mirror_frr/zebra/zserv.c
Donald Sharp e0ae31b886 lib, pimd, zebra: Allow pim to set pimregX into appropriate vrf
The pimregX devices when created by the kernel are put into
the default vrf.  When pim gets the callback that the device
exists, check to see if it is a pimregX device and if so
move it into the appropriate vrf.

Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
2017-07-24 13:51:39 -04:00

3062 lines
77 KiB
C

/* Zebra daemon server routine.
* Copyright (C) 1997, 98, 99 Kunihiro Ishiguro
*
* This file is part of GNU Zebra.
*
* GNU Zebra is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* GNU Zebra is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; see the file COPYING; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <zebra.h>
#include "prefix.h"
#include "command.h"
#include "if.h"
#include "thread.h"
#include "stream.h"
#include "memory.h"
#include "zebra_memory.h"
#include "table.h"
#include "rib.h"
#include "network.h"
#include "sockunion.h"
#include "log.h"
#include "zclient.h"
#include "privs.h"
#include "network.h"
#include "buffer.h"
#include "nexthop.h"
#include "vrf.h"
#include "zebra/zserv.h"
#include "zebra/zebra_ns.h"
#include "zebra/zebra_vrf.h"
#include "zebra/router-id.h"
#include "zebra/redistribute.h"
#include "zebra/debug.h"
#include "zebra/ipforward.h"
#include "zebra/zebra_rnh.h"
#include "zebra/rt_netlink.h"
#include "zebra/interface.h"
#include "zebra/zebra_ptm.h"
#include "zebra/rtadv.h"
#include "zebra/zebra_mpls.h"
#include "zebra/zebra_mroute.h"
#include "zebra/label_manager.h"
#include "zebra/zebra_vxlan.h"
#include "zebra/rt.h"
/* Event list of zebra. */
enum event { ZEBRA_SERV, ZEBRA_READ, ZEBRA_WRITE };
static void zebra_event(enum event event, int sock, struct zserv *client);
extern struct zebra_privs_t zserv_privs;
static void zebra_client_close(struct zserv *client);
static int zserv_delayed_close(struct thread *thread)
{
struct zserv *client = THREAD_ARG(thread);
client->t_suicide = NULL;
zebra_client_close(client);
return 0;
}
static int zserv_flush_data(struct thread *thread)
{
struct zserv *client = THREAD_ARG(thread);
client->t_write = NULL;
if (client->t_suicide) {
zebra_client_close(client);
return -1;
}
switch (buffer_flush_available(client->wb, client->sock)) {
case BUFFER_ERROR:
zlog_warn(
"%s: buffer_flush_available failed on zserv client fd %d, "
"closing",
__func__, client->sock);
zebra_client_close(client);
client = NULL;
break;
case BUFFER_PENDING:
client->t_write = NULL;
thread_add_write(zebrad.master, zserv_flush_data, client,
client->sock, &client->t_write);
break;
case BUFFER_EMPTY:
break;
}
if (client)
client->last_write_time = monotime(NULL);
return 0;
}
int zebra_server_send_message(struct zserv *client)
{
if (client->t_suicide)
return -1;
if (client->is_synchronous)
return 0;
stream_set_getp(client->obuf, 0);
client->last_write_cmd = stream_getw_from(client->obuf, 6);
switch (buffer_write(client->wb, client->sock,
STREAM_DATA(client->obuf),
stream_get_endp(client->obuf))) {
case BUFFER_ERROR:
zlog_warn(
"%s: buffer_write failed to zserv client fd %d, closing",
__func__, client->sock);
/* Schedule a delayed close since many of the functions that
call this
one do not check the return code. They do not allow for the
possibility that an I/O error may have caused the client to
be
deleted. */
client->t_suicide = NULL;
thread_add_event(zebrad.master, zserv_delayed_close, client, 0,
&client->t_suicide);
return -1;
case BUFFER_EMPTY:
THREAD_OFF(client->t_write);
break;
case BUFFER_PENDING:
thread_add_write(zebrad.master, zserv_flush_data, client,
client->sock, &client->t_write);
break;
}
client->last_write_time = monotime(NULL);
return 0;
}
void zserv_create_header(struct stream *s, uint16_t cmd, vrf_id_t vrf_id)
{
/* length placeholder, caller can update */
stream_putw(s, ZEBRA_HEADER_SIZE);
stream_putc(s, ZEBRA_HEADER_MARKER);
stream_putc(s, ZSERV_VERSION);
stream_putw(s, vrf_id);
stream_putw(s, cmd);
}
static void zserv_encode_interface(struct stream *s, struct interface *ifp)
{
/* Interface information. */
stream_put(s, ifp->name, INTERFACE_NAMSIZ);
stream_putl(s, ifp->ifindex);
stream_putc(s, ifp->status);
stream_putq(s, ifp->flags);
stream_putc(s, ifp->ptm_enable);
stream_putc(s, ifp->ptm_status);
stream_putl(s, ifp->metric);
stream_putl(s, ifp->speed);
stream_putl(s, ifp->mtu);
stream_putl(s, ifp->mtu6);
stream_putl(s, ifp->bandwidth);
stream_putl(s, ifp->ll_type);
stream_putl(s, ifp->hw_addr_len);
if (ifp->hw_addr_len)
stream_put(s, ifp->hw_addr, ifp->hw_addr_len);
/* Then, Traffic Engineering parameters if any */
if (HAS_LINK_PARAMS(ifp) && IS_LINK_PARAMS_SET(ifp->link_params)) {
stream_putc(s, 1);
zebra_interface_link_params_write(s, ifp);
} else
stream_putc(s, 0);
/* Write packet size. */
stream_putw_at(s, 0, stream_get_endp(s));
}
static void zserv_encode_vrf(struct stream *s, struct zebra_vrf *zvrf)
{
struct vrf_data data;
data.l.table_id = zvrf->table_id;
/* Pass the tableid */
stream_put(s, &data, sizeof(struct vrf_data));
/* Interface information. */
stream_put(s, zvrf_name(zvrf), VRF_NAMSIZ);
/* Write packet size. */
stream_putw_at(s, 0, stream_get_endp(s));
}
/* Interface is added. Send ZEBRA_INTERFACE_ADD to client. */
/*
* This function is called in the following situations:
* - in response to a 3-byte ZEBRA_INTERFACE_ADD request
* from the client.
