mirror_smartmontools-debian/os_netbsd.cpp
Thomas Lamprecht ff28b140e6 import smartmontools 7.0
Downloaded source from
https://sourceforge.net/projects/smartmontools/files/smartmontools/7.0/
and imported here to git.

Signed-off-by: Thomas Lamprecht <t.lamprecht@proxmox.com>
2019-06-26 11:05:43 +02:00

822 lines
21 KiB
C++

/*
* os_netbsd.cpp
*
* Home page of code is: http://www.smartmontools.org
*
* Copyright (C) 2003-8 Sergey Svishchev
* Copyright (C) 2016 Kimihiro Nonaka
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "config.h"
#include "atacmds.h"
#include "scsicmds.h"
#include "utility.h"
#include "os_netbsd.h"
#include <sys/drvctlio.h>
#include <sys/utsname.h>
#include <sys/stat.h>
#include <errno.h>
#include <unistd.h>
// based on "sys/dev/ic/nvmeio.h" from NetBSD kernel sources
#include "netbsd_nvme_ioctl.h" // NVME_PASSTHROUGH_CMD, nvme_completion_is_error
const char * os_netbsd_cpp_cvsid = "$Id: os_netbsd.cpp 4780 2018-09-16 15:03:22Z chrfranke $"
OS_NETBSD_H_CVSID;
#define ARGUSED(x) ((void)(x))
/////////////////////////////////////////////////////////////////////////////
namespace os_netbsd { // No need to publish anything, name provided for Doxygen
static const char *net_dev_prefix = "/dev/";
static const char *net_dev_raw_prefix = "/dev/r";
static const char *net_dev_ata_disk = "wd";
static const char *net_dev_scsi_disk = "sd";
static const char *net_dev_scsi_tape = "enrst";
static const char *net_dev_nvme_ctrl = "nvme";
/////////////////////////////////////////////////////////////////////////////
/// Implement shared open/close routines with old functions.
class netbsd_smart_device
: virtual public /*implements*/ smart_device
{
public:
explicit netbsd_smart_device()
: smart_device(never_called),
m_fd(-1) { }
virtual ~netbsd_smart_device() throw();
virtual bool is_open() const;
virtual bool open();
virtual bool close();
protected:
/// Return filedesc for derived classes.
int get_fd() const
{ return m_fd; }
void set_fd(int fd)
{ m_fd = fd; }
private:
int m_fd; ///< filedesc, -1 if not open.
};
netbsd_smart_device::~netbsd_smart_device() throw()
{
if (m_fd >= 0)
os_netbsd::netbsd_smart_device::close();
}
bool netbsd_smart_device::is_open() const
{
return (m_fd >= 0);
}
bool netbsd_smart_device::open()
{
const char *dev = get_dev_name();
int fd;
if (is_scsi()) {
fd = ::open(dev,O_RDWR|O_NONBLOCK);
if (fd < 0 && errno == EROFS)
fd = ::open(dev,O_RDONLY|O_NONBLOCK);
if (fd < 0) {
set_err(errno);
return false;
}
} else if (is_ata() || is_nvme()) {
if ((fd = ::open(dev,O_RDWR|O_NONBLOCK))<0) {
set_err(errno);
return false;
}
} else
return false;
set_fd(fd);
return true;
}
bool netbsd_smart_device::close()
{
int failed = 0;
// close device, if open
if (is_open())
failed=::close(get_fd());
set_fd(-1);
if(failed) return false;
else return true;
}
/////////////////////////////////////////////////////////////////////////////
/// Implement standard ATA support
class netbsd_ata_device
: public /*implements*/ ata_device,
public /*extends*/ netbsd_smart_device
{
public:
netbsd_ata_device(smart_interface * intf, const char * dev_name, const char * req_type);
virtual bool ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out);
protected:
virtual int do_cmd(struct atareq* request, bool is_48bit_cmd);
};
netbsd_ata_device::netbsd_ata_device(smart_interface * intf, const char * dev_name, const char * req_type)
: smart_device(intf, dev_name, "ata", req_type),
netbsd_smart_device()
{
}
int netbsd_ata_device::do_cmd( struct atareq* request, bool is_48bit_cmd)
{
int fd = get_fd(), ret;
ARGUSED(is_48bit_cmd); // no support for 48 bit commands in the ATAIOCCOMMAND
ret = ioctl(fd, ATAIOCCOMMAND, request);
if (ret) set_err(errno);
return ret;
}
