mirror of
				https://git.proxmox.com/git/mirror_frr
				synced 2025-11-04 10:07:04 +00:00 
			
		
		
		
	The new_rtrs variable was just generated and then dropped. Let's fix that entirely Signed-off-by: Donald Sharp <sharpd@nvidia.com>
		
			
				
	
	
		
			2074 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2074 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-or-later
 | 
						|
/* OSPF SPF calculation.
 | 
						|
 * Copyright (C) 1999, 2000 Kunihiro Ishiguro, Toshiaki Takada
 | 
						|
 */
 | 
						|
 | 
						|
#include <zebra.h>
 | 
						|
 | 
						|
#include "monotime.h"
 | 
						|
#include "thread.h"
 | 
						|
#include "memory.h"
 | 
						|
#include "hash.h"
 | 
						|
#include "linklist.h"
 | 
						|
#include "prefix.h"
 | 
						|
#include "if.h"
 | 
						|
#include "table.h"
 | 
						|
#include "log.h"
 | 
						|
#include "sockunion.h" /* for inet_ntop () */
 | 
						|
 | 
						|
#include "ospfd/ospfd.h"
 | 
						|
#include "ospfd/ospf_interface.h"
 | 
						|
#include "ospfd/ospf_ism.h"
 | 
						|
#include "ospfd/ospf_asbr.h"
 | 
						|
#include "ospfd/ospf_lsa.h"
 | 
						|
#include "ospfd/ospf_lsdb.h"
 | 
						|
#include "ospfd/ospf_neighbor.h"
 | 
						|
#include "ospfd/ospf_nsm.h"
 | 
						|
#include "ospfd/ospf_spf.h"
 | 
						|
#include "ospfd/ospf_route.h"
 | 
						|
#include "ospfd/ospf_ia.h"
 | 
						|
#include "ospfd/ospf_ase.h"
 | 
						|
#include "ospfd/ospf_abr.h"
 | 
						|
#include "ospfd/ospf_dump.h"
 | 
						|
#include "ospfd/ospf_sr.h"
 | 
						|
#include "ospfd/ospf_ti_lfa.h"
 | 
						|
#include "ospfd/ospf_errors.h"
 | 
						|
 | 
						|
#ifdef SUPPORT_OSPF_API
 | 
						|
#include "ospfd/ospf_apiserver.h"
 | 
						|
#endif
 | 
						|
 | 
						|
/* Variables to ensure a SPF scheduled log message is printed only once */
 | 
						|
 | 
						|
static unsigned int spf_reason_flags = 0;
 | 
						|
 | 
						|
/* dummy vertex to flag "in spftree" */
 | 
						|
static const struct vertex vertex_in_spftree = {};
 | 
						|
#define LSA_SPF_IN_SPFTREE	(struct vertex *)&vertex_in_spftree
 | 
						|
#define LSA_SPF_NOT_EXPLORED	NULL
 | 
						|
 | 
						|
static void ospf_clear_spf_reason_flags(void)
 | 
						|
{
 | 
						|
	spf_reason_flags = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void ospf_spf_set_reason(ospf_spf_reason_t reason)
 | 
						|
{
 | 
						|
	spf_reason_flags |= 1 << reason;
 | 
						|
}
 | 
						|
 | 
						|
static void ospf_vertex_free(void *);
 | 
						|
 | 
						|
/*
 | 
						|
 * Heap related functions, for the managment of the candidates, to
 | 
						|
 * be used with pqueue.
 | 
						|
 */
 | 
						|
static int vertex_cmp(const struct vertex *v1, const struct vertex *v2)
 | 
						|
{
 | 
						|
	if (v1->distance != v2->distance)
 | 
						|
		return v1->distance - v2->distance;
 | 
						|
 | 
						|
	if (v1->type != v2->type) {
 | 
						|
		switch (v1->type) {
 | 
						|
		case OSPF_VERTEX_NETWORK:
 | 
						|
			return -1;
 | 
						|
		case OSPF_VERTEX_ROUTER:
 | 
						|
			return 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
DECLARE_SKIPLIST_NONUNIQ(vertex_pqueue, struct vertex, pqi, vertex_cmp);
 | 
						|
 | 
						|
static void lsdb_clean_stat(struct ospf_lsdb *lsdb)
 | 
						|
{
 | 
						|
	struct route_table *table;
 | 
						|
	struct route_node *rn;
 | 
						|
	struct ospf_lsa *lsa;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = OSPF_MIN_LSA; i < OSPF_MAX_LSA; i++) {
 | 
						|
		table = lsdb->type[i].db;
 | 
						|
		for (rn = route_top(table); rn; rn = route_next(rn))
 | 
						|
			if ((lsa = (rn->info)) != NULL)
 | 
						|
				lsa->stat = LSA_SPF_NOT_EXPLORED;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static struct vertex_nexthop *vertex_nexthop_new(void)
 | 
						|
{
 | 
						|
	return XCALLOC(MTYPE_OSPF_NEXTHOP, sizeof(struct vertex_nexthop));
 | 
						|
}
 | 
						|
 | 
						|
static void vertex_nexthop_free(struct vertex_nexthop *nh)
 | 
						|
{
 | 
						|
	XFREE(MTYPE_OSPF_NEXTHOP, nh);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free the canonical nexthop objects for an area, ie the nexthop objects
 | 
						|
 * attached to the first-hop router vertices, and any intervening network
 | 
						|
 * vertices.
 | 
						|
 */
 | 
						|
static void ospf_canonical_nexthops_free(struct vertex *root)
 | 
						|
{
 | 
						|
	struct listnode *node, *nnode;
 | 
						|
	struct vertex *child;
 | 
						|
 | 
						|
	for (ALL_LIST_ELEMENTS(root->children, node, nnode, child)) {
 | 
						|
		struct listnode *n2, *nn2;
 | 
						|
		struct vertex_parent *vp;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * router vertices through an attached network each
 | 
						|
		 * have a distinct (canonical / not inherited) nexthop
 | 
						|
		 * which must be freed.
 | 
						|
		 *
 | 
						|
		 * A network vertex can only have router vertices as its
 | 
						|
		 * children, so only one level of recursion is possible.
 | 
						|
		 */
 | 
						|
		if (child->type == OSPF_VERTEX_NETWORK)
 | 
						|
			ospf_canonical_nexthops_free(child);
 | 
						|
 | 
						|
		/* Free child nexthops pointing back to this root vertex */
 | 
						|
		for (ALL_LIST_ELEMENTS(child->parents, n2, nn2, vp)) {
 | 
						|
			if (vp->parent == root && vp->nexthop) {
 | 
						|
				vertex_nexthop_free(vp->nexthop);
 | 
						|
				vp->nexthop = NULL;
 | 
						|
				if (vp->local_nexthop) {
 | 
						|
					vertex_nexthop_free(vp->local_nexthop);
 | 
						|
					vp->local_nexthop = NULL;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * TODO: Parent list should be excised, in favour of maintaining only
 | 
						|
 * vertex_nexthop, with refcounts.
 | 
						|
 */
 | 
						|
static struct vertex_parent *vertex_parent_new(struct vertex *v, int backlink,
 | 
						|
					       struct vertex_nexthop *hop,
 | 
						|
					       struct vertex_nexthop *lhop)
 | 
						|
{
 | 
						|
	struct vertex_parent *new;
 | 
						|
 | 
						|
	new = XMALLOC(MTYPE_OSPF_VERTEX_PARENT, sizeof(struct vertex_parent));
 | 
						|
 | 
						|
	new->parent = v;
 | 
						|
	new->backlink = backlink;
 | 
						|
	new->nexthop = hop;
 | 
						|
	new->local_nexthop = lhop;
 | 
						|
 | 
						|
	return new;
 | 
						|
}
 | 
						|
 | 
						|
static void vertex_parent_free(struct vertex_parent *p)
 | 
						|
{
 | 
						|
	vertex_nexthop_free(p->local_nexthop);
 | 
						|
	vertex_nexthop_free(p->nexthop);
 | 
						|
	XFREE(MTYPE_OSPF_VERTEX_PARENT, p);
 | 
						|
}
 | 
						|
 | 
						|
int vertex_parent_cmp(void *aa, void *bb)
 | 
						|
{
 | 
						|
	struct vertex_parent *a = aa, *b = bb;
 | 
						|
	return IPV4_ADDR_CMP(&a->nexthop->router, &b->nexthop->router);
 | 
						|
}
 | 
						|
 | 
						|
static struct vertex *ospf_vertex_new(struct ospf_area *area,
 | 
						|
				      struct ospf_lsa *lsa)
 | 
						|
{
 | 
						|
	struct vertex *new;
 | 
						|
 | 
						|
	new = XCALLOC(MTYPE_OSPF_VERTEX, sizeof(struct vertex));
 | 
						|
 | 
						|
	new->flags = 0;
 | 
						|
	new->type = lsa->data->type;
 | 
						|
	new->id = lsa->data->id;
 | 
						|
	new->lsa = lsa->data;
 | 
						|
	new->children = list_new();
 | 
						|
	new->parents = list_new();
 | 
						|
	new->parents->del = (void (*)(void *))vertex_parent_free;
 | 
						|
	new->parents->cmp = vertex_parent_cmp;
 | 
						|
	new->lsa_p = lsa;
 | 
						|
 | 
						|
	lsa->stat = new;
 | 
						|
 | 
						|
	listnode_add(area->spf_vertex_list, new);
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("%s: Created %s vertex %pI4", __func__,
 | 
						|
			   new->type == OSPF_VERTEX_ROUTER ? "Router"
 | 
						|
							   : "Network",
 | 
						|
			   &new->lsa->id);
 | 
						|
 | 
						|
	return new;
 | 
						|
}
 | 
						|
 | 
						|
static void ospf_vertex_free(void *data)
 | 
						|
{
 | 
						|
	struct vertex *v = data;
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("%s: Free %s vertex %pI4", __func__,
 | 
						|
			   v->type == OSPF_VERTEX_ROUTER ? "Router" : "Network",
 | 
						|
			   &v->lsa->id);
 | 
						|
 | 
						|
	if (v->children)
 | 
						|
		list_delete(&v->children);
 | 
						|
 | 
						|
	if (v->parents)
 | 
						|
		list_delete(&v->parents);
 | 
						|
 | 
						|
	v->lsa = NULL;
 | 
						|
 | 
						|
	XFREE(MTYPE_OSPF_VERTEX, v);
 | 
						|
}
 | 
						|
 | 
						|
static void ospf_vertex_dump(const char *msg, struct vertex *v,
 | 
						|
			     int print_parents, int print_children)
 | 
						|
{
 | 
						|
	if (!IS_DEBUG_OSPF_EVENT)
 | 
						|
		return;
 | 
						|
 | 
						|
	zlog_debug("%s %s vertex %pI4  distance %u flags %u", msg,
 | 
						|
		   v->type == OSPF_VERTEX_ROUTER ? "Router" : "Network",
 | 
						|
		   &v->lsa->id, v->distance, (unsigned int)v->flags);
 | 
						|
 | 
						|
	if (print_parents) {
 | 
						|
		struct listnode *node;
 | 
						|
		struct vertex_parent *vp;
 | 
						|
 | 
						|
		for (ALL_LIST_ELEMENTS_RO(v->parents, node, vp)) {
 | 
						|
			if (vp) {
 | 
						|
				zlog_debug(
 | 
						|
					"parent %pI4 backlink %d nexthop %pI4 lsa pos %d",
 | 
						|
					&vp->parent->lsa->id, vp->backlink,
 | 
						|
					&vp->nexthop->router,
 | 
						|
					vp->nexthop->lsa_pos);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (print_children) {
 | 
						|
		struct listnode *cnode;
 | 
						|
		struct vertex *cv;
 | 
						|
 | 
						|
		for (ALL_LIST_ELEMENTS_RO(v->children, cnode, cv))
 | 
						|
			ospf_vertex_dump(" child:", cv, 0, 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Add a vertex to the list of children in each of its parents. */
 | 
						|
static void ospf_vertex_add_parent(struct vertex *v)
 | 
						|
{
 | 
						|
	struct vertex_parent *vp;
 | 
						|
	struct listnode *node;
 | 
						|
 | 
						|
	assert(v && v->parents);
 | 
						|
 | 
						|
	for (ALL_LIST_ELEMENTS_RO(v->parents, node, vp)) {
 | 
						|
		assert(vp->parent && vp->parent->children);
 | 
						|
 | 
						|
