache_data_t, kcd_node);
 | |
| 		list_del(&kcd->kcd_node);
 | |
| 		spin_unlock(&kct->kct_lock);
 | |
| 
 | |
| 		kmem_cache_free(kcp->kcp_cache, kcd);
 | |
| 
 | |
| 		spin_lock(&kct->kct_lock);
 | |
| 	}
 | |
| 	spin_unlock(&kct->kct_lock);
 | |
| }
 | |
| 
 | |
| static int
 | |
| splat_kmem_cache_test_kcd_alloc(kmem_cache_priv_t *kcp,
 | |
| 				kmem_cache_thread_t *kct, int count)
 | |
| {
 | |
| 	kmem_cache_data_t *kcd;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
 | |
| 		if (kcd == NULL) {
 | |
| 			splat_kmem_cache_test_kcd_free(kcp, kct);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		spin_lock(&kct->kct_lock);
 | |
| 		list_add_tail(&kcd->kcd_node, &kct->kct_list);
 | |
| 		spin_unlock(&kct->kct_lock);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| splat_kmem_cache_test_debug(struct file *file, char *name,
 | |
| 			    kmem_cache_priv_t *kcp)
 | |
| {
 | |
| 	int j;
 | |
| 
 | |
| 	splat_vprint(file, name,
 | |
| 		     "%s cache objects %d, slabs %u/%u objs %u/%u mags ",
 | |
| 		     kcp->kcp_cache->skc_name, kcp->kcp_count,
 | |
| 		     (unsigned)kcp->kcp_cache->skc_slab_alloc,
 | |
| 		     (unsigned)kcp->kcp_cache->skc_slab_total,
 | |
| 		     (unsigned)kcp->kcp_cache->skc_obj_alloc,
 | |
| 		     (unsigned)kcp->kcp_cache->skc_obj_total);
 | |
| 
 | |
| 	for_each_online_cpu(j)
 | |
| 		splat_print(file, "%u/%u ",
 | |
| 			     kcp->kcp_cache->skc_mag[j]->skm_avail,
 | |
| 			     kcp->kcp_cache->skc_mag[j]->skm_size);
 | |
| 
 | |
| 	splat_print(file, "%s\n", "");
 | |
| }
 | |
| 
 | |
| static int
 | |
| splat_kmem_cache_test_constructor(void *ptr, void *priv, int flags)
 | |
| {
 | |
| 	kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
 | |
| 	kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;
 | |
| 
 | |
| 	if (kcd && kcp) {
 | |
| 		kcd->kcd_magic = kcp->kcp_magic;
 | |
| 		INIT_LIST_HEAD(&kcd->kcd_node);
 | |
| 		kcd->kcd_flag = 1;
 | |
| 		memset(kcd->kcd_buf, 0xaa, kcp->kcp_size - (sizeof *kcd));
 | |
| 		kcp->kcp_count++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| splat_kmem_cache_test_destructor(void *ptr, void *priv)
 | |
| {
 | |
| 	kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
 | |
| 	kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;
 | |
| 
 | |
| 	if (kcd && kcp) {
 | |
| 		kcd->kcd_magic = 0;
 | |
| 		kcd->kcd_flag = 0;
 | |
| 		memset(kcd->kcd_buf, 0xbb, kcp->kcp_size - (sizeof *kcd));
 | |
| 		kcp->kcp_count--;
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic reclaim function which assumes that all objects may
 | |
|  * be reclaimed at any time.  We free a small  percentage of the
 | |
|  * objects linked off the kcp or kct[] every time we are called.
 | |
|  */
 | |
| static void
 | |
| splat_kmem_cache_test_reclaim(void *priv)
 | |
| {
 | |
| 	kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
 | |
| 	kmem_cache_thread_t *kct;
 | |
| 	kmem_cache_data_t *kcd;
 | |
| 	LIST_HEAD(reclaim);
 | |
| 	int i, count;
 | |
| 
 | |
| 	ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);
 | |
| 
 | |
| 	/* For each kct thread reclaim some objects */
 | |
| 	spin_lock(&kcp->kcp_lock);
 | |
| 	for (i = 0; i < SPLAT_KMEM_THREADS; i++) {
 | |
| 		kct = kcp->kcp_kct[i];
 | |
| 		if (!kct)
 | |
| 			continue;
 | |
| 
 | |
| 		spin_unlock(&kcp->kcp_lock);
 | |
| 		spin_lock(&kct->kct_lock);
 | |
| 
 | |
| 		count = SPLAT_KMEM_OBJ_RECLAIM;
 | |
| 		while (count > 0 && !list_empty(&kct->kct_list)) {
 | |
| 			kcd = list_entry(kct->kct_list.next,
 | |
| 					 kmem_cache_data_t, kcd_node);
 | |
| 			list_del(&kcd->kcd_node);
 | |
| 			list_add(&kcd->kcd_node, &reclaim);
 | |
| 			count--;
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock(&kct->kct_lock);
 | |
| 		spin_lock(&kcp->kcp_lock);
 | |
| 	}
 | |
| 	spin_unlock(&kcp->kcp_lock);
 | |
| 
 | |
| 	/* Freed outside the spin lock */
 | |
| 	while (!list_empty(&reclaim)) {
 | |
| 		kcd = list_entry(reclaim.next, kmem_cache_data_t, kcd_node);
 | |
| 		list_del(&kcd->kcd_node);
 | |
| 		kmem_cache_free(kcp->kcp_cache, kcd);
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int
 | |
| splat_kmem_cache_test_threads(kmem_cache_priv_t *kcp, int threads)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	spin_lock(&kcp->kcp_lock);
 | |
| 	rc = (kcp->kcp_kct_count == threads);