bool netbsd_ata_device::ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out)
{
bool ata_48bit = false; // no ata_48bit_support via ATAIOCCOMMAND
if (!ata_cmd_is_ok(in,
true, // data_out_support
true, // multi_sector_support
ata_48bit)
) {
set_err(ENOSYS, "48-bit ATA commands not implemented");
return false;
}
struct atareq req;
memset(&req, 0, sizeof(req));
req.timeout = 1000;
req.command = in.in_regs.command;
req.features = in.in_regs.features;
req.sec_count = in.in_regs.sector_count;
req.sec_num = in.in_regs.lba_low;
req.head = in.in_regs.device;
req.cylinder = in.in_regs.lba_mid | (in.in_regs.lba_high << 8);
switch (in.direction) {
case ata_cmd_in::no_data:
req.flags = ATACMD_READREG;
break;
case ata_cmd_in::data_in:
req.flags = ATACMD_READ | ATACMD_READREG;
req.databuf = (char *)in.buffer;
req.datalen = in.size;
break;
case ata_cmd_in::data_out:
req.flags = ATACMD_WRITE | ATACMD_READREG;
req.databuf = (char *)in.buffer;
req.datalen = in.size;
break;
default:
return set_err(ENOSYS);
}
clear_err();
errno = 0;
if (do_cmd(&req, in.in_regs.is_48bit_cmd()))
return false;
if (req.retsts != ATACMD_OK)
return set_err(EIO, "request failed, error code 0x%02x", req.retsts);
out.out_regs.error = req.error;
out.out_regs.sector_count = req.sec_count;
out.out_regs.lba_low = req.sec_num;
out.out_regs.device = req.head;
out.out_regs.lba_mid = req.cylinder;
out.out_regs.lba_high = req.cylinder >> 8;
out.out_regs.status = req.command;
/* Undo byte-swapping for IDENTIFY */
if (in.in_regs.command == ATA_IDENTIFY_DEVICE && isbigendian()) {
for (int i = 0; i < 256; i+=2)
swap2 ((char *)req.databuf + i);
}
return true;
}
/////////////////////////////////////////////////////////////////////////////
/// NVMe support
class netbsd_nvme_device
: public /*implements*/ nvme_device,
public /*extends*/ netbsd_smart_device
{
public:
netbsd_nvme_device(smart_interface * intf, const char * dev_name,
const char * req_type, unsigned nsid);
virtual bool open();
virtual bool nvme_pass_through(const nvme_cmd_in & in, nvme_cmd_out & out);
};
netbsd_nvme_device::netbsd_nvme_device(smart_interface * intf, const char * dev_name,
const char * req_type, unsigned nsid)
: smart_device(intf, dev_name, "nvme", req_type),
nvme_device(nsid),
netbsd_smart_device()
{
}
bool netbsd_nvme_device::open()
{
const char *dev = get_dev_name();
if (strncmp(dev, NVME_PREFIX, strlen(NVME_PREFIX))) {
set_err(EINVAL, "NVMe controller controller/namespace ids must begin with '%s'",
NVME_PREFIX);
return false;
}
int nsid = -1, ctrlid = -1;
char tmp;
if(sscanf(dev, NVME_PREFIX"%d%c", &ctrlid, &tmp) == 1)
{
if(ctrlid < 0) {
set_err(EINVAL, "Invalid NVMe controller number");
return false;
}
nsid = 0xFFFFFFFF; // broadcast id
}
else if (sscanf(dev, NVME_PREFIX "%d" NVME_NS_PREFIX "%d%c",
&ctrlid, &nsid, &tmp) == 2)
{
if(ctrlid < 0 || nsid <= 0) {
set_err(EINVAL, "Invalid NVMe controller/namespace number");
return false;
}
}
else {
set_err(EINVAL, "Invalid NVMe controller/namespace syntax");
return false;
}
// we should always open controller, not namespace device
char full_path[64];
snprintf(full_path, sizeof(full_path), NVME_PREFIX"%d", ctrlid);
int fd;
if ((fd = ::open(full_path, O_RDWR))<0) {
set_err(errno);
return false;
}
set_fd(fd);
if (!get_nsid()) {
set_nsid(nsid);
}
return true;
}
bool netbsd_nvme_device::nvme_pass_through(const nvme_cmd_in & in, nvme_cmd_out & out)
{
struct nvme_pt_command pt;
memset(&pt, 0, sizeof(pt));
pt.cmd.opcode = in.opcode;
pt.cmd.nsid = in.nsid;
pt.buf = in.buffer;
pt.len = in.size;
pt.cmd.cdw10 = in.cdw10;
pt.cmd.cdw11 = in.cdw11;
pt.cmd.cdw12 = in.cdw12;
pt.cmd.cdw13 = in.cdw13;
pt.cmd.cdw14 = in.cdw14;
pt.cmd.cdw15 = in.cdw15;
pt.is_read = 1; // should we use in.direction()?