		/* No need to add two links from the same parent. */
 | 
						|
		if (listnode_lookup(vp->parent->children, v) == NULL)
 | 
						|
			listnode_add(vp->parent->children, v);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Find a vertex according to its router id */
 | 
						|
struct vertex *ospf_spf_vertex_find(struct in_addr id, struct list *vertex_list)
 | 
						|
{
 | 
						|
	struct listnode *node;
 | 
						|
	struct vertex *found;
 | 
						|
 | 
						|
	for (ALL_LIST_ELEMENTS_RO(vertex_list, node, found)) {
 | 
						|
		if (found->id.s_addr == id.s_addr)
 | 
						|
			return found;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Find a vertex parent according to its router id */
 | 
						|
struct vertex_parent *ospf_spf_vertex_parent_find(struct in_addr id,
 | 
						|
						  struct vertex *vertex)
 | 
						|
{
 | 
						|
	struct listnode *node;
 | 
						|
	struct vertex_parent *found;
 | 
						|
 | 
						|
	for (ALL_LIST_ELEMENTS_RO(vertex->parents, node, found)) {
 | 
						|
		if (found->parent->id.s_addr == id.s_addr)
 | 
						|
			return found;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
struct vertex *ospf_spf_vertex_by_nexthop(struct vertex *root,
 | 
						|
					  struct in_addr *nexthop)
 | 
						|
{
 | 
						|
	struct listnode *node;
 | 
						|
	struct vertex *child;
 | 
						|
	struct vertex_parent *vertex_parent;
 | 
						|
 | 
						|
	for (ALL_LIST_ELEMENTS_RO(root->children, node, child)) {
 | 
						|
		vertex_parent = ospf_spf_vertex_parent_find(root->id, child);
 | 
						|
		if (vertex_parent->nexthop->router.s_addr == nexthop->s_addr)
 | 
						|
			return child;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Create a deep copy of a SPF vertex without children and parents */
 | 
						|
static struct vertex *ospf_spf_vertex_copy(struct vertex *vertex)
 | 
						|
{
 | 
						|
	struct vertex *copy;
 | 
						|
 | 
						|
	copy = XCALLOC(MTYPE_OSPF_VERTEX, sizeof(struct vertex));
 | 
						|
 | 
						|
	memcpy(copy, vertex, sizeof(struct vertex));
 | 
						|
	copy->parents = list_new();
 | 
						|
	copy->parents->del = (void (*)(void *))vertex_parent_free;
 | 
						|
	copy->parents->cmp = vertex_parent_cmp;
 | 
						|
	copy->children = list_new();
 | 
						|
 | 
						|
	return copy;
 | 
						|
}
 | 
						|
 | 
						|
/* Create a deep copy of a SPF vertex_parent */
 | 
						|
static struct vertex_parent *
 | 
						|
ospf_spf_vertex_parent_copy(struct vertex_parent *vertex_parent)
 | 
						|
{
 | 
						|
	struct vertex_parent *vertex_parent_copy;
 | 
						|
	struct vertex_nexthop *nexthop_copy, *local_nexthop_copy;
 | 
						|
 | 
						|
	vertex_parent_copy =
 | 
						|
		XCALLOC(MTYPE_OSPF_VERTEX, sizeof(struct vertex_parent));
 | 
						|
 | 
						|
	nexthop_copy = vertex_nexthop_new();
 | 
						|
	local_nexthop_copy = vertex_nexthop_new();
 | 
						|
 | 
						|
	memcpy(vertex_parent_copy, vertex_parent, sizeof(struct vertex_parent));
 | 
						|
	memcpy(nexthop_copy, vertex_parent->nexthop,
 | 
						|
	       sizeof(struct vertex_nexthop));
 | 
						|
	memcpy(local_nexthop_copy, vertex_parent->local_nexthop,
 | 
						|
	       sizeof(struct vertex_nexthop));
 | 
						|
 | 
						|
	vertex_parent_copy->nexthop = nexthop_copy;
 | 
						|
	vertex_parent_copy->local_nexthop = local_nexthop_copy;
 | 
						|
 | 
						|
	return vertex_parent_copy;
 | 
						|
}
 | 
						|
 | 
						|
/* Create a deep copy of a SPF tree */
 | 
						|
void ospf_spf_copy(struct vertex *vertex, struct list *vertex_list)
 | 
						|
{
 | 
						|
	struct listnode *node;
 | 
						|
	struct vertex *vertex_copy, *child, *child_copy, *parent_copy;
 | 
						|
	struct vertex_parent *vertex_parent, *vertex_parent_copy;
 | 
						|
 | 
						|
	/* First check if the node is already in the vertex list */
 | 
						|
	vertex_copy = ospf_spf_vertex_find(vertex->id, vertex_list);
 | 
						|
	if (!vertex_copy) {
 | 
						|
		vertex_copy = ospf_spf_vertex_copy(vertex);
 | 
						|
		listnode_add(vertex_list, vertex_copy);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Copy all parents, create parent nodes if necessary */
 | 
						|
	for (ALL_LIST_ELEMENTS_RO(vertex->parents, node, vertex_parent)) {
 | 
						|
		parent_copy = ospf_spf_vertex_find(vertex_parent->parent->id,
 | 
						|
						   vertex_list);
 | 
						|
		if (!parent_copy) {
 | 
						|
			parent_copy =
 | 
						|
				ospf_spf_vertex_copy(vertex_parent->parent);
 | 
						|
			listnode_add(vertex_list, parent_copy);
 | 
						|
		}
 | 
						|
		vertex_parent_copy = ospf_spf_vertex_parent_copy(vertex_parent);
 | 
						|
		vertex_parent_copy->parent = parent_copy;
 | 
						|
		listnode_add(vertex_copy->parents, vertex_parent_copy);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Copy all children, create child nodes if necessary */
 | 
						|
	for (ALL_LIST_ELEMENTS_RO(vertex->children, node, child)) {
 | 
						|
		child_copy = ospf_spf_vertex_find(child->id, vertex_list);
 | 
						|
		if (!child_copy) {
 | 
						|
			child_copy = ospf_spf_vertex_copy(child);
 | 
						|
			listnode_add(vertex_list, child_copy);
 | 
						|
		}
 | 
						|
		listnode_add(vertex_copy->children, child_copy);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Finally continue copying with child nodes */
 | 
						|
	for (ALL_LIST_ELEMENTS_RO(vertex->children, node, child))
 | 
						|
		ospf_spf_copy(child, vertex_list);
 | 
						|
}
 | 
						|
 | 
						|
static void ospf_spf_remove_branch(struct vertex_parent *vertex_parent,
 | 
						|
				   struct vertex *child,
 | 
						|
				   struct list *vertex_list)
 | 
						|
{
 | 
						|
	struct listnode *node, *nnode, *inner_node, *inner_nnode;
 | 
						|
	struct vertex *grandchild;
 | 
						|
	struct vertex_parent *vertex_parent_found;
 | 
						|
	bool has_more_links = false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * First check if there are more nexthops for that parent to that child
 | 
						|
	 */
 | 
						|
	for (ALL_LIST_ELEMENTS_RO(child->parents, node, vertex_parent_found)) {
 | 
						|
		if (vertex_parent_found->parent->id.s_addr
 | 
						|
			    == vertex_parent->parent->id.s_addr
 | 
						|
		    && vertex_parent_found->nexthop->router.s_addr
 | 
						|
			       != vertex_parent->nexthop->router.s_addr)
 | 
						|
			has_more_links = true;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * No more links from that parent? Then delete the child from its
 | 
						|
	 * children list.
 | 
						|
	 */
 | 
						|
	if (!has_more_links)
 | 
						|
		listnode_delete(vertex_parent->parent->children, child);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Delete the vertex_parent from the child parents list, this needs to
 | 
						|
	 * be done anyway.
 | 
						|
	 */
 | 
						|
	listnode_delete(child->parents, vertex_parent);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Are there actually more parents left? If not, then delete the child!
 | 
						|
	 * This is done by recursively removing the links to the grandchildren,
 | 
						|
	 * such that finally the child can be removed without leaving unused
 | 
						|
	 * partial branches.
 | 
						|
	 */
 | 
						|
	if (child->parents->count == 0) {
 | 
						|
		for (ALL_LIST_ELEMENTS(child->children, node, nnode,
 | 
						|
				       grandchild)) {
 | 
						|
			for (ALL_LIST_ELEMENTS(grandchild->parents, inner_node,
 | 
						|
					       inner_nnode,
 | 
						|
					       vertex_parent_found)) {
 | 
						|
				ospf_spf_remove_branch(vertex_parent_found,
 | 
						|
						       grandchild, vertex_list);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		listnode_delete(vertex_list, child);
 | 
						|
		ospf_vertex_free(child);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int ospf_spf_remove_link(struct vertex *vertex, struct list *vertex_list,
 | 
						|
				struct router_lsa_link *link)
 | 
						|
{
 | 
						|
	struct listnode *node, *inner_node;
 | 
						|
	struct vertex *child;
 | 
						|
	struct vertex_parent *vertex_parent;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Identify the node who shares a subnet (given by the link) with a
 | 
						|
	 * child and remove the branch of this particular child.
 | 
						|
	 */
 | 
						|
	for (ALL_LIST_ELEMENTS_RO(vertex->children, node, child)) {
 | 
						|
		for (ALL_LIST_ELEMENTS_RO(child->parents, inner_node,
 | 
						|
					  vertex_parent)) {
 | 
						|
			if ((vertex_parent->local_nexthop->router.s_addr
 | 
						|
			     & link->link_data.s_addr)
 | 
						|
			    == (link->link_id.s_addr
 | 
						|
				& link->link_data.s_addr)) {
 | 
						|
				ospf_spf_remove_branch(vertex_parent, child,
 | 
						|
						       vertex_list);
 | 
						|
				return 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* No link found yet, move on recursively */
 | 
						|
	for (ALL_LIST_ELEMENTS_RO(vertex->children, node, child)) {
 | 
						|
		if (ospf_spf_remove_link(child, vertex_list, link) == 0)
 | 
						|
			return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* link was not removed yet */
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
void ospf_spf_remove_resource(struct vertex *vertex, struct list *vertex_list,
 | 
						|
			      struct protected_resource *resource)
 | 
						|
{
 | 
						|
	struct listnode *node, *nnode;
 | 
						|
	struct vertex *found;
 | 
						|
	struct vertex_parent *vertex_parent;
 | 
						|
 | 
						|
	switch (resource->type) {
 | 
						|
	case OSPF_TI_LFA_LINK_PROTECTION:
 | 
						|
		ospf_spf_remove_link(vertex, vertex_list, resource->link);
 | 
						|
		break;
 | 
						|
	case OSPF_TI_LFA_NODE_PROTECTION:
 | 
						|
		found = ospf_spf_vertex_find(resource->router_id, vertex_list);
 | 
						|
		if (!found)
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Remove the node by removing all links from its parents. Note
 | 
						|
		 * that the child is automatically removed here with the last
 | 
						|
		 * link from a parent, hence no explicit removal of the node.