 | |
| 	spin_unlock(&kcp->kcp_lock);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int
 | |
| splat_kmem_cache_test_flags(kmem_cache_priv_t *kcp, int flags)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	spin_lock(&kcp->kcp_lock);
 | |
| 	rc = (kcp->kcp_flags & flags);
 | |
| 	spin_unlock(&kcp->kcp_lock);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void
 | |
| splat_kmem_cache_test_thread(void *arg)
 | |
| {
 | |
| 	kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)arg;
 | |
| 	kmem_cache_thread_t *kct;
 | |
| 	int rc = 0, id;
 | |
| 
 | |
| 	ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);
 | |
| 
 | |
| 	/* Assign thread ids */
 | |
| 	spin_lock(&kcp->kcp_lock);
 | |
| 	if (kcp->kcp_kct_count == -1)
 | |
| 		kcp->kcp_kct_count = 0;
 | |
| 
 | |
| 	id = kcp->kcp_kct_count;
 | |
| 	kcp->kcp_kct_count++;
 | |
| 	spin_unlock(&kcp->kcp_lock);
 | |
| 
 | |
| 	kct = splat_kmem_cache_test_kct_alloc(kcp, id);
 | |
| 	if (!kct) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Wait for all threads to have started and report they are ready */
 | |
| 	if (kcp->kcp_kct_count == SPLAT_KMEM_THREADS)
 | |
| 		wake_up(&kcp->kcp_ctl_waitq);
 | |
| 
 | |
| 	wait_event(kcp->kcp_thr_waitq,
 | |
| 		splat_kmem_cache_test_flags(kcp, KCP_FLAG_READY));
 | |
| 
 | |
| 	/* Create and destroy objects */
 | |
| 	rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, kcp->kcp_alloc);
 | |
| 	splat_kmem_cache_test_kcd_free(kcp, kct);
 | |
| out:
 | |
| 	if (kct)
 | |
| 		splat_kmem_cache_test_kct_free(kcp, kct);
 | |
| 
 | |
| 	spin_lock(&kcp->kcp_lock);
 | |
| 	if (!kcp->kcp_rc)
 | |
| 		kcp->kcp_rc = rc;
 | |
| 
 | |
| 	if ((--kcp->kcp_kct_count) == 0)
 | |
| 		wake_up(&kcp->kcp_ctl_waitq);
 | |
| 
 | |
| 	spin_unlock(&kcp->kcp_lock);
 | |
| 
 | |
| 	thread_exit();
 | |
| }
 | |
| 
 | |
| static int
 | |
| splat_kmem_cache_test(struct file *file, void *arg, char *name,
 | |
| 		      int size, int align, int flags)
 | |
| {
 | |
| 	kmem_cache_priv_t *kcp;
 | |
| 	kmem_cache_data_t *kcd = NULL;
 | |
| 	int rc = 0, max;
 | |
| 
 | |
| 	kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, align, 0);
 | |
| 	if (!kcp) {
 | |
| 		splat_vprint(file, name, "Unable to create '%s'\n", "kcp");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	kcp->kcp_cache =
 | |
| 		kmem_cache_create(SPLAT_KMEM_CACHE_NAME,
 | |
| 				  kcp->kcp_size, kcp->kcp_align,
 | |
| 				  splat_kmem_cache_test_constructor,
 | |
| 				  splat_kmem_cache_test_destructor,
 | |
| 				  NULL, kcp, NULL, flags);
 | |
| 	if (!kcp->kcp_cache) {
 | |
| 		splat_vprint(file, name,
 | |
| 			     "Unable to create '%s'\n",
 | |
| 			     SPLAT_KMEM_CACHE_NAME);
 | |
| 		rc = -ENOMEM;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
 | |
| 	if (!kcd) {
 | |
| 		splat_vprint(file, name,
 | |
| 			     "Unable to allocate from '%s'\n",
 | |
| 			     SPLAT_KMEM_CACHE_NAME);
 | |
| 		rc = -EINVAL;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	if (!kcd->kcd_flag) {
 | |
| 		splat_vprint(file, name,
 | |
| 			     "Failed to run contructor for '%s'\n",
 | |
| 			     SPLAT_KMEM_CACHE_NAME);
 | |
| 		rc = -EINVAL;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	if (kcd->kcd_magic != kcp->kcp_magic) {
 | |
| 		splat_vprint(file, name,
 | |
| 			     "Failed to pass private data to constructor "
 | |
| 			     "for '%s'\n", SPLAT_KMEM_CACHE_NAME);
 | |
| 		rc = -EINVAL;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	max = kcp->kcp_count;
 | |
| 	kmem_cache_free(kcp->kcp_cache, kcd);
 | |
| 
 | |
| 	/* Destroy the entire cache which will force destructors to
 | |
| 	 * run and we can verify one was called for every object */
 | |
| 	kmem_cache_destroy(kcp->kcp_cache);
 | |
| 	if (kcp->kcp_count) {
 | |
| 		splat_vprint(file, name,
 | |
| 			     "Failed to run destructor on all slab objects "
 | |
| 			     "for '%s'\n", SPLAT_KMEM_CACHE_NAME);
 | |
| 		rc = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	splat_kmem_cache_test_kcp_free(kcp);
 | |
| 	splat_vprint(file, name,
 | |
| 		     "Successfully ran ctors/dtors for %d elements in '%s'\n",
 | |
| 		     max, SPLAT_KMEM_CACHE_NAME);
 | |
| 
 | |
| 	return rc;
 | |
| 
 | |
| out_free:
 | |
| 	if (kcd)
 | |
| 		kmem_cache_free(kcp->kcp_cache, kcd);
 | |
| 
 | |