* - at startup, when zebra figures out the available interfaces
* - when an interface is added (where support for
* RTM_IFANNOUNCE or AF_NETLINK sockets is available), or when
* an interface is marked IFF_UP (i.e., an RTM_IFINFO message is
* received)
*/
int zsend_interface_add(struct zserv *client, struct interface *ifp)
{
struct stream *s;
s = client->obuf;
stream_reset(s);
zserv_create_header(s, ZEBRA_INTERFACE_ADD, ifp->vrf_id);
zserv_encode_interface(s, ifp);
client->ifadd_cnt++;
return zebra_server_send_message(client);
}
/* Interface deletion from zebra daemon. */
int zsend_interface_delete(struct zserv *client, struct interface *ifp)
{
struct stream *s;
s = client->obuf;
stream_reset(s);
zserv_create_header(s, ZEBRA_INTERFACE_DELETE, ifp->vrf_id);
zserv_encode_interface(s, ifp);
client->ifdel_cnt++;
return zebra_server_send_message(client);
}
int zsend_vrf_add(struct zserv *client, struct zebra_vrf *zvrf)
{
struct stream *s;
s = client->obuf;
stream_reset(s);
zserv_create_header(s, ZEBRA_VRF_ADD, zvrf_id(zvrf));
zserv_encode_vrf(s, zvrf);
client->vrfadd_cnt++;
return zebra_server_send_message(client);
}
/* VRF deletion from zebra daemon. */
int zsend_vrf_delete(struct zserv *client, struct zebra_vrf *zvrf)
{
struct stream *s;
s = client->obuf;
stream_reset(s);
zserv_create_header(s, ZEBRA_VRF_DELETE, zvrf_id(zvrf));
zserv_encode_vrf(s, zvrf);
client->vrfdel_cnt++;
return zebra_server_send_message(client);
}
int zsend_interface_link_params(struct zserv *client, struct interface *ifp)
{
struct stream *s;
/* Check this client need interface information. */
if (!client->ifinfo)
return 0;
if (!ifp->link_params)
return 0;
s = client->obuf;
stream_reset(s);
zserv_create_header(s, ZEBRA_INTERFACE_LINK_PARAMS, ifp->vrf_id);
/* Add Interface Index */
stream_putl(s, ifp->ifindex);
/* Then TE Link Parameters */
if (zebra_interface_link_params_write(s, ifp) == 0)
return 0;
/* Write packet size. */
stream_putw_at(s, 0, stream_get_endp(s));
return zebra_server_send_message(client);
}
/* Interface address is added/deleted. Send ZEBRA_INTERFACE_ADDRESS_ADD or
* ZEBRA_INTERFACE_ADDRESS_DELETE to the client.
*
* A ZEBRA_INTERFACE_ADDRESS_ADD is sent in the following situations:
* - in response to a 3-byte ZEBRA_INTERFACE_ADD request
* from the client, after the ZEBRA_INTERFACE_ADD has been
* sent from zebra to the client
* - redistribute new address info to all clients in the following situations
* - at startup, when zebra figures out the available interfaces
* - when an interface is added (where support for
* RTM_IFANNOUNCE or AF_NETLINK sockets is available), or when
* an interface is marked IFF_UP (i.e., an RTM_IFINFO message is
* received)
* - for the vty commands "ip address A.B.C.D/M [<secondary>|<label LINE>]"
* and "no bandwidth <1-10000000>", "ipv6 address X:X::X:X/M"
* - when an RTM_NEWADDR message is received from the kernel,
*
* The call tree that triggers ZEBRA_INTERFACE_ADDRESS_DELETE:
*
* zsend_interface_address(DELETE)
* ^
* |
* zebra_interface_address_delete_update
* ^ ^ ^
* | | if_delete_update
* | |
* ip_address_uninstall connected_delete_ipv4
* [ipv6_addresss_uninstall] [connected_delete_ipv6]
* ^ ^
* | |
* | RTM_NEWADDR on routing/netlink socket
* |
* vty commands:
* "no ip address A.B.C.D/M [label LINE]"
* "no ip address A.B.C.D/M secondary"
* ["no ipv6 address X:X::X:X/M"]
*
*/
int zsend_interface_address(int cmd, struct zserv *client,
struct interface *ifp, struct connected *ifc)
{
int blen;
struct stream *s;
struct prefix *p;
s = client->obuf;
stream_reset(s);
zserv_create_header(s, cmd, ifp->vrf_id);
stream_putl(s, ifp->ifindex);
/* Interface address flag. */
stream_putc(s, ifc->flags);
/* Prefix information. */
p = ifc->address;
stream_putc(s, p->family);
blen = prefix_blen(p);
stream_put(s, &p->u.prefix, blen);
/*
* XXX gnu version does not send prefixlen for
* ZEBRA_INTERFACE_ADDRESS_DELETE
* but zebra_interface_address_delete_read() in the gnu version
* expects to find it
*/
stream_putc(s, p->prefixlen);
/* Destination. */
p = ifc->destination;
if (p)
stream_put(s, &p->u.prefix, blen);
else
stream_put(s, NULL, blen);
/* Write packet size. */
stream_putw_at(s, 0, stream_get_endp(s));
client->connected_rt_add_cnt++;
return zebra_server_send_message(client);
}
static int zsend_interface_nbr_address(int cmd, struct zserv *client,
struct interface *ifp,
struct nbr_connected *ifc)
{
int blen;
struct stream *s;
struct prefix *p;
s = client->obuf;
stream_reset(s);
zserv_create_header(s, cmd, ifp->vrf_id);
stream_putl(s, ifp->ifindex);
/* Prefix information. */
p = ifc->address;
stream_putc(s, p->family);
blen = prefix_blen(p);
stream_put(s, &p->u.prefix, blen);
/*
* XXX gnu version does not send prefixlen for
* ZEBRA_INTERFACE_ADDRESS_DELETE
* but zebra_interface_address_delete_read() in the gnu version
* expects to find it
*/
stream_putc(s, p->prefixlen);
/* Write packet size. */
stream_putw_at(s, 0, stream_get_endp(s));
return zebra_server_send_message(client);
}
/* Interface address addition. */
static void zebra_interface_nbr_address_add_update(struct interface *ifp,
struct nbr_connected *ifc)
{
struct listnode *node, *nnode;
struct zserv *client;
struct prefix *p;
if (IS_ZEBRA_DEBUG_EVENT) {
char buf[INET6_ADDRSTRLEN];
p = ifc->address;
zlog_debug(
"MESSAGE: ZEBRA_INTERFACE_NBR_ADDRESS_ADD %s/%d on %s",
inet_ntop(p->family, &p->u.prefix, buf,
INET6_ADDRSTRLEN),
p->prefixlen, ifc->ifp->name);
}
for (ALL_LIST_ELEMENTS(zebrad.client_list, node, nnode, client))
zsend_interface_nbr_address(ZEBRA_INTERFACE_NBR_ADDRESS_ADD,
client, ifp, ifc);
}
/* Interface address deletion. */
static void zebra_interface_nbr_address_delete_update(struct interface *ifp,
struct nbr_connected *ifc)
{
struct listnode *node, *nnode;
struct zserv *client;
struct prefix *p;
if (IS_ZEBRA_DEBUG_EVENT) {
char buf[INET6_ADDRSTRLEN];
p = ifc->address;
zlog_debug(
"MESSAGE: ZEBRA_INTERFACE_NBR_ADDRESS_DELETE %s/%d on %s",
inet_ntop(p->family, &p->u.prefix, buf,
INET6_ADDRSTRLEN),
p->prefixlen, ifc->ifp->name);
}
for (ALL_LIST_ELEMENTS(zebrad.client_list, node, nnode, client))
zsend_interface_nbr_address(ZEBRA_INTERFACE_NBR_ADDRESS_DELETE,
client, ifp, ifc);
}
/* Send addresses on interface to client */
int zsend_interface_addresses(struct zserv *client, struct interface *ifp)
{
struct listnode *cnode, *cnnode;
struct connected *c;
struct nbr_connected *nc;
/* Send interface addresses. */
for (ALL_LIST_ELEMENTS(ifp->connected, cnode, cnnode, c)) {
if (!CHECK_FLAG(c->conf, ZEBRA_IFC_REAL))
continue;
if (zsend_interface_address(ZEBRA_INTERFACE_ADDRESS_ADD, client,
ifp, c)
< 0)
return -1;
}
/* Send interface neighbors. */
for (ALL_LIST_ELEMENTS(ifp->nbr_connected, cnode, cnnode, nc)) {
if (zsend_interface_nbr_address(ZEBRA_INTERFACE_NBR_ADDRESS_ADD,
client, ifp, nc)
< 0)
return -1;
}
return 0;
}
/* Notify client about interface moving from one VRF to another.
* Whether client is interested in old and new VRF is checked by caller.