 | 
						|
		 */
 | 
						|
		for (ALL_LIST_ELEMENTS(found->parents, node, nnode,
 | 
						|
				       vertex_parent))
 | 
						|
			ospf_spf_remove_branch(vertex_parent, found,
 | 
						|
					       vertex_list);
 | 
						|
 | 
						|
		break;
 | 
						|
	case OSPF_TI_LFA_UNDEFINED_PROTECTION:
 | 
						|
		/* do nothing */
 | 
						|
		break;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void ospf_spf_init(struct ospf_area *area, struct ospf_lsa *root_lsa,
 | 
						|
			  bool is_dry_run, bool is_root_node)
 | 
						|
{
 | 
						|
	struct list *vertex_list;
 | 
						|
	struct vertex *v;
 | 
						|
 | 
						|
	/* Create vertex list */
 | 
						|
	vertex_list = list_new();
 | 
						|
	vertex_list->del = ospf_vertex_free;
 | 
						|
	area->spf_vertex_list = vertex_list;
 | 
						|
 | 
						|
	/* Create root node. */
 | 
						|
	v = ospf_vertex_new(area, root_lsa);
 | 
						|
	area->spf = v;
 | 
						|
 | 
						|
	area->spf_dry_run = is_dry_run;
 | 
						|
	area->spf_root_node = is_root_node;
 | 
						|
 | 
						|
	/* Reset ABR and ASBR router counts. */
 | 
						|
	area->abr_count = 0;
 | 
						|
	area->asbr_count = 0;
 | 
						|
}
 | 
						|
 | 
						|
/* return index of link back to V from W, or -1 if no link found */
 | 
						|
static int ospf_lsa_has_link(struct lsa_header *w, struct lsa_header *v)
 | 
						|
{
 | 
						|
	unsigned int i, length;
 | 
						|
	struct router_lsa *rl;
 | 
						|
	struct network_lsa *nl;
 | 
						|
 | 
						|
	/* In case of W is Network LSA. */
 | 
						|
	if (w->type == OSPF_NETWORK_LSA) {
 | 
						|
		if (v->type == OSPF_NETWORK_LSA)
 | 
						|
			return -1;
 | 
						|
 | 
						|
		nl = (struct network_lsa *)w;
 | 
						|
		length = (ntohs(w->length) - OSPF_LSA_HEADER_SIZE - 4) / 4;
 | 
						|
 | 
						|
		for (i = 0; i < length; i++)
 | 
						|
			if (IPV4_ADDR_SAME(&nl->routers[i], &v->id))
 | 
						|
				return i;
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* In case of W is Router LSA. */
 | 
						|
	if (w->type == OSPF_ROUTER_LSA) {
 | 
						|
		rl = (struct router_lsa *)w;
 | 
						|
 | 
						|
		length = ntohs(w->length);
 | 
						|
 | 
						|
		for (i = 0; i < ntohs(rl->links)
 | 
						|
			    && length >= sizeof(struct router_lsa);
 | 
						|
		     i++, length -= 12) {
 | 
						|
			switch (rl->link[i].type) {
 | 
						|
			case LSA_LINK_TYPE_POINTOPOINT:
 | 
						|
			case LSA_LINK_TYPE_VIRTUALLINK:
 | 
						|
				/* Router LSA ID. */
 | 
						|
				if (v->type == OSPF_ROUTER_LSA
 | 
						|
				    && IPV4_ADDR_SAME(&rl->link[i].link_id,
 | 
						|
						      &v->id)) {
 | 
						|
					return i;
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case LSA_LINK_TYPE_TRANSIT:
 | 
						|
				/* Network LSA ID. */
 | 
						|
				if (v->type == OSPF_NETWORK_LSA
 | 
						|
				    && IPV4_ADDR_SAME(&rl->link[i].link_id,
 | 
						|
						      &v->id)) {
 | 
						|
					return i;
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case LSA_LINK_TYPE_STUB:
 | 
						|
				/* Stub can't lead anywhere, carry on */
 | 
						|
				continue;
 | 
						|
			default:
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find the next link after prev_link from v to w.  If prev_link is
 | 
						|
 * NULL, return the first link from v to w.  Ignore stub and virtual links;
 | 
						|
 * these link types will never be returned.
 | 
						|
 */
 | 
						|
static struct router_lsa_link *
 | 
						|
ospf_get_next_link(struct vertex *v, struct vertex *w,
 | 
						|
		   struct router_lsa_link *prev_link)
 | 
						|
{
 | 
						|
	uint8_t *p;
 | 
						|
	uint8_t *lim;
 | 
						|
	uint8_t lsa_type = LSA_LINK_TYPE_TRANSIT;
 | 
						|
	struct router_lsa_link *l;
 | 
						|
 | 
						|
	if (w->type == OSPF_VERTEX_ROUTER)
 | 
						|
		lsa_type = LSA_LINK_TYPE_POINTOPOINT;
 | 
						|
 | 
						|
	if (prev_link == NULL)
 | 
						|
		p = ((uint8_t *)v->lsa) + OSPF_LSA_HEADER_SIZE + 4;
 | 
						|
	else {
 | 
						|
		p = (uint8_t *)prev_link;
 | 
						|
		p += (OSPF_ROUTER_LSA_LINK_SIZE
 | 
						|
		      + (prev_link->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));
 | 
						|
	}
 | 
						|
 | 
						|
	lim = ((uint8_t *)v->lsa) + ntohs(v->lsa->length);
 | 
						|
 | 
						|
	while (p < lim) {
 | 
						|
		l = (struct router_lsa_link *)p;
 | 
						|
 | 
						|
		p += (OSPF_ROUTER_LSA_LINK_SIZE
 | 
						|
		      + (l->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));
 | 
						|
 | 
						|
		if (l->m[0].type != lsa_type)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (IPV4_ADDR_SAME(&l->link_id, &w->id))
 | 
						|
			return l;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void ospf_spf_flush_parents(struct vertex *w)
 | 
						|
{
 | 
						|
	struct vertex_parent *vp;
 | 
						|
	struct listnode *ln, *nn;
 | 
						|
 | 
						|
	/* delete the existing nexthops */
 | 
						|
	for (ALL_LIST_ELEMENTS(w->parents, ln, nn, vp)) {
 | 
						|
		list_delete_node(w->parents, ln);
 | 
						|
		vertex_parent_free(vp);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Consider supplied next-hop for inclusion to the supplied list of
 | 
						|
 * equal-cost next-hops, adjust list as necessary.
 | 
						|
 *
 | 
						|
 * Returns vertex parent pointer if created otherwise `NULL` if it already
 | 
						|
 * exists.
 | 
						|
 */
 | 
						|
static struct vertex_parent *ospf_spf_add_parent(struct vertex *v,
 | 
						|
						 struct vertex *w,
 | 
						|
						 struct vertex_nexthop *newhop,
 | 
						|
						 struct vertex_nexthop *newlhop,
 | 
						|
						 unsigned int distance)
 | 
						|
{
 | 
						|
	struct vertex_parent *vp, *wp;
 | 
						|
	struct listnode *node;
 | 
						|
 | 
						|
	/* we must have a newhop, and a distance */
 | 
						|
	assert(v && w && newhop);
 | 
						|
	assert(distance);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * IFF w has already been assigned a distance, then we shouldn't get
 | 
						|
	 * here unless callers have determined V(l)->W is shortest /
 | 
						|
	 * equal-shortest path (0 is a special case distance (no distance yet
 | 
						|
	 * assigned)).
 | 
						|
	 */
 | 
						|
	if (w->distance)
 | 
						|
		assert(distance <= w->distance);
 | 
						|
	else
 | 
						|
		w->distance = distance;
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("%s: Adding %pI4 as parent of %pI4", __func__,
 | 
						|
			   &v->lsa->id, &w->lsa->id);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Adding parent for a new, better path: flush existing parents from W.
 | 
						|
	 */
 | 
						|
	if (distance < w->distance) {
 | 
						|
		if (IS_DEBUG_OSPF_EVENT)
 | 
						|
			zlog_debug(
 | 
						|
				"%s: distance %d better than %d, flushing existing parents",
 | 
						|
				__func__, distance, w->distance);
 | 
						|
		ospf_spf_flush_parents(w);
 | 
						|
		w->distance = distance;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * new parent is <= existing parents, add it to parent list (if nexthop
 | 
						|
	 * not on parent list)
 | 
						|
	 */
 | 
						|
	for (ALL_LIST_ELEMENTS_RO(w->parents, node, wp)) {
 | 
						|
		if (memcmp(newhop, wp->nexthop, sizeof(*newhop)) == 0) {
 | 
						|
			if (IS_DEBUG_OSPF_EVENT)
 | 
						|
				zlog_debug(
 | 
						|
					"%s: ... nexthop already on parent list, skipping add",
 | 
						|
					__func__);
 | 
						|
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	vp = vertex_parent_new(v, ospf_lsa_has_link(w->lsa, v->lsa), newhop,
 | 
						|
			       newlhop);
 | 
						|
	listnode_add_sort(w->parents, vp);
 | 
						|
 | 
						|
	return vp;
 | 
						|
}
 | 
						|
 | 
						|
static int match_stub_prefix(struct lsa_header *lsa, struct in_addr v_link_addr,
 | 
						|
			     struct in_addr w_link_addr)
 | 
						|
{
 | 
						|
	uint8_t *p, *lim;
 | 
						|
	struct router_lsa_link *l = NULL;
 | 
						|
	struct in_addr masked_lsa_addr;
 | 
						|
 | 
						|
	if (lsa->type != OSPF_ROUTER_LSA)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	p = ((uint8_t *)lsa) + OSPF_LSA_HEADER_SIZE + 4;
 | 
						|
	lim = ((uint8_t *)lsa) + ntohs(lsa->length);
 | 
						|
 | 
						|
	while (p < lim) {
 | 
						|
		l = (struct router_lsa_link *)p;
 | 
						|
		p += (OSPF_ROUTER_LSA_LINK_SIZE
 | 
						|
		      + (l->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));
 | 
						|
 | 
						|
		if (l->m[0].type != LSA_LINK_TYPE_STUB)
 | 
						|
			continue;
 | 
						|
 | 
						|
		masked_lsa_addr.s_addr =
 | 
						|
			(l->link_id.s_addr & l->link_data.s_addr);
 | 
						|
 | 
						|
		/* check that both links belong to the same stub subnet */
 | 
						|
		if ((masked_lsa_addr.s_addr
 | 
						|
		     == (v_link_addr.s_addr & l->link_data.s_addr))
 | 
						|
		    && (masked_lsa_addr.s_addr
 | 
						|
			== (w_link_addr.s_addr & l->link_data.s_addr)))
 | 
						|
			return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * 16.1.1.  Calculate nexthop from root through V (parent) to
 | 
						|
 * vertex W (destination), with given distance from root->W.
 | 
						|
 *
 | 
						|
 * The link must be supplied if V is the root vertex. In all other cases
 | 
						|
 * it may be NULL.
 | 
						|
 *
 | 
						|
 * Note that this function may fail, hence the state of the destination
 | 
						|
 * vertex, W, should /not/ be modified in a dependent manner until
 | 
						|
 * this function returns. This function will update the W vertex with the
 | 
						|
 * provided distance as appropriate.
 | 
						|
 */
 | 
						|
static unsigned int ospf_nexthop_calculation(struct ospf_area *area,
 | 
						|
					     struct vertex *v, struct vertex *w,
 | 
						|
					     struct router_lsa_link *l,
 | 
						|
					     unsigned int distance, int lsa_pos)
 | 
						|
{
 | 
						|
	struct listnode *node, *nnode;
 | 
						|
	struct vertex_nexthop *nh, *lnh;
 | 
						|
	struct vertex_parent *vp;
 | 
						|
	unsigned int added = 0;
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT) {
 | 
						|
		zlog_debug("%s: Start", __func__);
 | 
						|
		ospf_vertex_dump("V (parent):", v, 1, 1);
 | 
						|
		ospf_vertex_dump("W (dest)  :", w, 1, 1);
 | 
						|
		zlog_debug("V->W distance: %d", distance);
 | 
						|
	}
 | 
						|
 | 
						|
	if (v == area->spf) {
 | 
						|
		/*
 | 
						|
		 * 16.1.1 para 4.  In the first case, the parent vertex (V) is
 | 
						|
		 * the root (the calculating router itself).  This means that
 | 
						|
		 * the destination is either a directly connected network or
 | 
						|
		 * directly connected router.  The outgoing interface in this
 | 
						|
		 * case is simply the OSPF interface connecting to the
 | 
						|
		 * destination network/router.