| 	if (kcp->kcp_cache)
 | |
| 		kmem_cache_destroy(kcp->kcp_cache);
 | |
| 
 | |
| 	splat_kmem_cache_test_kcp_free(kcp);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static int
 | |
| splat_kmem_cache_thread_test(struct file *file, void *arg, char *name,
 | |
| 			     int size, int alloc, int max_time)
 | |
| {
 | |
| 	kmem_cache_priv_t *kcp;
 | |
| 	kthread_t *thr;
 | |
| 	struct timespec start, stop, delta;
 | |
| 	char cache_name[32];
 | |
| 	int i, rc = 0;
 | |
| 
 | |
| 	kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, 0, alloc);
 | |
| 	if (!kcp) {
 | |
| 		splat_vprint(file, name, "Unable to create '%s'\n", "kcp");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	(void)snprintf(cache_name, 32, "%s-%d-%d",
 | |
| 		       SPLAT_KMEM_CACHE_NAME, size, alloc);
 | |
| 	kcp->kcp_cache =
 | |
| 		kmem_cache_create(cache_name, kcp->kcp_size, 0,
 | |
| 				  splat_kmem_cache_test_constructor,
 | |
| 				  splat_kmem_cache_test_destructor,
 | |
| 				  splat_kmem_cache_test_reclaim,
 | |
| 				  kcp, NULL, 0);
 | |
| 	if (!kcp->kcp_cache) {
 | |
| 		splat_vprint(file, name, "Unable to create '%s'\n", cache_name);
 | |
| 		rc = -ENOMEM;
 | |
| 		goto out_kcp;
 | |
| 	}
 | |
| 
 | |
| 	start = current_kernel_time();
 | |
| 
 | |
| 	for (i = 0; i < SPLAT_KMEM_THREADS; i++) {
 | |
| 		thr = thread_create(NULL, 0,
 | |
| 				    splat_kmem_cache_test_thread,
 | |
| 				    kcp, 0, &p0, TS_RUN, minclsyspri);
 | |
| 		if (thr == NULL) {
 | |
| 			rc = -ESRCH;
 | |
| 			goto out_cache;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Sleep until all threads have started, then set the ready
 | |
| 	 * flag and wake them all up for maximum concurrency. */
 | |
| 	wait_event(kcp->kcp_ctl_waitq,
 | |
| 		   splat_kmem_cache_test_threads(kcp, SPLAT_KMEM_THREADS));
 | |
| 
 | |
| 	spin_lock(&kcp->kcp_lock);
 | |
| 	kcp->kcp_flags |= KCP_FLAG_READY;
 | |
| 	spin_unlock(&kcp->kcp_lock);
 | |
| 	wake_up_all(&kcp->kcp_thr_waitq);
 | |
| 
 | |
| 	/* Sleep until all thread have finished */
 | |
| 	wait_event(kcp->kcp_ctl_waitq, splat_kmem_cache_test_threads(kcp, 0));
 | |
| 
 | |
| 	stop = current_kernel_time();
 | |
| 	delta = timespec_sub(stop, start);
 | |
| 
 | |
| 	splat_vprint(file, name,
 | |
| 		     "%-22s %2ld.%09ld\t"
 | |
| 		     "%lu/%lu/%lu\t%lu/%lu/%lu\n",
 | |
| 		     kcp->kcp_cache->skc_name,
 | |
| 		     delta.tv_sec, delta.tv_nsec,
 | |
| 		     (unsigned long)kcp->kcp_cache->skc_slab_total,
 | |
| 		     (unsigned long)kcp->kcp_cache->skc_slab_max,
 | |
| 		     (unsigned long)(kcp->kcp_alloc *
 | |
| 				    SPLAT_KMEM_THREADS /
 | |
| 				    SPL_KMEM_CACHE_OBJ_PER_SLAB),
 | |
| 		     (unsigned long)kcp->kcp_cache->skc_obj_total,
 | |
| 		     (unsigned long)kcp->kcp_cache->skc_obj_max,
 | |
| 		     (unsigned long)(kcp->kcp_alloc *
 | |
| 				     SPLAT_KMEM_THREADS));
 | |
| 
 | |
| 	if (delta.tv_sec >= max_time)
 | |
| 		rc = -ETIME;
 | |
| 
 | |
| 	if (!rc && kcp->kcp_rc)
 | |
| 		rc = kcp->kcp_rc;
 | |
| 
 | |
| out_cache:
 | |
| 	kmem_cache_destroy(kcp->kcp_cache);
 | |
| out_kcp:
 | |
| 	splat_kmem_cache_test_kcp_free(kcp);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* Validate small object cache behavior for dynamic/kmem/vmem caches */
 | |
| static int
 | |
| splat_kmem_test5(struct file *file, void *arg)
 | |
| {
 | |
| 	char *name = SPLAT_KMEM_TEST5_NAME;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = splat_kmem_cache_test(file, arg, name, 128, 0, 0);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = splat_kmem_cache_test(file, arg, name, 128, 0, KMC_KMEM);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	return splat_kmem_cache_test(file, arg, name, 128, 0, KMC_VMEM);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Validate large object cache behavior for dynamic/kmem/vmem caches
 | |
|  */
 | |
| static int
 | |
| splat_kmem_test6(struct file *file, void *arg)
 | |
| {
 | |
| 	char *name = SPLAT_KMEM_TEST6_NAME;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = splat_kmem_cache_test(file, arg, name, 256*1024, 0, 0);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	rc = splat_kmem_cache_test(file, arg, name, 64*1024, 0, KMC_KMEM);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	return splat_kmem_cache_test(file, arg, name, 1024*1024, 0, KMC_VMEM);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Validate object alignment cache behavior for caches