*/
int zsend_interface_vrf_update(struct zserv *client, struct interface *ifp,
vrf_id_t vrf_id)
{
struct stream *s;
s = client->obuf;
stream_reset(s);
zserv_create_header(s, ZEBRA_INTERFACE_VRF_UPDATE, ifp->vrf_id);
/* Fill in the ifIndex of the interface and its new VRF (id) */
stream_putl(s, ifp->ifindex);
stream_putw(s, vrf_id);
/* Write packet size. */
stream_putw_at(s, 0, stream_get_endp(s));
client->if_vrfchg_cnt++;
return zebra_server_send_message(client);
}
/* Add new nbr connected IPv6 address */
void nbr_connected_add_ipv6(struct interface *ifp, struct in6_addr *address)
{
struct nbr_connected *ifc;
struct prefix p;
p.family = AF_INET6;
IPV6_ADDR_COPY(&p.u.prefix, address);
p.prefixlen = IPV6_MAX_PREFIXLEN;
if (!(ifc = listnode_head(ifp->nbr_connected))) {
/* new addition */
ifc = nbr_connected_new();
ifc->address = prefix_new();
ifc->ifp = ifp;
listnode_add(ifp->nbr_connected, ifc);
}
prefix_copy(ifc->address, &p);
zebra_interface_nbr_address_add_update(ifp, ifc);
if_nbr_ipv6ll_to_ipv4ll_neigh_update(ifp, address, 1);
}
void nbr_connected_delete_ipv6(struct interface *ifp, struct in6_addr *address)
{
struct nbr_connected *ifc;
struct prefix p;
p.family = AF_INET6;
IPV6_ADDR_COPY(&p.u.prefix, address);
p.prefixlen = IPV6_MAX_PREFIXLEN;
ifc = nbr_connected_check(ifp, &p);
if (!ifc)
return;
listnode_delete(ifp->nbr_connected, ifc);
zebra_interface_nbr_address_delete_update(ifp, ifc);
if_nbr_ipv6ll_to_ipv4ll_neigh_update(ifp, address, 0);
nbr_connected_free(ifc);
}
/*
* The cmd passed to zsend_interface_update may be ZEBRA_INTERFACE_UP or
* ZEBRA_INTERFACE_DOWN.
*
* The ZEBRA_INTERFACE_UP message is sent from the zebra server to
* the clients in one of 2 situations:
* - an if_up is detected e.g., as a result of an RTM_IFINFO message
* - a vty command modifying the bandwidth of an interface is received.
* The ZEBRA_INTERFACE_DOWN message is sent when an if_down is detected.
*/
int zsend_interface_update(int cmd, struct zserv *client, struct interface *ifp)
{
struct stream *s;
s = client->obuf;
stream_reset(s);
zserv_create_header(s, cmd, ifp->vrf_id);
zserv_encode_interface(s, ifp);
if (cmd == ZEBRA_INTERFACE_UP)
client->ifup_cnt++;
else
client->ifdown_cnt++;
return zebra_server_send_message(client);
}
/*
* This is the new function to announce and withdraw redistributed routes, used
* by Zebra. This is the old zsend_route_multipath() function. That function
* was duplicating code to send a lot of information that was essentially thrown
* away or ignored by the receiver. This is the leaner function that is not a
* duplicate of the zapi_ipv4_route_add/del.
*
* The primary difference is that this function merely sends a single NH instead
* of
* all the nexthops.
*/
int zsend_redistribute_route(int add, struct zserv *client, struct prefix *p,
struct prefix *src_p, struct route_entry *re)
{
afi_t afi;
int cmd;
int psize;
struct stream *s;
struct nexthop *nexthop;
unsigned long nhnummark = 0, messmark = 0;
int nhnum = 0;
u_char zapi_flags = 0;
struct nexthop dummy_nh;
afi = family2afi(p->family);
if (add) {
switch (afi) {
case AFI_IP:
cmd = ZEBRA_REDISTRIBUTE_IPV4_ADD;
client->redist_v4_add_cnt++;
break;
case AFI_IP6:
cmd = ZEBRA_REDISTRIBUTE_IPV6_ADD;
client->redist_v6_add_cnt++;
break;
default:
return -1;
}
} else {
switch (afi) {
case AFI_IP:
cmd = ZEBRA_REDISTRIBUTE_IPV4_DEL;
client->redist_v4_del_cnt++;
break;
case AFI_IP6:
cmd = ZEBRA_REDISTRIBUTE_IPV6_DEL;
client->redist_v6_del_cnt++;
break;
default:
return -1;
}
}
s = client->obuf;
stream_reset(s);
memset(&dummy_nh, 0, sizeof(struct nexthop));
zserv_create_header(s, cmd, re->vrf_id);
/* Put type and nexthop. */
stream_putc(s, re->type);
stream_putw(s, re->instance);
stream_putl(s, re->flags);
/* marker for message flags field */
messmark = stream_get_endp(s);
stream_putc(s, 0);
/* Prefix. */
psize = PSIZE(p->prefixlen);
stream_putc(s, p->prefixlen);
stream_write(s, (u_char *)&p->u.prefix, psize);
if (src_p) {
SET_FLAG(zapi_flags, ZAPI_MESSAGE_SRCPFX);
psize = PSIZE(src_p->prefixlen);
stream_putc(s, src_p->prefixlen);
stream_write(s, (u_char *)&src_p->u.prefix, psize);
}
for (nexthop = re->nexthop; nexthop; nexthop = nexthop->next) {
/* We don't send any nexthops when there's a multipath */
if (re->nexthop_active_num > 1
&& client->proto != ZEBRA_ROUTE_LDP) {
SET_FLAG(zapi_flags, ZAPI_MESSAGE_NEXTHOP);
SET_FLAG(zapi_flags, ZAPI_MESSAGE_IFINDEX);
stream_putc(s, 1);
if (p->family == AF_INET) {
stream_put_in_addr(s, &dummy_nh.gate.ipv4);
} else if (p->family == AF_INET6) {
stream_write(s, (u_char *)&dummy_nh.gate.ipv6,
16);
} else {
/* We don't handle anything else now, abort */
zlog_err(
"%s: Unable to redistribute route of unknown family, %d\n",
__func__, p->family);
return -1;
}
stream_putc(s, 1);
stream_putl(s, 0); /* dummy ifindex */
break;
}
if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE)) {
SET_FLAG(zapi_flags, ZAPI_MESSAGE_NEXTHOP);
SET_FLAG(zapi_flags, ZAPI_MESSAGE_IFINDEX);
if (nhnummark == 0) {
nhnummark = stream_get_endp(s);
stream_putc(s, 1); /* placeholder */
}
nhnum++;
switch (nexthop->type) {
case NEXTHOP_TYPE_IPV4:
case NEXTHOP_TYPE_IPV4_IFINDEX:
stream_put_in_addr(s, &nexthop->gate.ipv4);
break;
case NEXTHOP_TYPE_IPV6:
case NEXTHOP_TYPE_IPV6_IFINDEX:
/* Only BGP supports IPv4 prefix with IPv6 NH,
* so kill this */
if (p->family == AF_INET)
stream_put_in_addr(s,
&dummy_nh.gate.ipv4);
else
stream_write(
s,
(u_char *)&nexthop->gate.ipv6,
16);
break;
default:
if (cmd == ZEBRA_REDISTRIBUTE_IPV4_ADD
|| cmd == ZEBRA_REDISTRIBUTE_IPV4_DEL) {
struct in_addr empty;
memset(&empty, 0,
sizeof(struct in_addr));
stream_write(s, (u_char *)&empty,
IPV4_MAX_BYTELEN);
} else {
struct in6_addr empty;
memset(&empty, 0,
sizeof(struct in6_addr));
stream_write(s, (u_char *)&empty,
IPV6_MAX_BYTELEN);
}
}
/* Interface index. */
stream_putc(s, 1);
stream_putl(s, nexthop->ifindex);
/* ldpd needs all nexthops */
if (client->proto != ZEBRA_ROUTE_LDP)
break;
}
}
/* Distance */