 | 
						|
		 */
 | 
						|
 | 
						|
		/* we *must* be supplied with the link data */
 | 
						|
		assert(l != NULL);
 | 
						|
 | 
						|
		if (IS_DEBUG_OSPF_EVENT)
 | 
						|
			zlog_debug(
 | 
						|
				"%s: considering link type:%d link_id:%pI4 link_data:%pI4",
 | 
						|
				__func__, l->m[0].type, &l->link_id,
 | 
						|
				&l->link_data);
 | 
						|
 | 
						|
		if (w->type == OSPF_VERTEX_ROUTER) {
 | 
						|
			/*
 | 
						|
			 * l is a link from v to w l2 will be link from w to v
 | 
						|
			 */
 | 
						|
			struct router_lsa_link *l2 = NULL;
 | 
						|
 | 
						|
			if (l->m[0].type == LSA_LINK_TYPE_POINTOPOINT) {
 | 
						|
				struct ospf_interface *oi = NULL;
 | 
						|
				struct in_addr nexthop = {.s_addr = 0};
 | 
						|
 | 
						|
				if (area->spf_root_node) {
 | 
						|
					oi = ospf_if_lookup_by_lsa_pos(area,
 | 
						|
								       lsa_pos);
 | 
						|
					if (!oi) {
 | 
						|
						zlog_debug(
 | 
						|
							"%s: OI not found in LSA: lsa_pos: %d link_id:%pI4 link_data:%pI4",
 | 
						|
							__func__, lsa_pos,
 | 
						|
							&l->link_id,
 | 
						|
							&l->link_data);
 | 
						|
						return 0;
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				/*
 | 
						|
				 * If the destination is a router which connects
 | 
						|
				 * to the calculating router via a
 | 
						|
				 * Point-to-MultiPoint network, the
 | 
						|
				 * destination's next hop IP address(es) can be
 | 
						|
				 * determined by examining the destination's
 | 
						|
				 * router-LSA: each link pointing back to the
 | 
						|
				 * calculating router and having a Link Data
 | 
						|
				 * field belonging to the Point-to-MultiPoint
 | 
						|
				 * network provides an IP address of the next
 | 
						|
				 * hop router.
 | 
						|
				 *
 | 
						|
				 * At this point l is a link from V to W, and V
 | 
						|
				 * is the root ("us"). If it is a point-to-
 | 
						|
				 * multipoint interface, then look through the
 | 
						|
				 * links in the opposite direction (W to V).
 | 
						|
				 * If any of them have an address that lands
 | 
						|
				 * within the subnet declared by the PtMP link,
 | 
						|
				 * then that link is a constituent of the PtMP
 | 
						|
				 * link, and its address is a nexthop address
 | 
						|
				 * for V.
 | 
						|
				 *
 | 
						|
				 * Note for point-to-point interfaces:
 | 
						|
				 *
 | 
						|
				 * Having nexthop = 0 (as proposed in the RFC)
 | 
						|
				 * is tempting, but NOT acceptable. It breaks
 | 
						|
				 * AS-External routes with a forwarding address,
 | 
						|
				 * since ospf_ase_complete_direct_routes() will
 | 
						|
				 * mistakenly assume we've reached the last hop
 | 
						|
				 * and should place the forwarding address as
 | 
						|
				 * nexthop. Also, users may configure multi-
 | 
						|
				 * access links in p2p mode, so we need the IP
 | 
						|
				 * to ARP the nexthop.
 | 
						|
				 *
 | 
						|
				 * If the calculating router is the SPF root
 | 
						|
				 * node and the link is P2P then access the
 | 
						|
				 * interface information directly. This can be
 | 
						|
				 * crucial when e.g. IP unnumbered is used
 | 
						|
				 * where 'correct' nexthop information are not
 | 
						|
				 * available via Router LSAs.
 | 
						|
				 *
 | 
						|
				 * Otherwise handle P2P and P2MP the same way
 | 
						|
				 * as described above using a reverse lookup to
 | 
						|
				 * figure out the nexthop.
 | 
						|
				 */
 | 
						|
 | 
						|
				/*
 | 
						|
				 * HACK: we don't know (yet) how to distinguish
 | 
						|
				 * between P2P and P2MP interfaces by just
 | 
						|
				 * looking at LSAs, which is important for
 | 
						|
				 * TI-LFA since you want to do SPF calculations
 | 
						|
				 * from the perspective of other nodes. Since
 | 
						|
				 * TI-LFA is currently not implemented for P2MP
 | 
						|
				 * we just check here if it is enabled and then
 | 
						|
				 * blindly assume that P2P is used. Ultimately
 | 
						|
				 * the interface code needs to be removed
 | 
						|
				 * somehow.
 | 
						|
				 */
 | 
						|
				if (area->ospf->ti_lfa_enabled
 | 
						|
				    || (oi && oi->type == OSPF_IFTYPE_POINTOPOINT)
 | 
						|
				    || (oi && oi->type == OSPF_IFTYPE_POINTOMULTIPOINT
 | 
						|
					   && oi->address->prefixlen == IPV4_MAX_BITLEN)) {
 | 
						|
					struct ospf_neighbor *nbr_w = NULL;
 | 
						|
 | 
						|
					/* Calculating node is root node, link
 | 
						|
					 * is P2P */
 | 
						|
					if (area->spf_root_node) {
 | 
						|
						nbr_w = ospf_nbr_lookup_by_routerid(
 | 
						|
							oi->nbrs, &l->link_id);
 | 
						|
						if (nbr_w) {
 | 
						|
							added = 1;
 | 
						|
							nexthop = nbr_w->src;
 | 
						|
						}
 | 
						|
					}
 | 
						|
 | 
						|
					/* Reverse lookup */
 | 
						|
					if (!added) {
 | 
						|
						while ((l2 = ospf_get_next_link(
 | 
						|
								w, v, l2))) {
 | 
						|
							if (match_stub_prefix(
 | 
						|
								    v->lsa,
 | 
						|
								    l->link_data,
 | 
						|
								    l2->link_data)) {
 | 
						|
								added = 1;
 | 
						|
								nexthop =
 | 
						|
									l2->link_data;
 | 
						|
								break;
 | 
						|
							}
 | 
						|
						}
 | 
						|
					}
 | 
						|
				} else if (oi && oi->type
 | 
						|
					   == OSPF_IFTYPE_POINTOMULTIPOINT) {
 | 
						|
					struct prefix_ipv4 la;
 | 
						|
 | 
						|
					la.family = AF_INET;
 | 
						|
					la.prefixlen = oi->address->prefixlen;
 | 
						|
 | 
						|
					/*
 | 
						|
					 * V links to W on PtMP interface;
 | 
						|
					 * find the interface address on W
 | 
						|
					 */
 | 
						|
					while ((l2 = ospf_get_next_link(w, v,
 | 
						|
									l2))) {
 | 
						|
						la.prefix = l2->link_data;
 | 
						|
 | 
						|
						if (prefix_cmp((struct prefix
 | 
						|
									*)&la,
 | 
						|
							       oi->address)
 | 
						|
						    != 0)
 | 
						|
							continue;
 | 
						|
						added = 1;
 | 
						|
						nexthop = l2->link_data;
 | 
						|
						break;
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				if (added) {
 | 
						|
					nh = vertex_nexthop_new();
 | 
						|
					nh->router = nexthop;
 | 
						|
					nh->lsa_pos = lsa_pos;
 | 
						|
 | 
						|
					/*
 | 
						|
					 * Since v is the root the nexthop and
 | 
						|
					 * local nexthop are the same.
 | 
						|
					 */
 | 
						|
					lnh = vertex_nexthop_new();
 | 
						|
					memcpy(lnh, nh,
 | 
						|
					       sizeof(struct vertex_nexthop));
 | 
						|
 | 
						|
					if (ospf_spf_add_parent(v, w, nh, lnh,
 | 
						|
								distance) ==
 | 
						|
					    NULL) {
 | 
						|
						vertex_nexthop_free(nh);
 | 
						|
						vertex_nexthop_free(lnh);
 | 
						|
					}
 | 
						|
					return 1;
 | 
						|
				} else
 | 
						|
					zlog_info(
 | 
						|
						"%s: could not determine nexthop for link %s",
 | 
						|
						__func__, oi ? oi->ifp->name : "");
 | 
						|
			} /* end point-to-point link from V to W */
 | 
						|
			else if (l->m[0].type == LSA_LINK_TYPE_VIRTUALLINK) {
 | 
						|
				/*
 | 
						|
				 * VLink implementation limitations:
 | 
						|
				 * a) vl_data can only reference one nexthop,
 | 
						|
				 *    so no ECMP to backbone through VLinks.
 | 
						|
				 *    Though transit-area summaries may be
 | 
						|
				 *    considered, and those can be ECMP.
 | 
						|
				 * b) We can only use /one/ VLink, even if
 | 
						|
				 *    multiple ones exist this router through
 | 
						|
				 *    multiple transit-areas.
 | 
						|
				 */
 | 
						|
 | 
						|
				struct ospf_vl_data *vl_data;
 | 
						|
 | 
						|
				vl_data = ospf_vl_lookup(area->ospf, NULL,
 | 
						|
							 l->link_id);
 | 
						|
 | 
						|
				if (vl_data
 | 
						|
				    && CHECK_FLAG(vl_data->flags,
 | 
						|
						  OSPF_VL_FLAG_APPROVED)) {
 | 
						|
					nh = vertex_nexthop_new();
 | 
						|
					nh->router = vl_data->nexthop.router;
 | 
						|
					nh->lsa_pos = vl_data->nexthop.lsa_pos;
 | 
						|
 | 
						|
					/*
 | 
						|
					 * Since v is the root the nexthop and
 | 
						|
					 * local nexthop are the same.
 | 
						|
					 */
 | 
						|
					lnh = vertex_nexthop_new();
 | 
						|
					memcpy(lnh, nh,
 | 
						|
					       sizeof(struct vertex_nexthop));
 | 
						|
 | 
						|
					if (ospf_spf_add_parent(v, w, nh, lnh,
 | 
						|
								distance) ==
 | 
						|
					    NULL) {
 | 
						|
						vertex_nexthop_free(nh);
 | 
						|
						vertex_nexthop_free(lnh);
 | 
						|
					}
 | 
						|
 | 
						|
					return 1;
 | 
						|
				} else
 | 
						|
					zlog_info(
 | 
						|
						"%s: vl_data for VL link not found",
 | 
						|
						__func__);
 | 
						|
			} /* end virtual-link from V to W */
 | 
						|
			return 0;
 | 
						|
		} /* end W is a Router vertex */
 | 
						|
		else {
 | 
						|
			assert(w->type == OSPF_VERTEX_NETWORK);
 | 
						|
 | 
						|
			nh = vertex_nexthop_new();
 | 
						|
			nh->router.s_addr = 0; /* Nexthop not required */
 | 
						|
			nh->lsa_pos = lsa_pos;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Since v is the root the nexthop and
 | 
						|
			 * local nexthop are the same.
 | 
						|
			 */
 | 
						|
			lnh = vertex_nexthop_new();
 | 
						|
			memcpy(lnh, nh, sizeof(struct vertex_nexthop));
 | 
						|
 | 
						|
			if (ospf_spf_add_parent(v, w, nh, lnh, distance) ==
 | 
						|
			    NULL) {
 | 
						|
				vertex_nexthop_free(nh);
 | 
						|
				vertex_nexthop_free(lnh);
 | 
						|
			}
 | 
						|
 | 
						|
			return 1;
 | 
						|
		}
 | 
						|
	} /* end V is the root */
 | 
						|
	/* Check if W's parent is a network connected to root. */
 | 
						|
	else if (v->type == OSPF_VERTEX_NETWORK) {
 | 
						|
		/* See if any of V's parents are the root. */
 | 
						|
		for (ALL_LIST_ELEMENTS(v->parents, node, nnode, vp)) {
 | 
						|
			if (vp->parent == area->spf) {
 | 
						|
				/*
 | 
						|
				 * 16.1.1 para 5. ...the parent vertex is a
 | 
						|
				 * network that directly connects the
 | 
						|
				 * calculating router to the destination
 | 
						|
				 * router. The list of next hops is then
 | 
						|
				 * determined by examining the destination's
 | 
						|
				 * router-LSA ...