 | |
|  */
 | |
| static int
 | |
| splat_kmem_test7(struct file *file, void *arg)
 | |
| {
 | |
| 	char *name = SPLAT_KMEM_TEST7_NAME;
 | |
| 	int i, rc;
 | |
| 
 | |
| 	for (i = SPL_KMEM_CACHE_ALIGN; i <= PAGE_SIZE; i *= 2) {
 | |
| 		rc = splat_kmem_cache_test(file, arg, name, 157, i, 0);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Validate kmem_cache_reap() by requesting the slab cache free any objects
 | |
|  * it can.  For a few reasons this may not immediately result in more free
 | |
|  * memory even if objects are freed.  First off, due to fragmentation we
 | |
|  * may not be able to reclaim any slabs.  Secondly, even if we do we fully
 | |
|  * clear some slabs we will not want to immediately reclaim all of them
 | |
|  * because we may contend with cache allocations and thrash.  What we want
 | |
|  * to see is the slab size decrease more gradually as it becomes clear they
 | |
|  * will not be needed.  This should be achievable in less than a minute.
 | |
|  * If it takes longer than this something has gone wrong.
 | |
|  */
 | |
| static int
 | |
| splat_kmem_test8(struct file *file, void *arg)
 | |
| {
 | |
| 	kmem_cache_priv_t *kcp;
 | |
| 	kmem_cache_thread_t *kct;
 | |
| 	int i, rc = 0;
 | |
| 
 | |
| 	kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST8_NAME,
 | |
| 					      256, 0, 0);
 | |
| 	if (!kcp) {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
 | |
| 			     "Unable to create '%s'\n", "kcp");
 | |
| 		rc = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	kcp->kcp_cache =
 | |
| 		kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
 | |
| 				  splat_kmem_cache_test_constructor,
 | |
| 				  splat_kmem_cache_test_destructor,
 | |
| 				  splat_kmem_cache_test_reclaim,
 | |
| 				  kcp, NULL, 0);
 | |
| 	if (!kcp->kcp_cache) {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
 | |
| 			   "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
 | |
| 		rc = -ENOMEM;
 | |
| 		goto out_kcp;
 | |
| 	}
 | |
| 
 | |
| 	kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
 | |
| 	if (!kct) {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
 | |
| 			     "Unable to create '%s'\n", "kct");
 | |
| 		rc = -ENOMEM;
 | |
| 		goto out_cache;
 | |
| 	}
 | |
| 
 | |
| 	rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, SPLAT_KMEM_OBJ_COUNT);
 | |
| 	if (rc) {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "Unable to "
 | |
| 			     "allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
 | |
| 		goto out_kct;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 60; i++) {
 | |
| 		kmem_cache_reap_now(kcp->kcp_cache);
 | |
| 		splat_kmem_cache_test_debug(file, SPLAT_KMEM_TEST8_NAME, kcp);
 | |
| 
 | |
| 		if (kcp->kcp_cache->skc_obj_total == 0)
 | |
| 			break;
 | |
| 
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		schedule_timeout(HZ);
 | |
| 	}
 | |
| 
 | |
| 	if (kcp->kcp_cache->skc_obj_total == 0) {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
 | |
| 			"Successfully created %d objects "
 | |
| 			"in cache %s and reclaimed them\n",
 | |
| 			SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
 | |
| 	} else {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
 | |
| 			"Failed to reclaim %u/%d objects from cache %s\n",
 | |
| 			(unsigned)kcp->kcp_cache->skc_obj_total,
 | |
| 			SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
 | |
| 		rc = -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Cleanup our mess (for failure case of time expiring) */
 | |
| 	splat_kmem_cache_test_kcd_free(kcp, kct);
 | |
| out_kct:
 | |
| 	splat_kmem_cache_test_kct_free(kcp, kct);
 | |
| out_cache:
 | |
| 	kmem_cache_destroy(kcp->kcp_cache);
 | |
| out_kcp:
 | |
| 	splat_kmem_cache_test_kcp_free(kcp);
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* Test cache aging, we have allocated a large number of objects thus
 | |
|  * creating a large number of slabs and then free'd them all.  However,
 | |
|  * since there should be little memory pressure at the moment those
 | |
|  * slabs have not been freed.  What we want to see is the slab size
 | |
|  * decrease gradually as it becomes clear they will not be be needed.