int status = ioctl(get_fd(), NVME_PASSTHROUGH_CMD, &pt);
if (status < 0)
return set_err(errno, "NVME_PASSTHROUGH_CMD: %s", strerror(errno));
out.result=pt.cpl.cdw0; // Command specific result (DW0)
if (nvme_completion_is_error(&pt.cpl))
return set_nvme_err(out, nvme_completion_is_error(&pt.cpl));
return true;
}
/////////////////////////////////////////////////////////////////////////////
/// Standard SCSI support
class netbsd_scsi_device
: public /*implements*/ scsi_device,
public /*extends*/ netbsd_smart_device
{
public:
netbsd_scsi_device(smart_interface * intf, const char * dev_name, const char * req_type, bool scanning = false);
virtual smart_device * autodetect_open();
virtual bool scsi_pass_through(scsi_cmnd_io * iop);
private:
bool m_scanning; ///< true if created within scan_smart_devices
};
netbsd_scsi_device::netbsd_scsi_device(smart_interface * intf,
const char * dev_name, const char * req_type, bool scanning /* = false */)
: smart_device(intf, dev_name, "scsi", req_type),
netbsd_smart_device(),
m_scanning(scanning)
{
}
bool netbsd_scsi_device::scsi_pass_through(scsi_cmnd_io * iop)
{
struct scsireq sc;
int fd = get_fd();
if (scsi_debugmode) {
unsigned int k;
const unsigned char * ucp = iop->cmnd;
const char * np;
np = scsi_get_opcode_name(ucp[0]);
pout(" [%s: ", np ? np : "<unknown opcode>");
for (k = 0; k < iop->cmnd_len; ++k)
pout("%02x ", ucp[k]);
if ((scsi_debugmode > 1) &&
(DXFER_TO_DEVICE == iop->dxfer_dir) && (iop->dxferp)) {
int trunc = (iop->dxfer_len > 256) ? 1 : 0;
pout("]\n Outgoing data, len=%d%s:\n", (int)iop->dxfer_len,
(trunc ? " [only first 256 bytes shown]" : ""));
dStrHex(iop->dxferp, (trunc ? 256 : iop->dxfer_len) , 1);
}
else
pout("]\n");
}
memset(&sc, 0, sizeof(sc));
memcpy(sc.cmd, iop->cmnd, iop->cmnd_len);
sc.cmdlen = iop->cmnd_len;
sc.databuf = (char *)iop->dxferp;
sc.datalen = iop->dxfer_len;
sc.senselen = iop->max_sense_len;
sc.timeout = iop->timeout == 0 ? 60000 : (1000 * iop->timeout);
sc.flags =
(iop->dxfer_dir == DXFER_NONE ? SCCMD_READ :
(iop->dxfer_dir == DXFER_FROM_DEVICE ? SCCMD_READ : SCCMD_WRITE));
if (ioctl(fd, SCIOCCOMMAND, &sc) < 0) {
if (scsi_debugmode) {
pout(" error sending SCSI ccb\n");
}
return set_err(EIO);
}
iop->resid = sc.datalen - sc.datalen_used;
iop->scsi_status = sc.status;
if (iop->sensep) {
memcpy(iop->sensep, sc.sense, sc.senselen_used);
iop->resp_sense_len = sc.senselen_used;
}
if (scsi_debugmode) {
int trunc;
pout(" status=0\n");
trunc = (iop->dxfer_len > 256) ? 1 : 0;
pout(" Incoming data, len=%d%s:\n", (int) iop->dxfer_len,
(trunc ? " [only first 256 bytes shown]" : ""));
dStrHex(iop->dxferp, (trunc ? 256 : iop->dxfer_len), 1);
}
switch (sc.retsts) {
case SCCMD_OK:
break;
case SCCMD_TIMEOUT:
return set_err(ETIMEDOUT);
case SCCMD_BUSY:
return set_err(EBUSY);
default:
return set_err(EIO);
}
return true;
}
/////////////////////////////////////////////////////////////////////////////
///// SCSI open with autodetection support
smart_device * netbsd_scsi_device::autodetect_open()
{
// Open device
if (!open())
return this;
// No Autodetection if device type was specified by user
bool sat_only = false;
if (*get_req_type()) {
// Detect SAT if device object was created by scan_smart_devices().