 | 
						|
				 */
 | 
						|
 | 
						|
				assert(w->type == OSPF_VERTEX_ROUTER);
 | 
						|
				while ((l = ospf_get_next_link(w, v, l))) {
 | 
						|
					/*
 | 
						|
					 * ... For each link in the router-LSA
 | 
						|
					 * that points back to the parent
 | 
						|
					 * network, the link's Link Data field
 | 
						|
					 * provides the IP address of a next hop
 | 
						|
					 * router. The outgoing interface to use
 | 
						|
					 * can then be derived from the next
 | 
						|
					 * hop IP address (or it can be
 | 
						|
					 * inherited from the parent network).
 | 
						|
					 */
 | 
						|
					nh = vertex_nexthop_new();
 | 
						|
					nh->router = l->link_data;
 | 
						|
					nh->lsa_pos = vp->nexthop->lsa_pos;
 | 
						|
 | 
						|
					/*
 | 
						|
					 * Since v is the root the nexthop and
 | 
						|
					 * local nexthop are the same.
 | 
						|
					 */
 | 
						|
					lnh = vertex_nexthop_new();
 | 
						|
					memcpy(lnh, nh,
 | 
						|
					       sizeof(struct vertex_nexthop));
 | 
						|
 | 
						|
					added = 1;
 | 
						|
					if (ospf_spf_add_parent(v, w, nh, lnh,
 | 
						|
								distance) ==
 | 
						|
					    NULL) {
 | 
						|
						vertex_nexthop_free(nh);
 | 
						|
						vertex_nexthop_free(lnh);
 | 
						|
					}
 | 
						|
				}
 | 
						|
				/*
 | 
						|
				 * Note lack of return is deliberate. See next
 | 
						|
				 * comment.
 | 
						|
				 */
 | 
						|
			}
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * NB: This code is non-trivial.
 | 
						|
		 *
 | 
						|
		 * E.g. it is not enough to know that V connects to the root. It
 | 
						|
		 * is also important that the while above, looping through all
 | 
						|
		 * links from W->V found at least one link, so that we know
 | 
						|
		 * there is bi-directional connectivity between V and W (which
 | 
						|
		 * need not be the case, e.g.  when OSPF has not yet converged
 | 
						|
		 * fully). Otherwise, if we /always/ return here, without having
 | 
						|
		 * checked that root->V->-W actually resulted in a valid nexthop
 | 
						|
		 * being created, then we we will prevent SPF from finding/using
 | 
						|
		 * higher cost paths.
 | 
						|
		 *
 | 
						|
		 * It is important, if root->V->W has not been added, that we
 | 
						|
		 * continue through to the intervening-router nexthop code
 | 
						|
		 * below. So as to ensure other paths to V may be used. This
 | 
						|
		 * avoids unnecessary blackholes while OSPF is converging.
 | 
						|
		 *
 | 
						|
		 * I.e. we may have arrived at this function, examining V -> W,
 | 
						|
		 * via workable paths other than root -> V, and it's important
 | 
						|
		 * to avoid getting "confused" by non-working root->V->W path
 | 
						|
		 * - it's important to *not* lose the working non-root paths,
 | 
						|
		 * just because of a non-viable root->V->W.
 | 
						|
		 */
 | 
						|
		if (added)
 | 
						|
			return added;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * 16.1.1 para 4.  If there is at least one intervening router in the
 | 
						|
	 * current shortest path between the destination and the root, the
 | 
						|
	 * destination simply inherits the set of next hops from the
 | 
						|
	 * parent.
 | 
						|
	 */
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("%s: Intervening routers, adding parent(s)",
 | 
						|
			   __func__);
 | 
						|
 | 
						|
	for (ALL_LIST_ELEMENTS(v->parents, node, nnode, vp)) {
 | 
						|
		added = 1;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The nexthop is inherited, but the local nexthop still needs
 | 
						|
		 * to be created.
 | 
						|
		 */
 | 
						|
		if (l) {
 | 
						|
			lnh = vertex_nexthop_new();
 | 
						|
			lnh->router = l->link_data;
 | 
						|
			lnh->lsa_pos = lsa_pos;
 | 
						|
		} else {
 | 
						|
			lnh = NULL;
 | 
						|
		}
 | 
						|
 | 
						|
		nh = vertex_nexthop_new();
 | 
						|
		*nh = *vp->nexthop;
 | 
						|
 | 
						|
		if (ospf_spf_add_parent(v, w, nh, lnh, distance) == NULL) {
 | 
						|
			vertex_nexthop_free(nh);
 | 
						|
			vertex_nexthop_free(lnh);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return added;
 | 
						|
}
 | 
						|
 | 
						|
static int ospf_spf_is_protected_resource(struct ospf_area *area,
 | 
						|
					  struct router_lsa_link *link,
 | 
						|
					  struct lsa_header *lsa)
 | 
						|
{
 | 
						|
	uint8_t *p, *lim;
 | 
						|
	struct router_lsa_link *p_link;
 | 
						|
	struct router_lsa_link *l = NULL;
 | 
						|
	struct in_addr router_id;
 | 
						|
	int link_type;
 | 
						|
 | 
						|
	if (!area->spf_protected_resource)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	link_type = link->m[0].type;
 | 
						|
 | 
						|
	switch (area->spf_protected_resource->type) {
 | 
						|
	case OSPF_TI_LFA_LINK_PROTECTION:
 | 
						|
		p_link = area->spf_protected_resource->link;
 | 
						|
		if (!p_link)
 | 
						|
			return 0;
 | 
						|
 | 
						|
		/* For P2P: check if the link belongs to the same subnet */
 | 
						|
		if (link_type == LSA_LINK_TYPE_POINTOPOINT
 | 
						|
		    && (p_link->link_id.s_addr & p_link->link_data.s_addr)
 | 
						|
			       == (link->link_data.s_addr
 | 
						|
				   & p_link->link_data.s_addr))
 | 
						|
			return 1;
 | 
						|
 | 
						|
		/* For stub: check if this the same subnet */
 | 
						|
		if (link_type == LSA_LINK_TYPE_STUB
 | 
						|
		    && (p_link->link_id.s_addr == link->link_id.s_addr)
 | 
						|
		    && (p_link->link_data.s_addr == link->link_data.s_addr))
 | 
						|
			return 1;
 | 
						|
 | 
						|
		break;
 | 
						|
	case OSPF_TI_LFA_NODE_PROTECTION:
 | 
						|
		router_id = area->spf_protected_resource->router_id;
 | 
						|
		if (router_id.s_addr == INADDR_ANY)
 | 
						|
			return 0;
 | 
						|
 | 
						|
		/* For P2P: check if the link leads to the protected node */
 | 
						|
		if (link_type == LSA_LINK_TYPE_POINTOPOINT
 | 
						|
		    && link->link_id.s_addr == router_id.s_addr)
 | 
						|
			return 1;
 | 
						|
 | 
						|
		/* The rest is about stub links! */
 | 
						|
		if (link_type != LSA_LINK_TYPE_STUB)
 | 
						|
			return 0;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Check if there's a P2P link in the router LSA with the
 | 
						|
		 * corresponding link data in the same subnet.
 | 
						|
		 */
 | 
						|
 | 
						|
		p = ((uint8_t *)lsa) + OSPF_LSA_HEADER_SIZE + 4;
 | 
						|
		lim = ((uint8_t *)lsa) + ntohs(lsa->length);
 | 
						|
 | 
						|
		while (p < lim) {
 | 
						|
			l = (struct router_lsa_link *)p;
 | 
						|
			p += (OSPF_ROUTER_LSA_LINK_SIZE
 | 
						|
			      + (l->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));
 | 
						|
 | 
						|
			/* We only care about P2P with the proper link id */
 | 
						|
			if ((l->m[0].type != LSA_LINK_TYPE_POINTOPOINT)
 | 
						|
			    || (l->link_id.s_addr != router_id.s_addr))
 | 
						|
				continue;
 | 
						|
 | 
						|
			/* Link data in the subnet given by the link? */
 | 
						|
			if ((link->link_id.s_addr & link->link_data.s_addr)
 | 
						|
			    == (l->link_data.s_addr & link->link_data.s_addr))
 | 
						|
				return 1;
 | 
						|
		}
 | 
						|
 | 
						|
		break;
 | 
						|
	case OSPF_TI_LFA_UNDEFINED_PROTECTION:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * For TI-LFA we need the reverse SPF for Q spaces. The reverse SPF is created
 | 
						|
 * by honoring the weight of the reverse 'edge', e.g. the edge from W to V, and
 | 
						|
 * NOT the weight of the 'edge' from V to W as usual. Hence we need to find the
 | 
						|
 * corresponding link in the LSA of W and extract the particular weight.
 | 
						|
 *
 | 
						|
 * TODO: Only P2P supported by now!
 | 
						|
 */
 | 
						|
static uint16_t get_reverse_distance(struct vertex *v,
 | 
						|
				     struct router_lsa_link *l,
 | 
						|
				     struct ospf_lsa *w_lsa)
 | 
						|
{
 | 
						|
	uint8_t *p, *lim;
 | 
						|
	struct router_lsa_link *w_link;
 | 
						|
	uint16_t distance = 0;
 | 
						|
 | 
						|
	assert(w_lsa && w_lsa->data);
 | 
						|
 | 
						|
	p = ((uint8_t *)w_lsa->data) + OSPF_LSA_HEADER_SIZE + 4;
 | 
						|
	lim = ((uint8_t *)w_lsa->data) + ntohs(w_lsa->data->length);
 | 
						|
 | 
						|
	while (p < lim) {
 | 
						|
		w_link = (struct router_lsa_link *)p;
 | 
						|
		p += (OSPF_ROUTER_LSA_LINK_SIZE
 | 
						|
		      + (w_link->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));
 | 
						|
 | 
						|
		/* Only care about P2P with link ID equal to V's router id */
 | 
						|
		if (w_link->m[0].type == LSA_LINK_TYPE_POINTOPOINT
 | 
						|
		    && w_link->link_id.s_addr == v->id.s_addr) {
 | 
						|
			distance = ntohs(w_link->m[0].metric);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This might happen if the LSA for W is not complete yet. In this
 | 
						|
	 * case we take the weight of the 'forward' link from V. When the LSA
 | 
						|
	 * for W is completed the reverse SPF is run again anyway.
 | 
						|
	 */
 | 
						|
	if (distance == 0)
 | 
						|
		distance = ntohs(l->m[0].metric);
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("%s: reversed distance is %u", __func__, distance);
 | 
						|
 | 
						|
	return distance;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * RFC2328 16.1 (2).
 | 
						|
 * v is on the SPF tree. Examine the links in v's LSA. Update the list of
 | 
						|
 * candidates with any vertices not already on the list. If a lower-cost path
 | 
						|
 * is found to a vertex already on the candidate list, store the new cost.
 | 
						|
 */
 | 
						|
static void ospf_spf_next(struct vertex *v, struct ospf_area *area,
 | 
						|
			  struct vertex_pqueue_head *candidate)
 | 
						|
{
 | 
						|
	struct ospf_lsa *w_lsa = NULL;
 | 
						|
	uint8_t *p;
 | 
						|
	uint8_t *lim;
 | 
						|
	struct router_lsa_link *l = NULL;
 | 
						|
	struct in_addr *r;
 | 
						|
	int type = 0, lsa_pos = -1, lsa_pos_next = 0;
 | 
						|
	uint16_t link_distance;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this is a router-LSA, and bit V of the router-LSA (see Section
 | 
						|
	 * A.4.2:RFC2328) is set, set Area A's TransitCapability to true.