 | |
|  * This should be achievable in less than minute.  If it takes longer
 | |
|  * than this something has gone wrong.
 | |
|  */
 | |
| static int
 | |
| splat_kmem_test9(struct file *file, void *arg)
 | |
| {
 | |
| 	kmem_cache_priv_t *kcp;
 | |
| 	kmem_cache_thread_t *kct;
 | |
| 	int i, rc = 0, count = SPLAT_KMEM_OBJ_COUNT * 128;
 | |
| 
 | |
| 	kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST9_NAME,
 | |
| 					      256, 0, 0);
 | |
| 	if (!kcp) {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
 | |
| 			     "Unable to create '%s'\n", "kcp");
 | |
| 		rc = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	kcp->kcp_cache =
 | |
| 		kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
 | |
| 				  splat_kmem_cache_test_constructor,
 | |
| 				  splat_kmem_cache_test_destructor,
 | |
| 				  NULL, kcp, NULL, 0);
 | |
| 	if (!kcp->kcp_cache) {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
 | |
| 			   "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
 | |
| 		rc = -ENOMEM;
 | |
| 		goto out_kcp;
 | |
| 	}
 | |
| 
 | |
| 	kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
 | |
| 	if (!kct) {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
 | |
| 			     "Unable to create '%s'\n", "kct");
 | |
| 		rc = -ENOMEM;
 | |
| 		goto out_cache;
 | |
| 	}
 | |
| 
 | |
| 	rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, count);
 | |
| 	if (rc) {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST9_NAME, "Unable to "
 | |
| 			     "allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
 | |
| 		goto out_kct;
 | |
| 	}
 | |
| 
 | |
| 	splat_kmem_cache_test_kcd_free(kcp, kct);
 | |
| 
 | |
| 	for (i = 0; i < 60; i++) {
 | |
| 		splat_kmem_cache_test_debug(file, SPLAT_KMEM_TEST9_NAME, kcp);
 | |
| 
 | |
| 		if (kcp->kcp_cache->skc_obj_total == 0)
 | |
| 			break;
 | |
| 
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		schedule_timeout(HZ);
 | |
| 	}
 | |
| 
 | |
| 	if (kcp->kcp_cache->skc_obj_total == 0) {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
 | |
| 			"Successfully created %d objects "
 | |
| 			"in cache %s and reclaimed them\n",
 | |
| 			count, SPLAT_KMEM_CACHE_NAME);
 | |
| 	} else {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
 | |
| 			"Failed to reclaim %u/%d objects from cache %s\n",
 | |
| 			(unsigned)kcp->kcp_cache->skc_obj_total, count,
 | |
| 			SPLAT_KMEM_CACHE_NAME);
 | |
| 		rc = -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| out_kct:
 | |
| 	splat_kmem_cache_test_kct_free(kcp, kct);
 | |
| out_cache:
 | |
| 	kmem_cache_destroy(kcp->kcp_cache);
 | |
| out_kcp:
 | |
| 	splat_kmem_cache_test_kcp_free(kcp);
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This test creates N threads with a shared kmem cache.  They then all
 | |
|  * concurrently allocate and free from the cache to stress the locking and
 | |
|  * concurrent cache performance.  If any one test takes longer than 5
 | |
|  * seconds to complete it is treated as a failure and may indicate a
 | |
|  * performance regression.  On my test system no one test takes more
 | |
|  * than 1 second to complete so a 5x slowdown likely a problem.
 | |
|  */
 | |
| static int
 | |
| splat_kmem_test10(struct file *file, void *arg)
 | |
| {
 | |
| 	uint64_t size, alloc, rc = 0;
 | |
| 
 | |
| 	for (size = 32; size <= 1024*1024; size *= 2) {
 | |
| 
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s  %s", "name",
 | |
| 			     "time (sec)\tslabs       \tobjs	\thash\n");
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s  %s", "",
 | |
| 			     "	  \ttot/max/calc\ttot/max/calc\n");
 | |
| 
 | |
| 		for (alloc = 1; alloc <= 1024; alloc *= 2) {
 | |
| 
 | |
| 			/* Skip tests which exceed available memory.  We
 | |
| 			 * leverage availrmem here for some extra testing */
 | |
| 			if (size * alloc * SPLAT_KMEM_THREADS > availrmem / 2)
 | |
| 				continue;
 | |
| 
 | |
| 			rc = splat_kmem_cache_thread_test(file, arg,
 | |
| 				SPLAT_KMEM_TEST10_NAME, size, alloc, 5);
 | |
| 			if (rc)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| #ifdef _LP64
 | |
| /*
 | |
|  * This test creates N threads with a shared kmem cache which overcommits
 | |
|  * memory by 4x.  This makes it impossible for the slab to satify the
 | |
|  * thread requirements without having its reclaim hook run which will
 | |
|  * free objects back for use.  This behavior is triggered by the linum VM
 | |
|  * detecting a low memory condition on the node and invoking the shrinkers.