SET_FLAG(zapi_flags, ZAPI_MESSAGE_DISTANCE);
stream_putc(s, re->distance);
/* Metric */
SET_FLAG(zapi_flags, ZAPI_MESSAGE_METRIC);
stream_putl(s, re->metric);
/* Tag */
if (re->tag) {
SET_FLAG(zapi_flags, ZAPI_MESSAGE_TAG);
stream_putl(s, re->tag);
}
/* MTU */
SET_FLAG(zapi_flags, ZAPI_MESSAGE_MTU);
stream_putl(s, re->mtu);
/* write real message flags value */
stream_putc_at(s, messmark, zapi_flags);
/* Write next-hop number */
if (nhnummark)
stream_putc_at(s, nhnummark, nhnum);
/* Write packet size. */
stream_putw_at(s, 0, stream_get_endp(s));
return zebra_server_send_message(client);
}
static int zsend_write_nexthop(struct stream *s, struct nexthop *nexthop)
{
stream_putc(s, nexthop->type);
switch (nexthop->type) {
case NEXTHOP_TYPE_IPV4:
case NEXTHOP_TYPE_IPV4_IFINDEX:
stream_put_in_addr(s, &nexthop->gate.ipv4);
stream_putl(s, nexthop->ifindex);
break;
case NEXTHOP_TYPE_IPV6:
stream_put(s, &nexthop->gate.ipv6, 16);
break;
case NEXTHOP_TYPE_IPV6_IFINDEX:
stream_put(s, &nexthop->gate.ipv6, 16);
stream_putl(s, nexthop->ifindex);
break;
case NEXTHOP_TYPE_IFINDEX:
stream_putl(s, nexthop->ifindex);
break;
default:
/* do nothing */
break;
}
return 1;
}
/* Nexthop register */
static int zserv_rnh_register(struct zserv *client, int sock, u_short length,
rnh_type_t type, struct zebra_vrf *zvrf)
{
struct rnh *rnh;
struct stream *s;
struct prefix p;
u_short l = 0;
u_char flags = 0;
if (IS_ZEBRA_DEBUG_NHT)
zlog_debug(
"rnh_register msg from client %s: length=%d, type=%s\n",
zebra_route_string(client->proto), length,
(type == RNH_NEXTHOP_TYPE) ? "nexthop" : "route");
s = client->ibuf;
client->nh_reg_time = monotime(NULL);
while (l < length) {
flags = stream_getc(s);
p.family = stream_getw(s);
p.prefixlen = stream_getc(s);
l += 4;
if (p.family == AF_INET) {
p.u.prefix4.s_addr = stream_get_ipv4(s);
l += IPV4_MAX_BYTELEN;
} else if (p.family == AF_INET6) {
stream_get(&p.u.prefix6, s, IPV6_MAX_BYTELEN);
l += IPV6_MAX_BYTELEN;
} else {
zlog_err(
"rnh_register: Received unknown family type %d\n",
p.family);
return -1;
}
rnh = zebra_add_rnh(&p, zvrf_id(zvrf), type);
if (type == RNH_NEXTHOP_TYPE) {
if (flags
&& !CHECK_FLAG(rnh->flags, ZEBRA_NHT_CONNECTED))
SET_FLAG(rnh->flags, ZEBRA_NHT_CONNECTED);
else if (!flags
&& CHECK_FLAG(rnh->flags, ZEBRA_NHT_CONNECTED))
UNSET_FLAG(rnh->flags, ZEBRA_NHT_CONNECTED);
} else if (type == RNH_IMPORT_CHECK_TYPE) {
if (flags
&& !CHECK_FLAG(rnh->flags, ZEBRA_NHT_EXACT_MATCH))
SET_FLAG(rnh->flags, ZEBRA_NHT_EXACT_MATCH);
else if (!flags && CHECK_FLAG(rnh->flags,
ZEBRA_NHT_EXACT_MATCH))
UNSET_FLAG(rnh->flags, ZEBRA_NHT_EXACT_MATCH);
}
zebra_add_rnh_client(rnh, client, type, zvrf_id(zvrf));
/* Anything not AF_INET/INET6 has been filtered out above */
zebra_evaluate_rnh(zvrf_id(zvrf), p.family, 1, type, &p);
}
return 0;
}
/* Nexthop register */
static int zserv_rnh_unregister(struct zserv *client, int sock, u_short length,
rnh_type_t type, struct zebra_vrf *zvrf)
{
struct rnh *rnh;
struct stream *s;
struct prefix p;
u_short l = 0;
if (IS_ZEBRA_DEBUG_NHT)
zlog_debug("rnh_unregister msg from client %s: length=%d\n",
zebra_route_string(client->proto), length);
s = client->ibuf;
while (l < length) {
(void)stream_getc(
s); // Connected or not. Not used in this function
p.family = stream_getw(s);
p.prefixlen = stream_getc(s);
l += 4;
if (p.family == AF_INET) {
p.u.prefix4.s_addr = stream_get_ipv4(s);
l += IPV4_MAX_BYTELEN;
} else if (p.family == AF_INET6) {
stream_get(&p.u.prefix6, s, IPV6_MAX_BYTELEN);
l += IPV6_MAX_BYTELEN;
} else {
zlog_err(
"rnh_register: Received unknown family type %d\n",
p.family);
return -1;
}
rnh = zebra_lookup_rnh(&p, zvrf_id(zvrf), type);
if (rnh) {
client->nh_dereg_time = monotime(NULL);
zebra_remove_rnh_client(rnh, client, type);
}
}
return 0;
}
#define ZEBRA_MIN_FEC_LENGTH 5
/* FEC register */
static int zserv_fec_register(struct zserv *client, int sock, u_short length)
{
struct stream *s;
struct zebra_vrf *zvrf;
u_short l = 0;
struct prefix p;
u_int16_t flags;
u_int32_t label_index = MPLS_INVALID_LABEL_INDEX;
s = client->ibuf;
zvrf = vrf_info_lookup(VRF_DEFAULT);
if (!zvrf)
return 0; // unexpected
/*
* The minimum amount of data that can be sent for one fec
* registration
*/
if (length < ZEBRA_MIN_FEC_LENGTH) {
zlog_err(
"fec_register: Received a fec register of length %d, it is of insufficient size to properly decode",
length);
return -1;
}
while (l < length) {
flags = stream_getw(s);
p.family = stream_getw(s);
if (p.family != AF_INET && p.family != AF_INET6) {
zlog_err(
"fec_register: Received unknown family type %d\n",
p.family);
return -1;
}
p.prefixlen = stream_getc(s);
l += 5;
stream_get(&p.u.prefix, s, PSIZE(p.prefixlen));
l += PSIZE(p.prefixlen);
if (flags & ZEBRA_FEC_REGISTER_LABEL_INDEX) {
label_index = stream_getl(s);
l += 4;
} else
label_index = MPLS_INVALID_LABEL_INDEX;
zebra_mpls_fec_register(zvrf, &p, label_index, client);
}
return 0;
}
/* FEC unregister */
static int zserv_fec_unregister(struct zserv *client, int sock, u_short length)
{
struct stream *s;
struct zebra_vrf *zvrf;
u_short l = 0;
struct prefix p;
// u_int16_t flags;
s = client->ibuf;
zvrf = vrf_info_lookup(VRF_DEFAULT);
if (!zvrf)
return 0; // unexpected
/*
* The minimum amount of data that can be sent for one
* fec unregistration
*/
if (length < ZEBRA_MIN_FEC_LENGTH) {
zlog_err(
"fec_unregister: Received a fec unregister of length %d, it is of insufficient size to properly decode",
length);
return -1;
}
while (l < length) {
// flags = stream_getw(s);
(void)stream_getw(s);
p.family = stream_getw(s);
if (p.family != AF_INET && p.family != AF_INET6) {
zlog_err(
"fec_unregister: Received unknown family type %d\n",
p.family);
return -1;
}
p.prefixlen = stream_getc(s);
l += 5;
stream_get(&p.u.prefix, s, PSIZE(p.prefixlen));
l += PSIZE(p.prefixlen);
zebra_mpls_fec_unregister(zvrf, &p, client);
}
return 0;
}
/*
Modified version of zsend_ipv4_nexthop_lookup():
Query unicast rib if nexthop is not found on mrib.