 | 
						|
	 */
 | 
						|
	if (v->type == OSPF_VERTEX_ROUTER) {
 | 
						|
		if (IS_ROUTER_LSA_VIRTUAL((struct router_lsa *)v->lsa))
 | 
						|
			area->transit = OSPF_TRANSIT_TRUE;
 | 
						|
	}
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("%s: Next vertex of %s vertex %pI4", __func__,
 | 
						|
			   v->type == OSPF_VERTEX_ROUTER ? "Router" : "Network",
 | 
						|
			   &v->lsa->id);
 | 
						|
 | 
						|
	p = ((uint8_t *)v->lsa) + OSPF_LSA_HEADER_SIZE + 4;
 | 
						|
	lim = ((uint8_t *)v->lsa) + ntohs(v->lsa->length);
 | 
						|
 | 
						|
	while (p < lim) {
 | 
						|
		struct vertex *w;
 | 
						|
		unsigned int distance;
 | 
						|
 | 
						|
		/* In case of V is Router-LSA. */
 | 
						|
		if (v->lsa->type == OSPF_ROUTER_LSA) {
 | 
						|
			l = (struct router_lsa_link *)p;
 | 
						|
 | 
						|
			lsa_pos = lsa_pos_next; /* LSA link position */
 | 
						|
			lsa_pos_next++;
 | 
						|
 | 
						|
			p += (OSPF_ROUTER_LSA_LINK_SIZE
 | 
						|
			      + (l->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));
 | 
						|
 | 
						|
			/*
 | 
						|
			 * (a) If this is a link to a stub network, examine the
 | 
						|
			 * next link in V's LSA. Links to stub networks will
 | 
						|
			 * be considered in the second stage of the shortest
 | 
						|
			 * path calculation.
 | 
						|
			 */
 | 
						|
			if ((type = l->m[0].type) == LSA_LINK_TYPE_STUB)
 | 
						|
				continue;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Don't process TI-LFA protected resources.
 | 
						|
			 *
 | 
						|
			 * TODO: Replace this by a proper solution, e.g. remove
 | 
						|
			 * corresponding links from the LSDB and run the SPF
 | 
						|
			 * algo with the stripped-down LSDB.
 | 
						|
			 */
 | 
						|
			if (ospf_spf_is_protected_resource(area, l, v->lsa))
 | 
						|
				continue;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * (b) Otherwise, W is a transit vertex (router or
 | 
						|
			 * transit network). Look up the vertex W's LSA
 | 
						|
			 * (router-LSA or network-LSA) in Area A's link state
 | 
						|
			 * database.
 | 
						|
			 */
 | 
						|
			switch (type) {
 | 
						|
			case LSA_LINK_TYPE_POINTOPOINT:
 | 
						|
			case LSA_LINK_TYPE_VIRTUALLINK:
 | 
						|
				if (type == LSA_LINK_TYPE_VIRTUALLINK
 | 
						|
				    && IS_DEBUG_OSPF_EVENT)
 | 
						|
					zlog_debug(
 | 
						|
						"looking up LSA through VL: %pI4",
 | 
						|
						&l->link_id);
 | 
						|
				w_lsa = ospf_lsa_lookup(area->ospf, area,
 | 
						|
							OSPF_ROUTER_LSA,
 | 
						|
							l->link_id, l->link_id);
 | 
						|
				if (w_lsa && IS_DEBUG_OSPF_EVENT)
 | 
						|
					zlog_debug("found Router LSA %pI4",
 | 
						|
						   &l->link_id);
 | 
						|
				break;
 | 
						|
			case LSA_LINK_TYPE_TRANSIT:
 | 
						|
				if (IS_DEBUG_OSPF_EVENT)
 | 
						|
					zlog_debug(
 | 
						|
						"Looking up Network LSA, ID: %pI4",
 | 
						|
						&l->link_id);
 | 
						|
				w_lsa = ospf_lsa_lookup_by_id(
 | 
						|
					area, OSPF_NETWORK_LSA, l->link_id);
 | 
						|
				if (w_lsa && IS_DEBUG_OSPF_EVENT)
 | 
						|
					zlog_debug("found the LSA");
 | 
						|
				break;
 | 
						|
			default:
 | 
						|
				flog_warn(EC_OSPF_LSA,
 | 
						|
					  "Invalid LSA link type %d", type);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * For TI-LFA we might need the reverse SPF.
 | 
						|
			 * Currently only works with P2P!
 | 
						|
			 */
 | 
						|
			if (type == LSA_LINK_TYPE_POINTOPOINT
 | 
						|
			    && area->spf_reversed)
 | 
						|
				link_distance =
 | 
						|
					get_reverse_distance(v, l, w_lsa);
 | 
						|
			else
 | 
						|
				link_distance = ntohs(l->m[0].metric);
 | 
						|
 | 
						|
			/* step (d) below */
 | 
						|
			distance = v->distance + link_distance;
 | 
						|
		} else {
 | 
						|
			/* In case of V is Network-LSA. */
 | 
						|
			r = (struct in_addr *)p;
 | 
						|
			p += sizeof(struct in_addr);
 | 
						|
 | 
						|
			/* Lookup the vertex W's LSA. */
 | 
						|
			w_lsa = ospf_lsa_lookup_by_id(area, OSPF_ROUTER_LSA,
 | 
						|
						      *r);
 | 
						|
			if (w_lsa && IS_DEBUG_OSPF_EVENT)
 | 
						|
				zlog_debug("found Router LSA %pI4",
 | 
						|
					   &w_lsa->data->id);
 | 
						|
 | 
						|
			/* step (d) below */
 | 
						|
			distance = v->distance;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * (b cont.) If the LSA does not exist, or its LS age is equal
 | 
						|
		 * to MaxAge, or it does not have a link back to vertex V,
 | 
						|
		 * examine the next link in V's LSA.[23]
 | 
						|
		 */
 | 
						|
		if (w_lsa == NULL) {
 | 
						|
			if (IS_DEBUG_OSPF_EVENT)
 | 
						|
				zlog_debug("No LSA found");
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (IS_LSA_MAXAGE(w_lsa)) {
 | 
						|
			if (IS_DEBUG_OSPF_EVENT)
 | 
						|
				zlog_debug("LSA is MaxAge");
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (ospf_lsa_has_link(w_lsa->data, v->lsa) < 0) {
 | 
						|
			if (IS_DEBUG_OSPF_EVENT)
 | 
						|
				zlog_debug("The LSA doesn't have a link back");
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * (c) If vertex W is already on the shortest-path tree, examine
 | 
						|
		 * the next link in the LSA.
 | 
						|
		 */
 | 
						|
		if (w_lsa->stat == LSA_SPF_IN_SPFTREE) {
 | 
						|
			if (IS_DEBUG_OSPF_EVENT)
 | 
						|
				zlog_debug("The LSA is already in SPF");
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * (d) Calculate the link state cost D of the resulting path
 | 
						|
		 * from the root to vertex W.  D is equal to the sum of the link
 | 
						|
		 * state cost of the (already calculated) shortest path to
 | 
						|
		 * vertex V and the advertised cost of the link between vertices
 | 
						|
		 * V and W.  If D is:
 | 
						|
		 */
 | 
						|
 | 
						|
		/* calculate link cost D -- moved above */
 | 
						|
 | 
						|
		/* Is there already vertex W in candidate list? */
 | 
						|
		if (w_lsa->stat == LSA_SPF_NOT_EXPLORED) {
 | 
						|
			/* prepare vertex W. */
 | 
						|
			w = ospf_vertex_new(area, w_lsa);
 | 
						|
 | 
						|
			/* Calculate nexthop to W. */
 | 
						|
			if (ospf_nexthop_calculation(area, v, w, l, distance,
 | 
						|
						     lsa_pos))
 | 
						|
				vertex_pqueue_add(candidate, w);
 | 
						|
			else {
 | 
						|
				listnode_delete(area->spf_vertex_list, w);
 | 
						|
				ospf_vertex_free(w);
 | 
						|
				w_lsa->stat = LSA_SPF_NOT_EXPLORED;
 | 
						|
				if (IS_DEBUG_OSPF_EVENT)
 | 
						|
					zlog_debug("Nexthop Calc failed");
 | 
						|
			}
 | 
						|
		} else if (w_lsa->stat != LSA_SPF_IN_SPFTREE) {
 | 
						|
			w = w_lsa->stat;
 | 
						|
			if (w->distance < distance) {
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			else if (w->distance == distance) {
 | 
						|
				/*
 | 
						|
				 * Found an equal-cost path to W.
 | 
						|
				 * Calculate nexthop of to W from V.
 | 
						|
				 */
 | 
						|
				ospf_nexthop_calculation(area, v, w, l,
 | 
						|
							 distance, lsa_pos);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/*
 | 
						|
				 * Found a lower-cost path to W.
 | 
						|
				 * nexthop_calculation is conditional, if it
 | 
						|
				 * finds valid nexthop it will call
 | 
						|
				 * spf_add_parents, which will flush the old
 | 
						|
				 * parents.