 | |
|  * This should allow all the threads to complete while avoiding deadlock
 | |
|  * and for the most part out of memory events.  This is very tough on the
 | |
|  * system so it is possible the test app may get oom'ed.  This particular
 | |
|  * test has proven troublesome on 32-bit archs with limited virtual
 | |
|  * address space so it only run on 64-bit systems.
 | |
|  */
 | |
| static int
 | |
| splat_kmem_test11(struct file *file, void *arg)
 | |
| {
 | |
| 	uint64_t size, alloc, rc;
 | |
| 
 | |
| 	size = 8 * 1024;
 | |
| 	alloc = ((4 * physmem * PAGE_SIZE) / size) / SPLAT_KMEM_THREADS;
 | |
| 
 | |
| 	splat_vprint(file, SPLAT_KMEM_TEST11_NAME, "%-22s  %s", "name",
 | |
| 		     "time (sec)\tslabs       \tobjs	\thash\n");
 | |
| 	splat_vprint(file, SPLAT_KMEM_TEST11_NAME, "%-22s  %s", "",
 | |
| 		     "	  \ttot/max/calc\ttot/max/calc\n");
 | |
| 
 | |
| 	rc = splat_kmem_cache_thread_test(file, arg,
 | |
| 		SPLAT_KMEM_TEST11_NAME, size, alloc, 60);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| #endif /* _LP64 */
 | |
| 
 | |
| /*
 | |
|  * Check vmem_size() behavior by acquiring the alloc/free/total vmem
 | |
|  * space, then allocate a known buffer size from vmem space.  We can
 | |
|  * then check that vmem_size() values were updated properly with in
 | |
|  * a fairly small tolerence.  The tolerance is important because we
 | |
|  * are not the only vmem consumer on the system.  Other unrelated
 | |
|  * allocations might occur during the small test window.  The vmem
 | |
|  * allocation itself may also add in a little extra private space to
 | |
|  * the buffer.  Finally, verify total space always remains unchanged.
 | |
|  */
 | |
| static int
 | |
| splat_kmem_test12(struct file *file, void *arg)
 | |
| {
 | |
| 	size_t alloc1, free1, total1;
 | |
| 	size_t alloc2, free2, total2;
 | |
| 	int size = 8*1024*1024;
 | |
| 	void *ptr;
 | |
| 
 | |
| 	alloc1 = vmem_size(NULL, VMEM_ALLOC);
 | |
| 	free1  = vmem_size(NULL, VMEM_FREE);
 | |
| 	total1 = vmem_size(NULL, VMEM_ALLOC | VMEM_FREE);
 | |
| 	splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Vmem alloc=%lu "
 | |
| 		     "free=%lu total=%lu\n", (unsigned long)alloc1,
 | |
| 		     (unsigned long)free1, (unsigned long)total1);
 | |
| 
 | |
| 	splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Alloc %d bytes\n", size);
 | |
| 	ptr = vmem_alloc(size, KM_SLEEP);
 | |
| 	if (!ptr) {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST12_NAME,
 | |
| 		             "Failed to alloc %d bytes\n", size);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	alloc2 = vmem_size(NULL, VMEM_ALLOC);
 | |
| 	free2  = vmem_size(NULL, VMEM_FREE);
 | |
| 	total2 = vmem_size(NULL, VMEM_ALLOC | VMEM_FREE);
 | |
| 	splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Vmem alloc=%lu "
 | |
| 		     "free=%lu total=%lu\n", (unsigned long)alloc2,
 | |
| 		     (unsigned long)free2, (unsigned long)total2);
 | |
| 
 | |
| 	splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Free %d bytes\n", size);
 | |
| 	vmem_free(ptr, size);
 | |
| 	if (alloc2 < (alloc1 + size - (size / 100)) ||
 | |
| 	    alloc2 > (alloc1 + size + (size / 100))) {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed "
 | |
| 			     "VMEM_ALLOC size: %lu != %lu+%d (+/- 1%%)\n",
 | |
| 		             (unsigned long)alloc2,(unsigned long)alloc1,size);
 | |
| 		return -ERANGE;
 | |
| 	}
 | |
| 
 | |
| 	if (free2 < (free1 - size - (size / 100)) ||
 | |
| 	    free2 > (free1 - size + (size / 100))) {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed "
 | |
| 			     "VMEM_FREE size: %lu != %lu-%d (+/- 1%%)\n",
 | |
| 		             (unsigned long)free2, (unsigned long)free1, size);
 | |
| 		return -ERANGE;
 | |
| 	}
 | |
| 
 | |
| 	if (total1 != total2) {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed "
 | |
| 			     "VMEM_ALLOC | VMEM_FREE not constant: "
 | |
| 		             "%lu != %lu\n", (unsigned long)total2,
 | |
| 			     (unsigned long)total1);
 | |
| 		return -ERANGE;
 | |
| 	}
 | |
| 
 | |
| 	splat_vprint(file, SPLAT_KMEM_TEST12_NAME,
 | |
| 	             "VMEM_ALLOC within tolerance: ~%ld%% (%ld/%d)\n",
 | |
| 	             (long)abs(alloc1 + (long)size - alloc2) * 100 / (long)size,
 | |
| 	             (long)abs(alloc1 + (long)size - alloc2), size);
 | |
| 	splat_vprint(file, SPLAT_KMEM_TEST12_NAME,
 | |
| 	             "VMEM_FREE within tolerance:  ~%ld%% (%ld/%d)\n",
 | |
| 	             (long)abs((free1 - (long)size) - free2) * 100 / (long)size,
 | |
| 	             (long)abs((free1 - (long)size) - free2), size);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| typedef struct dummy_page {
 | |
| 	struct list_head dp_list;
 | |
| 	char             dp_pad[PAGE_SIZE - sizeof(struct list_head)];
 | |
| } dummy_page_t;
 | |
| 
 | |
| /*
 | |
|  * This test is designed to verify that direct reclaim is functioning as
 | |
|  * expected.  We allocate a large number of objects thus creating a large
 | |
|  * number of slabs.  We then apply memory pressure and expect that the
 | |
|  * direct reclaim path can easily recover those slabs.  The registered
 | |
|  * reclaim function will free the objects and the slab shrinker will call
 | |
|  * it repeatedly until at least a single slab can be freed.