Returns both route metric and protocol distance.
*/
static int zsend_ipv4_nexthop_lookup_mrib(struct zserv *client,
struct in_addr addr,
struct route_entry *re,
struct zebra_vrf *zvrf)
{
struct stream *s;
unsigned long nump;
u_char num;
struct nexthop *nexthop;
/* Get output stream. */
s = client->obuf;
stream_reset(s);
/* Fill in result. */
zserv_create_header(s, ZEBRA_IPV4_NEXTHOP_LOOKUP_MRIB, zvrf_id(zvrf));
stream_put_in_addr(s, &addr);
if (re) {
stream_putc(s, re->distance);
stream_putl(s, re->metric);
num = 0;
nump = stream_get_endp(
s); /* remember position for nexthop_num */
stream_putc(s, 0); /* reserve room for nexthop_num */
/* Only non-recursive routes are elegible to resolve the nexthop
* we
* are looking up. Therefore, we will just iterate over the top
* chain of nexthops. */
for (nexthop = re->nexthop; nexthop; nexthop = nexthop->next)
if (CHECK_FLAG(nexthop->flags, NEXTHOP_FLAG_ACTIVE))
num += zsend_write_nexthop(s, nexthop);
stream_putc_at(s, nump, num); /* store nexthop_num */
} else {
stream_putc(s, 0); /* distance */
stream_putl(s, 0); /* metric */
stream_putc(s, 0); /* nexthop_num */
}
stream_putw_at(s, 0, stream_get_endp(s));
return zebra_server_send_message(client);
}
/* Router-id is updated. Send ZEBRA_ROUTER_ID_ADD to client. */
int zsend_router_id_update(struct zserv *client, struct prefix *p,
vrf_id_t vrf_id)
{
struct stream *s;
int blen;
/* Check this client need interface information. */
if (!vrf_bitmap_check(client->ridinfo, vrf_id))
return 0;
s = client->obuf;
stream_reset(s);
/* Message type. */
zserv_create_header(s, ZEBRA_ROUTER_ID_UPDATE, vrf_id);
/* Prefix information. */
stream_putc(s, p->family);
blen = prefix_blen(p);
stream_put(s, &p->u.prefix, blen);
stream_putc(s, p->prefixlen);
/* Write packet size. */
stream_putw_at(s, 0, stream_get_endp(s));
return zebra_server_send_message(client);
}
/* Register zebra server interface information. Send current all
interface and address information. */
static int zread_interface_add(struct zserv *client, u_short length,
struct zebra_vrf *zvrf)
{
struct vrf *vrf;
struct listnode *ifnode, *ifnnode;
struct interface *ifp;
/* Interface information is needed. */
vrf_bitmap_set(client->ifinfo, zvrf_id(zvrf));
RB_FOREACH(vrf, vrf_id_head, &vrfs_by_id)
{
for (ALL_LIST_ELEMENTS(vrf->iflist, ifnode, ifnnode, ifp)) {
/* Skip pseudo interface. */
if (!CHECK_FLAG(ifp->status, ZEBRA_INTERFACE_ACTIVE))
continue;
if (zsend_interface_add(client, ifp) < 0)
return -1;
if (zsend_interface_addresses(client, ifp) < 0)
return -1;
}
}
return 0;
}
/* Unregister zebra server interface information. */
static int zread_interface_delete(struct zserv *client, u_short length,
struct zebra_vrf *zvrf)
{
vrf_bitmap_unset(client->ifinfo, zvrf_id(zvrf));
return 0;
}
void zserv_nexthop_num_warn(const char *caller, const struct prefix *p,
const unsigned int nexthop_num)
{
if (nexthop_num > multipath_num) {
char buff[PREFIX2STR_BUFFER];
prefix2str(p, buff, sizeof(buff));
zlog_warn(
"%s: Prefix %s has %d nexthops, but we can only use the first %d",
caller, buff, nexthop_num, multipath_num);
}
}
/* This function support multiple nexthop. */
/*
* Parse the ZEBRA_IPV4_ROUTE_ADD sent from client. Update re and
* add kernel route.
*/
static int zread_ipv4_add(struct zserv *client, u_short length,
struct zebra_vrf *zvrf)
{
int i;
struct route_entry *re;
struct prefix p;
u_char message;
struct in_addr nhop_addr;
u_char nexthop_num;
u_char nexthop_type;
struct stream *s;
ifindex_t ifindex;
safi_t safi;
int ret;
mpls_label_t label;
struct nexthop *nexthop;
/* Get input stream. */
s = client->ibuf;
/* Allocate new re. */
re = XCALLOC(MTYPE_RE, sizeof(struct route_entry));
/* Type, flags, message. */
re->type = stream_getc(s);
re->instance = stream_getw(s);
re->flags = stream_getl(s);
message = stream_getc(s);
safi = stream_getw(s);
re->uptime = time(NULL);
/* IPv4 prefix. */
memset(&p, 0, sizeof(struct prefix_ipv4));
p.family = AF_INET;
p.prefixlen = stream_getc(s);
stream_get(&p.u.prefix4, s, PSIZE(p.prefixlen));
/* VRF ID */
re->vrf_id = zvrf_id(zvrf);
/* Nexthop parse. */
if (CHECK_FLAG(message, ZAPI_MESSAGE_NEXTHOP)) {
nexthop_num = stream_getc(s);
zserv_nexthop_num_warn(__func__, (const struct prefix *)&p,
nexthop_num);
for (i = 0; i < nexthop_num; i++) {
nexthop_type = stream_getc(s);
switch (nexthop_type) {
case NEXTHOP_TYPE_IFINDEX:
ifindex = stream_getl(s);
route_entry_nexthop_ifindex_add(re, ifindex);
break;
case NEXTHOP_TYPE_IPV4:
nhop_addr.s_addr = stream_get_ipv4(s);
nexthop = route_entry_nexthop_ipv4_add(
re, &nhop_addr, NULL);
/* For labeled-unicast, each nexthop is followed
* by label. */
if (CHECK_FLAG(message, ZAPI_MESSAGE_LABEL)) {
label = (mpls_label_t)stream_getl(s);
nexthop_add_labels(
nexthop, nexthop->nh_label_type,
1, &label);
}
break;
case NEXTHOP_TYPE_IPV4_IFINDEX:
nhop_addr.s_addr = stream_get_ipv4(s);
ifindex = stream_getl(s);
route_entry_nexthop_ipv4_ifindex_add(
re, &nhop_addr, NULL, ifindex);
break;
case NEXTHOP_TYPE_IPV6:
stream_forward_getp(s, IPV6_MAX_BYTELEN);
break;
case NEXTHOP_TYPE_BLACKHOLE:
route_entry_nexthop_blackhole_add(re);
break;
}
}
}
/* Distance. */
if (CHECK_FLAG(message, ZAPI_MESSAGE_DISTANCE))
re->distance = stream_getc(s);
/* Metric. */
if (CHECK_FLAG(message, ZAPI_MESSAGE_METRIC))
re->metric = stream_getl(s);
/* Tag */
if (CHECK_FLAG(message, ZAPI_MESSAGE_TAG))
re->tag = stream_getl(s);
else
re->tag = 0;