if (!(m_scanning && !strcmp(get_req_type(), "sat")))
return this;
sat_only = true;
}
// The code below is based on smartd.cpp:SCSIFilterKnown()
// Get INQUIRY
unsigned char req_buff[64] = {0, };
int req_len = 36;
if (scsiStdInquiry(this, req_buff, req_len)) {
// Marvell controllers fail on a 36 bytes StdInquiry, but 64 suffices
// watch this spot ... other devices could lock up here
req_len = 64;
if (scsiStdInquiry(this, req_buff, req_len)) {
// device doesn't like INQUIRY commands
close();
set_err(EIO, "INQUIRY failed");
return this;
}
}
int avail_len = req_buff[4] + 5;
int len = (avail_len < req_len ? avail_len : req_len);
if (len < 36) {
if (sat_only) {
close();
set_err(EIO, "INQUIRY too short for SAT");
}
return this;
}
// Use INQUIRY to detect type
// SAT or USB, skip MFI controllers because of bugs
{
smart_device * newdev = smi()->autodetect_sat_device(this, req_buff, len);
if (newdev) {
// NOTE: 'this' is now owned by '*newdev'
return newdev;
}
}
// Nothing special found
if (sat_only) {
close();
set_err(EIO, "Not a SAT device");
}
return this;
}
/////////////////////////////////////////////////////////////////////////////
/// Implement platform interface with old functions.
class netbsd_smart_interface
: public /*implements*/ smart_interface
{
public:
virtual std::string get_os_version_str();
virtual std::string get_app_examples(const char * appname);
virtual bool scan_smart_devices(smart_device_list & devlist, const char * type,
const char * pattern = 0);
protected:
virtual ata_device * get_ata_device(const char * name, const char * type);
virtual scsi_device * get_scsi_device(const char * name, const char * type);
virtual nvme_device * get_nvme_device(const char * name, const char * type,
unsigned nsid);
virtual smart_device * autodetect_smart_device(const char * name);
virtual smart_device * get_custom_smart_device(const char * name, const char * type);
virtual std::string get_valid_custom_dev_types_str();
private:
int get_dev_names(char ***, const char *);
bool get_nvme_devlist(smart_device_list & devlist, const char * type);
};
//////////////////////////////////////////////////////////////////////
std::string netbsd_smart_interface::get_os_version_str()
{
struct utsname osname;
uname(&osname);
return strprintf("%s %s %s", osname.sysname, osname.release, osname.machine);
}
std::string netbsd_smart_interface::get_app_examples(const char * appname)
{
if (!strcmp(appname, "smartctl")) {
char p;
p = 'a' + getrawpartition();
return strprintf(
"=================================================== SMARTCTL EXAMPLES =====\n\n"
" smartctl -a /dev/wd0%c (Prints all SMART information)\n\n"
" smartctl --smart=on --offlineauto=on --saveauto=on /dev/wd0%c\n"
" (Enables SMART on first disk)\n\n"
" smartctl -t long /dev/wd0%c (Executes extended disk self-test)\n\n"
" smartctl --attributes --log=selftest --quietmode=errorsonly /dev/wd0%c\n"
" (Prints Self-Test & Attribute errors)\n"
, p, p, p, p);
}
return "";
}
ata_device * netbsd_smart_interface::get_ata_device(const char * name, const char * type)
{
return new netbsd_ata_device(this, name, type);
}
scsi_device * netbsd_smart_interface::get_scsi_device(const char * name, const char * type)