 | |
|  *
 | |
|  * Note it may not be possible to reclaim every last slab via direct reclaim
 | |
|  * without a failure because the shrinker_rwsem may be contended.  For this
 | |
|  * reason, quickly reclaiming 3/4 of the slabs is considered a success.
 | |
|  *
 | |
|  * This should all be possible within 10 seconds.  For reference, on a
 | |
|  * system with 2G of memory this test takes roughly 0.2 seconds to run.
 | |
|  * It may take longer on larger memory systems but should still easily
 | |
|  * complete in the alloted 10 seconds.
 | |
|  */
 | |
| static int
 | |
| splat_kmem_test13(struct file *file, void *arg)
 | |
| {
 | |
| 	kmem_cache_priv_t *kcp;
 | |
| 	kmem_cache_thread_t *kct;
 | |
| 	dummy_page_t *dp;
 | |
| 	struct list_head list;
 | |
| 	struct timespec start, delta = { 0, 0 };
 | |
| 	int size, count, slabs, fails = 0;
 | |
| 	int i, rc = 0, max_time = 10;
 | |
| 
 | |
| 	size = 128 * 1024;
 | |
| 	count = ((physmem * PAGE_SIZE) / 4 / size);
 | |
| 
 | |
| 	kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST13_NAME,
 | |
| 	                                      size, 0, 0);
 | |
| 	if (!kcp) {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
 | |
| 		             "Unable to create '%s'\n", "kcp");
 | |
| 		rc = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	kcp->kcp_cache =
 | |
| 		kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
 | |
| 		                  splat_kmem_cache_test_constructor,
 | |
| 		                  splat_kmem_cache_test_destructor,
 | |
| 				  splat_kmem_cache_test_reclaim,
 | |
| 		                  kcp, NULL, 0);
 | |
| 	if (!kcp->kcp_cache) {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
 | |
| 		             "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
 | |
| 		rc = -ENOMEM;
 | |
| 		goto out_kcp;
 | |
| 	}
 | |
| 
 | |
| 	kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
 | |
| 	if (!kct) {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
 | |
| 			     "Unable to create '%s'\n", "kct");
 | |
| 		rc = -ENOMEM;
 | |
| 		goto out_cache;
 | |
| 	}
 | |
| 
 | |
| 	rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, count);
 | |
| 	if (rc) {
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST13_NAME, "Unable to "
 | |
| 			     "allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
 | |
| 		goto out_kct;
 | |
| 	}
 | |
| 
 | |
| 	i = 0;
 | |
| 	slabs = kcp->kcp_cache->skc_slab_total;
 | |
| 	INIT_LIST_HEAD(&list);
 | |
| 	start = current_kernel_time();
 | |
| 
 | |
| 	/* Apply memory pressure */
 | |
| 	while (kcp->kcp_cache->skc_slab_total > (slabs >> 2)) {
 | |
| 
 | |
| 		if ((i % 10000) == 0)
 | |
| 			splat_kmem_cache_test_debug(
 | |
| 			    file, SPLAT_KMEM_TEST13_NAME, kcp);
 | |
| 
 | |
| 		delta = timespec_sub(current_kernel_time(), start);
 | |
| 		if (delta.tv_sec >= max_time) {
 | |
| 			splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
 | |
| 				     "Failed to reclaim 3/4 of cache in %ds, "
 | |
| 				     "%u/%u slabs remain\n", max_time,
 | |
| 				     (unsigned)kcp->kcp_cache->skc_slab_total,
 | |
| 				     slabs);
 | |
| 			rc = -ETIME;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		dp = (dummy_page_t *)__get_free_page(GFP_KERNEL | __GFP_NORETRY);
 | |
| 		if (!dp) {
 | |
| 			fails++;
 | |
| 			splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
 | |
| 				     "Failed (%d) to allocate page with %u "
 | |
| 				     "slabs still in the cache\n", fails,
 | |
| 				     (unsigned)kcp->kcp_cache->skc_slab_total);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		list_add(&dp->dp_list, &list);
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	if (rc == 0)
 | |
| 		splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
 | |
| 			     "Successfully created %u slabs and with %d alloc "
 | |
| 			     "failures reclaimed 3/4 of them in %d.%03ds\n",
 | |
| 			     slabs, fails,
 | |
| 			     (int)delta.tv_sec, (int)delta.tv_nsec / 1000000);
 | |
| 
 | |
| 	/* Release memory pressure pages */
 | |
| 	while (!list_empty(&list)) {
 | |
| 		dp = list_entry(list.next, dummy_page_t, dp_list);
 | |
| 		list_del_init(&dp->dp_list);