if (CHECK_FLAG(message, ZAPI_MESSAGE_MTU))
re->mtu = stream_getl(s);
else
re->mtu = 0;
/* Table */
re->table = zvrf->table_id;
ret = rib_add_multipath(AFI_IP, safi, &p, NULL, re);
/* Stats */
if (ret > 0)
client->v4_route_add_cnt++;
else if (ret < 0)
client->v4_route_upd8_cnt++;
return 0;
}
/* Zebra server IPv4 prefix delete function. */
static int zread_ipv4_delete(struct zserv *client, u_short length,
struct zebra_vrf *zvrf)
{
int i;
struct stream *s;
struct zapi_ipv4 api;
struct in_addr nexthop;
union g_addr *nexthop_p;
unsigned long ifindex;
struct prefix p;
u_char nexthop_num;
u_char nexthop_type;
u_int32_t table_id;
s = client->ibuf;
ifindex = 0;
nexthop.s_addr = 0;
nexthop_p = NULL;
/* Type, flags, message. */
api.type = stream_getc(s);
api.instance = stream_getw(s);
api.flags = stream_getl(s);
api.message = stream_getc(s);
api.safi = stream_getw(s);
/* IPv4 prefix. */
memset(&p, 0, sizeof(struct prefix));
p.family = AF_INET;
p.prefixlen = stream_getc(s);
stream_get(&p.u.prefix4, s, PSIZE(p.prefixlen));
/* Nexthop, ifindex, distance, metric. */
if (CHECK_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP)) {
nexthop_num = stream_getc(s);
for (i = 0; i < nexthop_num; i++) {
nexthop_type = stream_getc(s);
switch (nexthop_type) {
case NEXTHOP_TYPE_IFINDEX:
ifindex = stream_getl(s);
break;
case NEXTHOP_TYPE_IPV4:
nexthop.s_addr = stream_get_ipv4(s);
/* For labeled-unicast, each nexthop is followed
* by label, but
* we don't care for delete.
*/
if (CHECK_FLAG(api.message, ZAPI_MESSAGE_LABEL))
stream_forward_getp(s,
sizeof(u_int32_t));
nexthop_p = (union g_addr *)&nexthop;
break;
case NEXTHOP_TYPE_IPV4_IFINDEX:
nexthop.s_addr = stream_get_ipv4(s);
nexthop_p = (union g_addr *)&nexthop;
ifindex = stream_getl(s);
break;
case NEXTHOP_TYPE_IPV6:
stream_forward_getp(s, IPV6_MAX_BYTELEN);
break;
}
}
}
/* Distance. */
if (CHECK_FLAG(api.message, ZAPI_MESSAGE_DISTANCE))
api.distance = stream_getc(s);
else
api.distance = 0;
/* Metric. */
if (CHECK_FLAG(api.message, ZAPI_MESSAGE_METRIC))
api.metric = stream_getl(s);
else
api.metric = 0;
/* tag */
if (CHECK_FLAG(api.message, ZAPI_MESSAGE_TAG))
api.tag = stream_getl(s);
else
api.tag = 0;
table_id = zvrf->table_id;
rib_delete(AFI_IP, api.safi, zvrf_id(zvrf), api.type, api.instance,
api.flags, &p, NULL, nexthop_p, ifindex, table_id);
client->v4_route_del_cnt++;
return 0;
}
/* MRIB Nexthop lookup for IPv4. */
static int zread_ipv4_nexthop_lookup_mrib(struct zserv *client, u_short length,
struct zebra_vrf *zvrf)
{
struct in_addr addr;
struct route_entry *re;
addr.s_addr = stream_get_ipv4(client->ibuf);
re = rib_match_ipv4_multicast(zvrf_id(zvrf), addr, NULL);
return zsend_ipv4_nexthop_lookup_mrib(client, addr, re, zvrf);
}
/* Zebra server IPv6 prefix add function. */
static int zread_ipv4_route_ipv6_nexthop_add(struct zserv *client,
u_short length,
struct zebra_vrf *zvrf)
{
unsigned int i;
struct stream *s;
struct in6_addr nhop_addr;
struct route_entry *re;
u_char message;
u_char nexthop_num;
u_char nexthop_type;
struct prefix p;
safi_t safi;
static struct in6_addr nexthops[MULTIPATH_NUM];
static unsigned int ifindices[MULTIPATH_NUM];
int ret;
static mpls_label_t labels[MULTIPATH_NUM];
mpls_label_t label;
struct nexthop *nexthop;
/* Get input stream. */
s = client->ibuf;
memset(&nhop_addr, 0, sizeof(struct in6_addr));
/* Allocate new re. */
re = XCALLOC(MTYPE_RE, sizeof(struct route_entry));
/* Type, flags, message. */
re->type = stream_getc(s);
re->instance = stream_getw(s);
re->flags = stream_getl(s);
message = stream_getc(s);
safi = stream_getw(s);
re->uptime = time(NULL);
/* IPv4 prefix. */
memset(&p, 0, sizeof(struct prefix_ipv4));
p.family = AF_INET;
p.prefixlen = stream_getc(s);
stream_get(&p.u.prefix4, s, PSIZE(p.prefixlen));
/* VRF ID */
re->vrf_id = zvrf_id(zvrf);
/* We need to give nh-addr, nh-ifindex with the same next-hop object
* to the re to ensure that IPv6 multipathing works; need to coalesce
* these. Clients should send the same number of paired set of
* next-hop-addr/next-hop-ifindices. */
if (CHECK_FLAG(message, ZAPI_MESSAGE_NEXTHOP)) {
unsigned int nh_count = 0;
unsigned int if_count = 0;
unsigned int max_nh_if = 0;
nexthop_num = stream_getc(s);
zserv_nexthop_num_warn(__func__, (const struct prefix *)&p,
nexthop_num);
for (i = 0; i < nexthop_num; i++) {
nexthop_type = stream_getc(s);
switch (nexthop_type) {
case NEXTHOP_TYPE_IPV6:
stream_get(&nhop_addr, s, 16);
if (nh_count < MULTIPATH_NUM) {
/* For labeled-unicast, each nexthop is
* followed by label. */
if (CHECK_FLAG(message,
ZAPI_MESSAGE_LABEL)) {
label = (mpls_label_t)
stream_getl(s);
labels[nh_count] = label;
}
nexthops[nh_count] = nhop_addr;
nh_count++;
}
break;
case NEXTHOP_TYPE_IFINDEX:
if (if_count < multipath_num) {
ifindices[if_count++] = stream_getl(s);
}
break;
case NEXTHOP_TYPE_BLACKHOLE:
route_entry_nexthop_blackhole_add(re);
break;
}
}
max_nh_if = (nh_count > if_count) ? nh_count : if_count;
for (i = 0; i < max_nh_if; i++) {
if ((i < nh_count)
&& !IN6_IS_ADDR_UNSPECIFIED(&nexthops[i])) {
if ((i < if_count) && ifindices[i])
nexthop =
route_entry_nexthop_ipv6_ifindex_add(
re, &nexthops[i],
ifindices[i]);
else
nexthop = route_entry_nexthop_ipv6_add(
re, &nexthops[i]);
if (CHECK_FLAG(message, ZAPI_MESSAGE_LABEL))
nexthop_add_labels(
nexthop, nexthop->nh_label_type,
1, &labels[i]);
} else {
if ((i < if_count) && ifindices[i])
route_entry_nexthop_ifindex_add(
re, ifindices[i]);
}
}
}
/* Distance. */