{
return new netbsd_scsi_device(this, name, type);
}
nvme_device * netbsd_smart_interface::get_nvme_device(const char * name, const char * type, unsigned nsid)
{
return new netbsd_nvme_device(this, name, type, nsid);
}
int netbsd_smart_interface::get_dev_names(char ***names, const char *prefix)
{
char *disknames, *p, **mp;
int n = 0;
int sysctl_mib[2];
size_t sysctl_len;
*names = NULL;
sysctl_mib[0] = CTL_HW;
sysctl_mib[1] = HW_DISKNAMES;
if (-1 == sysctl(sysctl_mib, 2, NULL, &sysctl_len, NULL, 0)) {
pout("Failed to get value of sysctl `hw.disknames'\n");
return -1;
}
if (!(disknames = (char *)malloc(sysctl_len))) {
pout("Out of memory constructing scan device list\n");
return -1;
}
if (-1 == sysctl(sysctl_mib, 2, disknames, &sysctl_len, NULL, 0)) {
pout("Failed to get value of sysctl `hw.disknames'\n");
return -1;
}
if (!(mp = (char **) calloc(strlen(disknames) / 2, sizeof(char *)))) {
pout("Out of memory constructing scan device list\n");
return -1;
}
for (p = strtok(disknames, " "); p; p = strtok(NULL, " ")) {
if (strncmp(p, prefix, strlen(prefix))) {
continue;
}
mp[n] = (char *)malloc(strlen(net_dev_raw_prefix) + strlen(p) + 2);
if (!mp[n]) {
pout("Out of memory constructing scan device list\n");
return -1;
}
sprintf(mp[n], "%s%s%c", net_dev_raw_prefix, p, 'a' + getrawpartition());
n++;
}
char ** tmp = (char **)realloc(mp, n * (sizeof(char *)));
if (NULL == tmp) {
pout("Out of memory constructing scan device list\n");
free(mp);
return -1;
}
else
mp = tmp;
*names = mp;
return n;
}
bool netbsd_smart_interface::get_nvme_devlist(smart_device_list & devlist,
const char * type)
{
char ctrlpath[64], nspath[64];
struct stat sb;
struct devlistargs laa;
nvme_device * nvmedev;
int drvfd = ::open(DRVCTLDEV, O_RDONLY, 0);
if (drvfd < 0) {
set_err(errno);
return false;
}
for (int ctrl = 0;; ctrl++) {
snprintf(ctrlpath, sizeof(ctrlpath), NVME_PREFIX"%d", ctrl);
if (stat(ctrlpath, &sb) == -1 || !S_ISCHR(sb.st_mode))
break;
snprintf(laa.l_devname, sizeof(laa.l_devname), "%s%d", net_dev_nvme_ctrl,
ctrl);
laa.l_childname = NULL;
laa.l_children = 0;
if (ioctl(drvfd, DRVLISTDEV, &laa) == -1) {
if (errno == ENXIO)
continue;
break;
}
nvmedev = get_nvme_device(ctrlpath, type, 0);
if (nvmedev)
devlist.push_back(nvmedev);
uint32_t n = 0;
for (int nsid = 1; n < laa.l_children; nsid++) {
snprintf(nspath, sizeof(nspath), NVME_PREFIX "%d" NVME_NS_PREFIX "%d",
ctrl, nsid);
if (stat(nspath, &sb) == -1 || !S_ISCHR(sb.st_mode))
break;
int nsfd = ::open(nspath, O_RDONLY, 0);
if (nsfd < 0)
continue;
::close(nsfd);
n++;
nvmedev = get_nvme_device(nspath, type, nsid);
if (nvmedev)
devlist.push_back(nvmedev);
}
}
::close(drvfd);
return true;
}
bool netbsd_smart_interface::scan_smart_devices(smart_device_list & devlist,
const char * type, const char * pattern /*= 0*/)
{
if (pattern) {
set_err(EINVAL, "DEVICESCAN with pattern not implemented yet");
return false;
}
if (type == NULL)
type = "";
bool scan_ata = !*type || !strcmp(type, "ata");
bool scan_scsi = !*type || !strcmp(type, "scsi") || !strcmp(type, "sat");
#ifdef WITH_NVME_DEVICESCAN // TODO: Remove when NVMe support is no longer EXPERIMENTAL
bool scan_nvme = !*type || !strcmp(type, "nvme");