 | 
						|
				 */
 | 
						|
				vertex_pqueue_del(candidate, w);
 | 
						|
				ospf_nexthop_calculation(area, v, w, l,
 | 
						|
							 distance, lsa_pos);
 | 
						|
				vertex_pqueue_add(candidate, w);
 | 
						|
			}
 | 
						|
		} /* end W is already on the candidate list */
 | 
						|
	}	 /* end loop over the links in V's LSA */
 | 
						|
}
 | 
						|
 | 
						|
static void ospf_spf_dump(struct vertex *v, int i)
 | 
						|
{
 | 
						|
	struct listnode *cnode;
 | 
						|
	struct listnode *nnode;
 | 
						|
	struct vertex_parent *parent;
 | 
						|
 | 
						|
	if (v->type == OSPF_VERTEX_ROUTER) {
 | 
						|
		if (IS_DEBUG_OSPF_EVENT)
 | 
						|
			zlog_debug("SPF Result: %d [R] %pI4", i,
 | 
						|
				   &v->lsa->id);
 | 
						|
	} else {
 | 
						|
		struct network_lsa *lsa = (struct network_lsa *)v->lsa;
 | 
						|
		if (IS_DEBUG_OSPF_EVENT)
 | 
						|
			zlog_debug("SPF Result: %d [N] %pI4/%d", i,
 | 
						|
				   &v->lsa->id,
 | 
						|
				   ip_masklen(lsa->mask));
 | 
						|
	}
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		for (ALL_LIST_ELEMENTS_RO(v->parents, nnode, parent)) {
 | 
						|
			zlog_debug(" nexthop %p %pI4 %d",
 | 
						|
				   (void *)parent->nexthop,
 | 
						|
				   &parent->nexthop->router,
 | 
						|
				   parent->nexthop->lsa_pos);
 | 
						|
		}
 | 
						|
 | 
						|
	i++;
 | 
						|
 | 
						|
	for (ALL_LIST_ELEMENTS_RO(v->children, cnode, v))
 | 
						|
		ospf_spf_dump(v, i);
 | 
						|
}
 | 
						|
 | 
						|
void ospf_spf_print(struct vty *vty, struct vertex *v, int i)
 | 
						|
{
 | 
						|
	struct listnode *cnode;
 | 
						|
	struct listnode *nnode;
 | 
						|
	struct vertex_parent *parent;
 | 
						|
 | 
						|
	if (v->type == OSPF_VERTEX_ROUTER) {
 | 
						|
		vty_out(vty, "SPF Result: depth %d [R] %pI4\n", i, &v->lsa->id);
 | 
						|
	} else {
 | 
						|
		struct network_lsa *lsa = (struct network_lsa *)v->lsa;
 | 
						|
		vty_out(vty, "SPF Result: depth %d [N] %pI4/%d\n", i,
 | 
						|
			&v->lsa->id, ip_masklen(lsa->mask));
 | 
						|
	}
 | 
						|
 | 
						|
	for (ALL_LIST_ELEMENTS_RO(v->parents, nnode, parent)) {
 | 
						|
		vty_out(vty,
 | 
						|
			" nexthop %pI4 lsa pos %d -- local nexthop %pI4 lsa pos %d\n",
 | 
						|
			&parent->nexthop->router, parent->nexthop->lsa_pos,
 | 
						|
			&parent->local_nexthop->router,
 | 
						|
			parent->local_nexthop->lsa_pos);
 | 
						|
	}
 | 
						|
 | 
						|
	i++;
 | 
						|
 | 
						|
	for (ALL_LIST_ELEMENTS_RO(v->children, cnode, v))
 | 
						|
		ospf_spf_print(vty, v, i);
 | 
						|
}
 | 
						|
 | 
						|
/* Second stage of SPF calculation. */
 | 
						|
static void ospf_spf_process_stubs(struct ospf_area *area, struct vertex *v,
 | 
						|
				   struct route_table *rt, int parent_is_root)
 | 
						|
{
 | 
						|
	struct listnode *cnode, *cnnode;
 | 
						|
	struct vertex *child;
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("%s: processing stubs for area %pI4", __func__,
 | 
						|
			   &area->area_id);
 | 
						|
 | 
						|
	if (v->type == OSPF_VERTEX_ROUTER) {
 | 
						|
		uint8_t *p;
 | 
						|
		uint8_t *lim;
 | 
						|
		struct router_lsa_link *l;
 | 
						|
		struct router_lsa *router_lsa;
 | 
						|
		int lsa_pos = 0;
 | 
						|
 | 
						|
		if (IS_DEBUG_OSPF_EVENT)
 | 
						|
			zlog_debug("%s: processing router LSA, id: %pI4",
 | 
						|
				   __func__, &v->lsa->id);
 | 
						|
 | 
						|
		router_lsa = (struct router_lsa *)v->lsa;
 | 
						|
 | 
						|
		if (IS_DEBUG_OSPF_EVENT)
 | 
						|
			zlog_debug("%s: we have %d links to process", __func__,
 | 
						|
				   ntohs(router_lsa->links));
 | 
						|
 | 
						|
		p = ((uint8_t *)v->lsa) + OSPF_LSA_HEADER_SIZE + 4;
 | 
						|
		lim = ((uint8_t *)v->lsa) + ntohs(v->lsa->length);
 | 
						|
 | 
						|
		while (p < lim) {
 | 
						|
			l = (struct router_lsa_link *)p;
 | 
						|
 | 
						|
			p += (OSPF_ROUTER_LSA_LINK_SIZE
 | 
						|
			      + (l->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));
 | 
						|
 | 
						|
			/* Don't process TI-LFA protected resources */
 | 
						|
			if (l->m[0].type == LSA_LINK_TYPE_STUB
 | 
						|
			    && !ospf_spf_is_protected_resource(area, l, v->lsa))
 | 
						|
				ospf_intra_add_stub(rt, l, v, area,
 | 
						|
						    parent_is_root, lsa_pos);
 | 
						|
			lsa_pos++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ospf_vertex_dump("ospf_process_stubs(): after examining links: ", v, 1,
 | 
						|
			 1);
 | 
						|
 | 
						|
	for (ALL_LIST_ELEMENTS(v->children, cnode, cnnode, child)) {
 | 
						|
		if (CHECK_FLAG(child->flags, OSPF_VERTEX_PROCESSED))
 | 
						|
			continue;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The first level of routers connected to the root
 | 
						|
		 * should have 'parent_is_root' set, including those
 | 
						|
		 * connected via a network vertex.
 | 
						|
		 */
 | 
						|
		if (area->spf == v)
 | 
						|
			parent_is_root = 1;
 | 
						|
		else if (v->type == OSPF_VERTEX_ROUTER)
 | 
						|
			parent_is_root = 0;
 | 
						|
 | 
						|
		ospf_spf_process_stubs(area, child, rt, parent_is_root);
 | 
						|
 | 
						|
		SET_FLAG(child->flags, OSPF_VERTEX_PROCESSED);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void ospf_rtrs_free(struct route_table *rtrs)
 | 
						|
{
 | 
						|
	struct route_node *rn;
 | 
						|
	struct list *or_list;
 | 
						|
	struct ospf_route * or ;
 | 
						|
	struct listnode *node, *nnode;
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("Route: Router Routing Table free");
 | 
						|
 | 
						|
	for (rn = route_top(rtrs); rn; rn = route_next(rn))
 | 
						|
		if ((or_list = rn->info) != NULL) {
 | 
						|
			for (ALL_LIST_ELEMENTS(or_list, node, nnode, or))
 | 
						|
				ospf_route_free(or);
 | 
						|
 | 
						|
			list_delete(&or_list);
 | 
						|
 | 
						|
			/* Unlock the node. */
 | 
						|
			rn->info = NULL;
 | 
						|
			route_unlock_node(rn);
 | 
						|
		}
 | 
						|
 | 
						|
	route_table_finish(rtrs);
 | 
						|
}
 | 
						|
 | 
						|
void ospf_spf_cleanup(struct vertex *spf, struct list *vertex_list)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Free nexthop information, canonical versions of which are
 | 
						|
	 * attached the first level of router vertices attached to the
 | 
						|
	 * root vertex, see ospf_nexthop_calculation.
 | 
						|
	 */
 | 
						|
	if (spf)
 | 
						|
		ospf_canonical_nexthops_free(spf);
 | 
						|
 | 
						|
	/* Free SPF vertices list with deconstructor ospf_vertex_free. */
 | 
						|
	if (vertex_list)
 | 
						|
		list_delete(&vertex_list);
 | 
						|
}
 | 
						|
 | 
						|
/* Calculating the shortest-path tree for an area, see RFC2328 16.1. */
 | 
						|
void ospf_spf_calculate(struct ospf_area *area, struct ospf_lsa *root_lsa,
 | 
						|
			struct route_table *new_table,
 | 
						|
			struct route_table *all_rtrs,
 | 
						|
			struct route_table *new_rtrs, bool is_dry_run,
 | 
						|
			bool is_root_node)
 | 
						|
{
 | 
						|
	struct vertex_pqueue_head candidate;
 | 
						|
	struct vertex *v;
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT) {
 | 
						|
		zlog_debug("%s: Start: running Dijkstra for area %pI4",
 | 
						|
			   __func__, &area->area_id);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the router LSA of the root is not yet allocated, return this
 | 
						|
	 * area's calculation. In the 'usual' case the root_lsa is the
 | 
						|
	 * self-originated router LSA of the node itself.
 | 
						|
	 */
 | 
						|
	if (!root_lsa) {
 | 
						|
		if (IS_DEBUG_OSPF_EVENT)
 | 
						|
			zlog_debug(
 | 
						|
				"%s: Skip area %pI4's calculation due to empty root LSA",
 | 
						|
				__func__, &area->area_id);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Initialize the algorithm's data structures, see RFC2328 16.1. (1). */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This function scans all the LSA database and set the stat field to
 | 
						|
	 * LSA_SPF_NOT_EXPLORED.
 | 
						|
	 */
 | 
						|
	lsdb_clean_stat(area->lsdb);
 | 
						|
 | 
						|
	/* Create a new heap for the candidates. */
 | 
						|
	vertex_pqueue_init(&candidate);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize the shortest-path tree to only the root (which is usually
 | 
						|
	 * the router doing the calculation).
 | 
						|
	 */
 | 
						|
	ospf_spf_init(area, root_lsa, is_dry_run, is_root_node);
 | 
						|
 | 
						|
	/* Set Area A's TransitCapability to false. */
 | 
						|
	area->transit = OSPF_TRANSIT_FALSE;
 | 
						|
	area->shortcut_capability = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Use the root vertex for the start of the SPF algorithm and make it
 | 
						|
	 * part of the tree.
 | 
						|
	 */
 | 
						|
	v = area->spf;
 | 
						|
	v->lsa_p->stat = LSA_SPF_IN_SPFTREE;
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		/* RFC2328 16.1. (2). */
 | 
						|
		ospf_spf_next(v, area, &candidate);
 | 
						|
 | 
						|
		/* RFC2328 16.1. (3). */
 | 
						|
		v = vertex_pqueue_pop(&candidate);
 | 
						|
		if (!v)
 | 
						|
			/* No more vertices left. */
 | 
						|
			break;
 | 
						|
 | 
						|
		v->lsa_p->stat = LSA_SPF_IN_SPFTREE;
 | 
						|
 | 
						|
		ospf_vertex_add_parent(v);
 | 
						|
 | 
						|
		/* RFC2328 16.1. (4). */
 | 
						|
		if (v->type != OSPF_VERTEX_ROUTER)
 | 
						|
			ospf_intra_add_transit(new_table, v, area);
 | 
						|
		else {
 | 
						|
			if (new_rtrs)
 | 
						|
				ospf_intra_add_router(new_rtrs, v, area, false);
 | 
						|
			if (all_rtrs)
 | 
						|
				ospf_intra_add_router(all_rtrs, v, area, true);
 | 
						|
		}
 | 
						|
 | 
						|
		/* Iterate back to (2), see RFC2328 16.1. (5). */
 | 
						|
	}
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT) {
 | 
						|
		ospf_spf_dump(area->spf, 0);
 | 
						|
		ospf_route_table_dump(new_table);
 | 
						|
		if (all_rtrs)
 | 
						|
			ospf_router_route_table_dump(all_rtrs);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Second stage of SPF calculation procedure's, add leaves to the tree
 | 
						|
	 * for stub networks.
 | 
						|
	 */
 | 
						|
	ospf_spf_process_stubs(area, area->spf, new_table, 0);
 | 
						|
 | 
						|
	ospf_vertex_dump(__func__, area->spf, 0, 1);
 | 
						|
 | 
						|
	/* Increment SPF Calculation Counter. */
 | 
						|
	area->spf_calculation++;
 | 
						|
 | 
						|
	monotime(&area->ospf->ts_spf);
 | 
						|
	area->ts_spf = area->ospf->ts_spf;
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("%s: Stop. %zd vertices", __func__,
 | 
						|
			   mtype_stats_alloc(MTYPE_OSPF_VERTEX));
 | 
						|
}
 | 
						|
 | 
						|
void ospf_spf_calculate_area(struct ospf *ospf, struct ospf_area *area,
 | 
						|
			     struct route_table *new_table,
 | 
						|
			     struct route_table *all_rtrs,
 | 
						|
			     struct route_table *new_rtrs)
 | 
						|
{
 | 
						|
	ospf_spf_calculate(area, area->router_lsa_self, new_table, all_rtrs,
 | 
						|
			   new_rtrs, false, true);
 | 
						|
 | 
						|
	if (ospf->ti_lfa_enabled)
 | 
						|
		ospf_ti_lfa_compute(area, new_table,
 | 
						|
				    ospf->ti_lfa_protection_type);
 | 
						|
 | 
						|
	ospf_spf_cleanup(area->spf, area->spf_vertex_list);
 | 
						|
 | 
						|
	area->spf = NULL;
 | 
						|
	area->spf_vertex_list = NULL;
 | 
						|
}
 | 
						|
 | 
						|
void ospf_spf_calculate_areas(struct ospf *ospf, struct route_table *new_table,
 | 
						|
			      struct route_table *all_rtrs,
 | 
						|
			      struct route_table *new_rtrs)
 | 
						|
{
 | 
						|
	struct ospf_area *area;
 | 
						|
	struct listnode *node, *nnode;
 | 
						|
 | 
						|
	/* Calculate SPF for each area. */
 | 
						|
	for (ALL_LIST_ELEMENTS(ospf->areas, node, nnode, area)) {
 | 
						|
		/* Do backbone last, so as to first discover intra-area paths
 | 
						|
		 * for any back-bone virtual-links */
 | 
						|
		if (ospf->backbone && ospf->backbone == area)
 | 
						|
			continue;
 | 
						|
 | 
						|
		ospf_spf_calculate_area(ospf, area, new_table, all_rtrs,
 | 
						|
					new_rtrs);
 | 
						|
	}
 | 
						|
 | 
						|
	/* SPF for backbone, if required */
 | 
						|
	if (ospf->backbone)
 | 
						|
		ospf_spf_calculate_area(ospf, ospf->backbone, new_table,
 | 
						|
					all_rtrs, new_rtrs);
 | 
						|
}
 | 
						|
 | 
						|
/* Worker for SPF calculation scheduler. */
 | 
						|
static void ospf_spf_calculate_schedule_worker(struct thread *thread)
 | 
						|
{
 | 
						|
	struct ospf *ospf = THREAD_ARG(thread);
 | 
						|
	struct route_table *new_table, *new_rtrs;
 | 
						|
	struct route_table *all_rtrs = NULL;
 | 
						|
	struct timeval start_time, spf_start_time;
 | 
						|
	unsigned long ia_time, prune_time, rt_time;
 | 
						|
	unsigned long abr_time, total_spf_time, spf_time;
 | 
						|
	char rbuf[32]; /* reason_buf */
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("SPF: Timer (SPF calculation expire)");
 | 
						|
 | 
						|
	ospf->t_spf_calc = NULL;
 | 
						|
 | 
						|
	ospf_vl_unapprove(ospf);
 | 
						|
 | 
						|
	/* Execute SPF for each area including backbone, see RFC 2328 16.1. */
 | 
						|
	monotime(&spf_start_time);
 | 
						|
	new_table = route_table_init(); /* routing table */
 | 
						|
	new_rtrs = route_table_init();  /* ABR/ASBR routing table */
 | 
						|
 | 
						|
	/* If we have opaque enabled then track all router reachability */
 | 
						|
	if (CHECK_FLAG(ospf->opaque, OPAQUE_OPERATION_READY_BIT))
 | 
						|
		all_rtrs = route_table_init();
 | 
						|
 | 
						|
	ospf_spf_calculate_areas(ospf, new_table, all_rtrs, new_rtrs);
 | 
						|
	spf_time = monotime_since(&spf_start_time, NULL);
 | 
						|
 | 
						|
	ospf_vl_shut_unapproved(ospf);
 | 
						|
 | 
						|
	/* Calculate inter-area routes, see RFC 2328 16.2. */
 | 
						|
	monotime(&start_time);
 | 
						|
	ospf_ia_routing(ospf, new_table, new_rtrs);
 | 
						|
	ia_time = monotime_since(&start_time, NULL);
 | 
						|
 | 
						|
	/* Get rid of transit networks and routers we cannot reach anyway. */
 | 
						|
	monotime(&start_time);
 | 
						|
	ospf_prune_unreachable_networks(new_table);
 | 
						|
	if (all_rtrs)
 | 
						|
		ospf_prune_unreachable_routers(all_rtrs);
 | 
						|
	ospf_prune_unreachable_routers(new_rtrs);
 | 
						|
	prune_time = monotime_since(&start_time, NULL);
 | 
						|
 | 
						|
	/* Note: RFC 2328 16.3. is apparently missing. */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Calculate AS external routes, see RFC 2328 16.4.