if (CHECK_FLAG(message, ZAPI_MESSAGE_DISTANCE))
re->distance = stream_getc(s);
/* Metric. */
if (CHECK_FLAG(message, ZAPI_MESSAGE_METRIC))
re->metric = stream_getl(s);
/* Tag */
if (CHECK_FLAG(message, ZAPI_MESSAGE_TAG))
re->tag = stream_getl(s);
else
re->tag = 0;
if (CHECK_FLAG(message, ZAPI_MESSAGE_MTU))
re->mtu = stream_getl(s);
else
re->mtu = 0;
/* Table */
re->table = zvrf->table_id;
ret = rib_add_multipath(AFI_IP6, safi, &p, NULL, re);
/* Stats */
if (ret > 0)
client->v4_route_add_cnt++;
else if (ret < 0)
client->v4_route_upd8_cnt++;
return 0;
}
static int zread_ipv6_add(struct zserv *client, u_short length,
struct zebra_vrf *zvrf)
{
unsigned int i;
struct stream *s;
struct in6_addr nhop_addr;
struct route_entry *re;
u_char message;
u_char nexthop_num;
u_char nexthop_type;
struct prefix p;
struct prefix_ipv6 src_p, *src_pp;
safi_t safi;
static struct in6_addr nexthops[MULTIPATH_NUM];
static unsigned int ifindices[MULTIPATH_NUM];
int ret;
static mpls_label_t labels[MULTIPATH_NUM];
mpls_label_t label;
struct nexthop *nexthop;
/* Get input stream. */
s = client->ibuf;
memset(&nhop_addr, 0, sizeof(struct in6_addr));
/* Allocate new re. */
re = XCALLOC(MTYPE_RE, sizeof(struct route_entry));
/* Type, flags, message. */
re->type = stream_getc(s);
re->instance = stream_getw(s);
re->flags = stream_getl(s);
message = stream_getc(s);
safi = stream_getw(s);
re->uptime = time(NULL);
/* IPv6 prefix. */
memset(&p, 0, sizeof(struct prefix_ipv6));
p.family = AF_INET6;
p.prefixlen = stream_getc(s);
stream_get(&p.u.prefix6, s, PSIZE(p.prefixlen));
if (CHECK_FLAG(message, ZAPI_MESSAGE_SRCPFX)) {
memset(&src_p, 0, sizeof(struct prefix_ipv6));
src_p.family = AF_INET6;
src_p.prefixlen = stream_getc(s);
stream_get(&src_p.prefix, s, PSIZE(src_p.prefixlen));
src_pp = &src_p;
} else
src_pp = NULL;
/* We need to give nh-addr, nh-ifindex with the same next-hop object
* to the re to ensure that IPv6 multipathing works; need to coalesce
* these. Clients should send the same number of paired set of
* next-hop-addr/next-hop-ifindices. */
if (CHECK_FLAG(message, ZAPI_MESSAGE_NEXTHOP)) {
unsigned int nh_count = 0;
unsigned int if_count = 0;
unsigned int max_nh_if = 0;
nexthop_num = stream_getc(s);
zserv_nexthop_num_warn(__func__, (const struct prefix *)&p,
nexthop_num);
for (i = 0; i < nexthop_num; i++) {
nexthop_type = stream_getc(s);
switch (nexthop_type) {
case NEXTHOP_TYPE_IPV6:
stream_get(&nhop_addr, s, 16);
if (nh_count < MULTIPATH_NUM) {
/* For labeled-unicast, each nexthop is
* followed by label. */
if (CHECK_FLAG(message,
ZAPI_MESSAGE_LABEL)) {
label = (mpls_label_t)
stream_getl(s);
labels[nh_count] = label;
}
nexthops[nh_count++] = nhop_addr;
}
break;
case NEXTHOP_TYPE_IFINDEX:
if (if_count < multipath_num) {
ifindices[if_count++] = stream_getl(s);
}
break;
case NEXTHOP_TYPE_BLACKHOLE:
route_entry_nexthop_blackhole_add(re);
break;
}
}
max_nh_if = (nh_count > if_count) ? nh_count : if_count;
for (i = 0; i < max_nh_if; i++) {
if ((i < nh_count)
&& !IN6_IS_ADDR_UNSPECIFIED(&nexthops[i])) {
if ((i < if_count) && ifindices[i])
nexthop =
route_entry_nexthop_ipv6_ifindex_add(
re, &nexthops[i],
ifindices[i]);
else
nexthop = route_entry_nexthop_ipv6_add(
re, &nexthops[i]);
if (CHECK_FLAG(message, ZAPI_MESSAGE_LABEL))
nexthop_add_labels(
nexthop, nexthop->nh_label_type,
1, &labels[i]);
} else {
if ((i < if_count) && ifindices[i])
route_entry_nexthop_ifindex_add(
re, ifindices[i]);
}
}
}
/* Distance. */
if (CHECK_FLAG(message, ZAPI_MESSAGE_DISTANCE))
re->distance = stream_getc(s);
/* Metric. */
if (CHECK_FLAG(message, ZAPI_MESSAGE_METRIC))
re->metric = stream_getl(s);
/* Tag */
if (CHECK_FLAG(message, ZAPI_MESSAGE_TAG))
re->tag = stream_getl(s);
else
re->tag = 0;
if (CHECK_FLAG(message, ZAPI_MESSAGE_MTU))
re->mtu = stream_getl(s);
else
re->mtu = 0;
/* VRF ID */
re->vrf_id = zvrf_id(zvrf);
re->table = zvrf->table_id;
ret = rib_add_multipath(AFI_IP6, safi, &p, src_pp, re);
/* Stats */
if (ret > 0)
client->v6_route_add_cnt++;
else if (ret < 0)
client->v6_route_upd8_cnt++;
return 0;
}
/* Zebra server IPv6 prefix delete function. */
static int zread_ipv6_delete(struct zserv *client, u_short length,
struct zebra_vrf *zvrf)
{
int i;
struct stream *s;
struct zapi_ipv6 api;
struct in6_addr nexthop;
union g_addr *pnexthop = NULL;
unsigned long ifindex;
struct prefix p;
struct prefix_ipv6 src_p, *src_pp;
s = client->ibuf;
ifindex = 0;
memset(&nexthop, 0, sizeof(struct in6_addr));
/* Type, flags, message. */
api.type = stream_getc(s);
api.instance = stream_getw(s);
api.flags = stream_getl(s);
api.message = stream_getc(s);
api.safi = stream_getw(s);
/* IPv4 prefix. */
memset(&p, 0, sizeof(struct prefix_ipv6));
p.family = AF_INET6;
p.prefixlen = stream_getc(s);
stream_get(&p.u.prefix6, s, PSIZE(p.prefixlen));
if (CHECK_FLAG(api.message, ZAPI_MESSAGE_SRCPFX)) {
memset(&src_p, 0, sizeof(struct prefix_ipv6));
src_p.family = AF_INET6;
src_p.prefixlen = stream_getc(s);
stream_get(&src_p.prefix, s, PSIZE(src_p.prefixlen));
src_pp = &src_p;
} else
src_pp = NULL;
/* Nexthop, ifindex, distance, metric. */
if (CHECK_FLAG(api.message, ZAPI_MESSAGE_NEXTHOP)) {
u_char nexthop_type;
api.nexthop_num = stream_getc(s);
for (i = 0; i < api.nexthop_num; i++) {
nexthop_type = stream_getc(s);
switch (nexthop_type) {
case NEXTHOP_TYPE_IPV6:
stream_get(&nexthop, s, 16);
/* For labeled-unicast, each nexthop is followed
* by label, but
* we don't care for delete.