 | |
| 		free_page((unsigned long)dp);
 | |
| 	}
 | |
| 
 | |
| 	/* Release remaining kmem cache objects */
 | |
| 	splat_kmem_cache_test_kcd_free(kcp, kct);
 | |
| out_kct:
 | |
| 	splat_kmem_cache_test_kct_free(kcp, kct);
 | |
| out_cache:
 | |
| 	kmem_cache_destroy(kcp->kcp_cache);
 | |
| out_kcp:
 | |
| 	splat_kmem_cache_test_kcp_free(kcp);
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| splat_subsystem_t *
 | |
| splat_kmem_init(void)
 | |
| {
 | |
| 	splat_subsystem_t *sub;
 | |
| 
 | |
| 	sub = kmalloc(sizeof(*sub), GFP_KERNEL);
 | |
| 	if (sub == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	memset(sub, 0, sizeof(*sub));
 | |
| 	strncpy(sub->desc.name, SPLAT_KMEM_NAME, SPLAT_NAME_SIZE);
 | |
| 	strncpy(sub->desc.desc, SPLAT_KMEM_DESC, SPLAT_DESC_SIZE);
 | |
| 	INIT_LIST_HEAD(&sub->subsystem_list);
 | |
| 	INIT_LIST_HEAD(&sub->test_list);
 | |
| 	spin_lock_init(&sub->test_lock);
 | |
| 	sub->desc.id = SPLAT_SUBSYSTEM_KMEM;
 | |
| 
 | |
| 	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST1_NAME, SPLAT_KMEM_TEST1_DESC,
 | |
| 			SPLAT_KMEM_TEST1_ID, splat_kmem_test1);
 | |
| 	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST2_NAME, SPLAT_KMEM_TEST2_DESC,
 | |
| 			SPLAT_KMEM_TEST2_ID, splat_kmem_test2);
 | |
| 	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST3_NAME, SPLAT_KMEM_TEST3_DESC,
 | |
| 			SPLAT_KMEM_TEST3_ID, splat_kmem_test3);
 | |
| 	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST4_NAME, SPLAT_KMEM_TEST4_DESC,
 | |
| 			SPLAT_KMEM_TEST4_ID, splat_kmem_test4);
 | |
| 	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST5_NAME, SPLAT_KMEM_TEST5_DESC,
 | |
| 			SPLAT_KMEM_TEST5_ID, splat_kmem_test5);
 | |
| 	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST6_NAME, SPLAT_KMEM_TEST6_DESC,
 | |
| 			SPLAT_KMEM_TEST6_ID, splat_kmem_test6);
 | |
| 	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST7_NAME, SPLAT_KMEM_TEST7_DESC,
 | |
| 			SPLAT_KMEM_TEST7_ID, splat_kmem_test7);
 | |
| 	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST8_NAME, SPLAT_KMEM_TEST8_DESC,
 | |
| 			SPLAT_KMEM_TEST8_ID, splat_kmem_test8);
 | |
| 	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST9_NAME, SPLAT_KMEM_TEST9_DESC,
 | |
| 			SPLAT_KMEM_TEST9_ID, splat_kmem_test9);
 | |
| 	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST10_NAME, SPLAT_KMEM_TEST10_DESC,
 | |
| 			SPLAT_KMEM_TEST10_ID, splat_kmem_test10);
 | |
| #ifdef _LP64
 | |
| 	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST11_NAME, SPLAT_KMEM_TEST11_DESC,
 | |
| 			SPLAT_KMEM_TEST11_ID, splat_kmem_test11);
 | |
| #endif /* _LP64 */
 | |
| 	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST12_NAME, SPLAT_KMEM_TEST12_DESC,
 | |
| 			SPLAT_KMEM_TEST12_ID, splat_kmem_test12);
 | |
| 	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST13_NAME, SPLAT_KMEM_TEST13_DESC,
 | |
| 			SPLAT_KMEM_TEST13_ID, splat_kmem_test13);
 | |
| 
 | |
| 	return sub;
 | |
| }
 | |
| 
 | |
| void
 | |
| splat_kmem_fini(splat_subsystem_t *sub)
 | |
| {
 | |
| 	ASSERT(sub);
 | |
| 	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST13_ID);
 | |
| 	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST12_ID);
 | |
| #ifdef _LP64
 | |
| 	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST11_ID);
 | |
| #endif /* _LP64 */
 | |
| 	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST10_ID);
 | |
| 	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST9_ID);
 | |
| 	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST8_ID);
 | |
| 	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST7_ID);
 | |
| 	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST6_ID);
 | |
| 	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST5_ID);
 | |
| 	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST4_ID);
 | |
| 	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST3_ID);
 | |
| 	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST2_ID);
 | |
| 	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST1_ID);
 | |
| 
 | |
| 	kfree(sub);
 | |
| }
 | |
| 
 | |
| int
 | |
| splat_kmem_id(void) {
 | |
| 	return SPLAT_SUBSYSTEM_KMEM;
 | |
| }
 |