 | 
						|
	 * There is a dedicated routing table for external routes which is not
 | 
						|
	 * handled here directly
 | 
						|
	 */
 | 
						|
	ospf_ase_calculate_schedule(ospf);
 | 
						|
	ospf_ase_calculate_timer_add(ospf);
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug(
 | 
						|
			"%s: ospf install new route, vrf %s id %u new_table count %lu",
 | 
						|
			__func__, ospf_vrf_id_to_name(ospf->vrf_id),
 | 
						|
			ospf->vrf_id, new_table->count);
 | 
						|
 | 
						|
	/* Update routing table. */
 | 
						|
	monotime(&start_time);
 | 
						|
	ospf_route_install(ospf, new_table);
 | 
						|
	rt_time = monotime_since(&start_time, NULL);
 | 
						|
 | 
						|
	/* Free old all routers routing table */
 | 
						|
	if (ospf->oall_rtrs) {
 | 
						|
		ospf_rtrs_free(ospf->oall_rtrs);
 | 
						|
		ospf->oall_rtrs = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Update all routers routing table */
 | 
						|
	ospf->oall_rtrs = ospf->all_rtrs;
 | 
						|
	ospf->all_rtrs = all_rtrs;
 | 
						|
#ifdef SUPPORT_OSPF_API
 | 
						|
	ospf_apiserver_notify_reachable(ospf->oall_rtrs, ospf->all_rtrs);
 | 
						|
#endif
 | 
						|
 | 
						|
	/* Free old ABR/ASBR routing table */
 | 
						|
	if (ospf->old_rtrs) {
 | 
						|
		ospf_rtrs_free(ospf->old_rtrs);
 | 
						|
		ospf->old_rtrs = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Update ABR/ASBR routing table */
 | 
						|
	ospf->old_rtrs = ospf->new_rtrs;
 | 
						|
	ospf->new_rtrs = new_rtrs;
 | 
						|
 | 
						|
	/* ABRs may require additional changes, see RFC 2328 16.7. */
 | 
						|
	monotime(&start_time);
 | 
						|
	if (IS_OSPF_ABR(ospf)) {
 | 
						|
		if (ospf->anyNSSA)
 | 
						|
			ospf_abr_nssa_check_status(ospf);
 | 
						|
		ospf_abr_task(ospf);
 | 
						|
	}
 | 
						|
	abr_time = monotime_since(&start_time, NULL);
 | 
						|
 | 
						|
	/* Schedule Segment Routing update */
 | 
						|
	ospf_sr_update_task(ospf);
 | 
						|
 | 
						|
	total_spf_time =
 | 
						|
		monotime_since(&spf_start_time, &ospf->ts_spf_duration);
 | 
						|
 | 
						|
	rbuf[0] = '\0';
 | 
						|
	if (spf_reason_flags) {
 | 
						|
		if (spf_reason_flags & (1 << SPF_FLAG_ROUTER_LSA_INSTALL))
 | 
						|
			strlcat(rbuf, "R, ", sizeof(rbuf));
 | 
						|
		if (spf_reason_flags & (1 << SPF_FLAG_NETWORK_LSA_INSTALL))
 | 
						|
			strlcat(rbuf, "N, ", sizeof(rbuf));
 | 
						|
		if (spf_reason_flags & (1 << SPF_FLAG_SUMMARY_LSA_INSTALL))
 | 
						|
			strlcat(rbuf, "S, ", sizeof(rbuf));
 | 
						|
		if (spf_reason_flags & (1 << SPF_FLAG_ASBR_SUMMARY_LSA_INSTALL))
 | 
						|
			strlcat(rbuf, "AS, ", sizeof(rbuf));
 | 
						|
		if (spf_reason_flags & (1 << SPF_FLAG_ABR_STATUS_CHANGE))
 | 
						|
			strlcat(rbuf, "ABR, ", sizeof(rbuf));
 | 
						|
		if (spf_reason_flags & (1 << SPF_FLAG_ASBR_STATUS_CHANGE))
 | 
						|
			strlcat(rbuf, "ASBR, ",	sizeof(rbuf));
 | 
						|
		if (spf_reason_flags & (1 << SPF_FLAG_MAXAGE))
 | 
						|
			strlcat(rbuf, "M, ", sizeof(rbuf));
 | 
						|
		if (spf_reason_flags & (1 << SPF_FLAG_GR_FINISH))
 | 
						|
			strlcat(rbuf, "GR, ", sizeof(rbuf));
 | 
						|
 | 
						|
		size_t rbuflen = strlen(rbuf);
 | 
						|
		if (rbuflen >= 2)
 | 
						|
			rbuf[rbuflen - 2] = '\0'; /* skip the last ", " */
 | 
						|
		else
 | 
						|
			rbuf[0] = '\0';
 | 
						|
	}
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT) {
 | 
						|
		zlog_info("SPF Processing Time(usecs): %ld", total_spf_time);
 | 
						|
		zlog_info("            SPF Time: %ld", spf_time);
 | 
						|
		zlog_info("           InterArea: %ld", ia_time);
 | 
						|
		zlog_info("               Prune: %ld", prune_time);
 | 
						|
		zlog_info("        RouteInstall: %ld", rt_time);
 | 
						|
		if (IS_OSPF_ABR(ospf))
 | 
						|
			zlog_info("                 ABR: %ld (%d areas)",
 | 
						|
				  abr_time, ospf->areas->count);
 | 
						|
		zlog_info("Reason(s) for SPF: %s", rbuf);
 | 
						|
	}
 | 
						|
 | 
						|
	ospf_clear_spf_reason_flags();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add schedule for SPF calculation. To avoid frequenst SPF calc, we set timer
 | 
						|
 * for SPF calc.
 | 
						|
 */
 | 
						|
void ospf_spf_calculate_schedule(struct ospf *ospf, ospf_spf_reason_t reason)
 | 
						|
{
 | 
						|
	unsigned long delay, elapsed, ht;
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("SPF: calculation timer scheduled");
 | 
						|
 | 
						|
	/* OSPF instance does not exist. */
 | 
						|
	if (ospf == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	ospf_spf_set_reason(reason);
 | 
						|
 | 
						|
	/* SPF calculation timer is already scheduled. */
 | 
						|
	if (ospf->t_spf_calc) {
 | 
						|
		if (IS_DEBUG_OSPF_EVENT)
 | 
						|
			zlog_debug(
 | 
						|
				"SPF: calculation timer is already scheduled: %p",
 | 
						|
				(void *)ospf->t_spf_calc);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	elapsed = monotime_since(&ospf->ts_spf, NULL) / 1000;
 | 
						|
 | 
						|
	ht = ospf->spf_holdtime * ospf->spf_hold_multiplier;
 | 
						|
 | 
						|
	if (ht > ospf->spf_max_holdtime)
 | 
						|
		ht = ospf->spf_max_holdtime;
 | 
						|
 | 
						|
	/* Get SPF calculation delay time. */
 | 
						|
	if (elapsed < ht) {
 | 
						|
		/*
 | 
						|
		 * Got an event within the hold time of last SPF. We need to
 | 
						|
		 * increase the hold_multiplier, if it's not already at/past
 | 
						|
		 * maximum value, and wasn't already increased.
 | 
						|
		 */
 | 
						|
		if (ht < ospf->spf_max_holdtime)
 | 
						|
			ospf->spf_hold_multiplier++;
 | 
						|
 | 
						|
		/* always honour the SPF initial delay */
 | 
						|
		if ((ht - elapsed) < ospf->spf_delay)
 | 
						|
			delay = ospf->spf_delay;
 | 
						|
		else
 | 
						|
			delay = ht - elapsed;
 | 
						|
	} else {
 | 
						|
		/* Event is past required hold-time of last SPF */
 | 
						|
		delay = ospf->spf_delay;
 | 
						|
		ospf->spf_hold_multiplier = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("SPF: calculation timer delay = %ld msec", delay);
 | 
						|
 | 
						|
	ospf->t_spf_calc = NULL;
 | 
						|
	thread_add_timer_msec(master, ospf_spf_calculate_schedule_worker, ospf,
 | 
						|
			      delay, &ospf->t_spf_calc);
 | 
						|
}
 | 
						|
 | 
						|
/* Restart OSPF SPF algorithm*/
 | 
						|
void ospf_restart_spf(struct ospf *ospf)
 | 
						|
{
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("%s: Restart SPF.", __func__);
 | 
						|
 | 
						|
	/* Handling inter area and intra area routes*/
 | 
						|
	if (ospf->new_table) {
 | 
						|
		ospf_route_delete(ospf, ospf->new_table);
 | 
						|
		ospf_route_table_free(ospf->new_table);
 | 
						|
		ospf->new_table = route_table_init();
 | 
						|
	}
 | 
						|
 | 
						|
	/* Handling of TYPE-5 lsa(external routes) */
 | 
						|
	if (ospf->old_external_route) {
 | 
						|
		ospf_route_delete(ospf, ospf->old_external_route);
 | 
						|
		ospf_route_table_free(ospf->old_external_route);
 | 
						|
		ospf->old_external_route = route_table_init();
 | 
						|
	}
 | 
						|
 | 
						|
	/* Trigger SPF */
 | 
						|
	ospf_spf_calculate_schedule(ospf, SPF_FLAG_CONFIG_CHANGE);
 | 
						|
}
 |