#else
bool scan_nvme = !strcmp(type, "nvme");
#endif
// Make namelists
char * * atanames = 0; int numata = 0;
if (scan_ata) {
numata = get_dev_names(&atanames, net_dev_ata_disk);
if (numata < 0) {
set_err(ENOMEM);
return false;
}
}
char * * scsinames = 0; int numscsi = 0;
char * * scsitapenames = 0; int numscsitape = 0;
if (scan_scsi) {
numscsi = get_dev_names(&scsinames, net_dev_scsi_disk);
if (numscsi < 0) {
set_err(ENOMEM);
return false;
}
numscsitape = get_dev_names(&scsitapenames, net_dev_scsi_tape);
if (numscsitape < 0) {
set_err(ENOMEM);
return false;
}
}
// Add to devlist
int i;
for (i = 0; i < numata; i++) {
ata_device * atadev = get_ata_device(atanames[i], type);
if (atadev)
devlist.push_back(atadev);
free(atanames[i]);
}
if(numata) free(atanames);
for (i = 0; i < numscsi; i++) {
scsi_device * scsidev = new netbsd_scsi_device(this, scsinames[i], type, true /*scanning*/);
if (scsidev)
devlist.push_back(scsidev);
free(scsinames[i]);
}
if(numscsi) free(scsinames);
for (i = 0; i < numscsitape; i++) {
scsi_device * scsidev = get_scsi_device(scsitapenames[i], type);
if (scsidev)
devlist.push_back(scsidev);
free(scsitapenames[i]);
}
if(numscsitape) free(scsitapenames);
if (scan_nvme)
get_nvme_devlist(devlist, type);
return true;
}
smart_device * netbsd_smart_interface::autodetect_smart_device(const char * name)
{
const char * test_name = name;
// if dev_name null, or string length zero
if (!name || !*name)
return 0;
// Dereference symlinks
struct stat st;
std::string pathbuf;
if (!lstat(name, &st) && S_ISLNK(st.st_mode)) {
char * p = realpath(name, (char *)0);
if (p) {
pathbuf = p;
free(p);
test_name = pathbuf.c_str();
}
}
if (str_starts_with(test_name, net_dev_raw_prefix))
test_name += strlen(net_dev_raw_prefix);
else if (str_starts_with(test_name, net_dev_prefix))
test_name += strlen(net_dev_prefix);
else
return 0; // device is not starting with /dev/ or /dev/r*
if (!strncmp(net_dev_ata_disk, test_name, strlen(net_dev_ata_disk)))
return get_ata_device(name, "ata");
if (!strncmp(net_dev_scsi_disk, test_name, strlen(net_dev_scsi_disk))) {
// XXX Try to detect possible USB->(S)ATA bridge
// XXX get USB vendor ID, product ID and version from sd(4)/umass(4).
// XXX check sat device via get_usb_dev_type_by_id().
// No USB bridge found, assume regular SCSI device
return get_scsi_device(name, "scsi");
}
if (!strncmp(net_dev_scsi_tape, test_name, strlen(net_dev_scsi_tape)))
return get_scsi_device(name, "scsi");
if (!strncmp(net_dev_nvme_ctrl, test_name, strlen(net_dev_nvme_ctrl)))
return get_nvme_device(name, "nvme", 0 /* use default nsid */);
// device type unknown
return 0;
}
smart_device * netbsd_smart_interface::get_custom_smart_device(const char * name, const char * type)
{
ARGUSED(name);
ARGUSED(type);
return 0;
}
std::string netbsd_smart_interface::get_valid_custom_dev_types_str()
{
return "";
}
} // namespace
/////////////////////////////////////////////////////////////////////////////
/// Initialize platform interface and register with smi()
void smart_interface::init()
{
static os_netbsd::netbsd_smart_interface the_interface;
smart_interface::set(&the_interface);
}
/* vim: set ts=2 sw=2 et ff=unix : */