*/
if (CHECK_FLAG(api.message, ZAPI_MESSAGE_LABEL))
stream_forward_getp(s,
sizeof(u_int32_t));
pnexthop = (union g_addr *)&nexthop;
break;
case NEXTHOP_TYPE_IFINDEX:
ifindex = stream_getl(s);
break;
}
}
}
/* Distance. */
if (CHECK_FLAG(api.message, ZAPI_MESSAGE_DISTANCE))
api.distance = stream_getc(s);
else
api.distance = 0;
/* Metric. */
if (CHECK_FLAG(api.message, ZAPI_MESSAGE_METRIC))
api.metric = stream_getl(s);
else
api.metric = 0;
/* tag */
if (CHECK_FLAG(api.message, ZAPI_MESSAGE_TAG))
api.tag = stream_getl(s);
else
api.tag = 0;
if (IN6_IS_ADDR_UNSPECIFIED(&nexthop))
rib_delete(AFI_IP6, api.safi, zvrf_id(zvrf), api.type,
api.instance, api.flags, &p, src_pp, NULL, ifindex,
client->rtm_table);
else
rib_delete(AFI_IP6, api.safi, zvrf_id(zvrf), api.type,
api.instance, api.flags, &p, src_pp, pnexthop,
ifindex, client->rtm_table);
client->v6_route_del_cnt++;
return 0;
}
/* Register zebra server router-id information. Send current router-id */
static int zread_router_id_add(struct zserv *client, u_short length,
struct zebra_vrf *zvrf)
{
struct prefix p;
/* Router-id information is needed. */
vrf_bitmap_set(client->ridinfo, zvrf_id(zvrf));
router_id_get(&p, zvrf_id(zvrf));
return zsend_router_id_update(client, &p, zvrf_id(zvrf));
}
/* Unregister zebra server router-id information. */
static int zread_router_id_delete(struct zserv *client, u_short length,
struct zebra_vrf *zvrf)
{
vrf_bitmap_unset(client->ridinfo, zvrf_id(zvrf));
return 0;
}
/* Tie up route-type and client->sock */
static void zread_hello(struct zserv *client)
{
/* type of protocol (lib/zebra.h) */
u_char proto;
u_short instance;
proto = stream_getc(client->ibuf);
instance = stream_getw(client->ibuf);
/* accept only dynamic routing protocols */
if ((proto < ZEBRA_ROUTE_MAX) && (proto > ZEBRA_ROUTE_STATIC)) {
zlog_notice(
"client %d says hello and bids fair to announce only %s routes",
client->sock, zebra_route_string(proto));
if (instance)
zlog_notice("client protocol instance %d", instance);
client->proto = proto;
client->instance = instance;
}
}
/* Unregister all information in a VRF. */
static int zread_vrf_unregister(struct zserv *client, u_short length,
struct zebra_vrf *zvrf)
{
int i;
afi_t afi;
for (afi = AFI_IP; afi < AFI_MAX; afi++)
for (i = 0; i < ZEBRA_ROUTE_MAX; i++)
vrf_bitmap_unset(client->redist[afi][i], zvrf_id(zvrf));
vrf_bitmap_unset(client->redist_default, zvrf_id(zvrf));
vrf_bitmap_unset(client->ifinfo, zvrf_id(zvrf));
vrf_bitmap_unset(client->ridinfo, zvrf_id(zvrf));
return 0;
}
static void zread_mpls_labels(int command, struct zserv *client, u_short length,
vrf_id_t vrf_id)
{
struct stream *s;
enum lsp_types_t type;
struct prefix prefix;
enum nexthop_types_t gtype;
union g_addr gate;
ifindex_t ifindex;
mpls_label_t in_label, out_label;
u_int8_t distance;
struct zebra_vrf *zvrf;
zvrf = vrf_info_lookup(vrf_id);
if (!zvrf)
return;
/* Get input stream. */
s = client->ibuf;
/* Get data. */
type = stream_getc(s);
prefix.family = stream_getl(s);
switch (prefix.family) {
case AF_INET:
prefix.u.prefix4.s_addr = stream_get_ipv4(s);
prefix.prefixlen = stream_getc(s);
gate.ipv4.s_addr = stream_get_ipv4(s);
break;
case AF_INET6:
stream_get(&prefix.u.prefix6, s, 16);
prefix.prefixlen = stream_getc(s);
stream_get(&gate.ipv6, s, 16);
break;
default:
return;
}
ifindex = stream_getl(s);
distance = stream_getc(s);
in_label = stream_getl(s);
out_label = stream_getl(s);
switch (prefix.family) {
case AF_INET:
if (ifindex)
gtype = NEXTHOP_TYPE_IPV4_IFINDEX;
else
gtype = NEXTHOP_TYPE_IPV4;
break;
case AF_INET6:
if (ifindex)
gtype = NEXTHOP_TYPE_IPV6_IFINDEX;
else
gtype = NEXTHOP_TYPE_IPV6;
break;
default:
return;
}
if (!mpls_enabled)
return;
if (command == ZEBRA_MPLS_LABELS_ADD) {
mpls_lsp_install(zvrf, type, in_label, out_label, gtype, &gate,
ifindex);
if (out_label != MPLS_IMP_NULL_LABEL)
mpls_ftn_update(1, zvrf, type, &prefix, gtype, &gate,
ifindex, distance, out_label);
} else if (command == ZEBRA_MPLS_LABELS_DELETE) {
mpls_lsp_uninstall(zvrf, type, in_label, gtype, &gate, ifindex);
if (out_label != MPLS_IMP_NULL_LABEL)
mpls_ftn_update(0, zvrf, type, &prefix, gtype, &gate,
ifindex, distance, out_label);
}
}
/* Send response to a label manager connect request to client */
static int zsend_label_manager_connect_response(struct zserv *client,
vrf_id_t vrf_id, u_short result)
{
struct stream *s;
s = client->obuf;
stream_reset(s);
zserv_create_header(s, ZEBRA_LABEL_MANAGER_CONNECT, vrf_id);
/* result */
stream_putc(s, result);
/* Write packet size. */
stream_putw_at(s, 0, stream_get_endp(s));
return writen(client->sock, s->data, stream_get_endp(s));
}
static void zread_label_manager_connect(struct zserv *client, vrf_id_t vrf_id)
{
struct stream *s;
/* type of protocol (lib/zebra.h) */
u_char proto;
u_short instance;
/* Get input stream. */
s = client->ibuf;
/* Get data. */
proto = stream_getc(s);
instance = stream_getw(s);
/* accept only dynamic routing protocols */
if ((proto >= ZEBRA_ROUTE_MAX) || (proto <= ZEBRA_ROUTE_STATIC)) {
zlog_err("client %d has wrong protocol %s", client->sock,
zebra_route_string(proto));
zsend_label_manager_connect_response(client, vrf_id, 1);
return;
}
zlog_notice("client %d with instance %u connected as %s", client->sock,
instance, zebra_route_string(proto));
client->proto = proto;
client->instance = instance;
/*
Release previous labels of same protocol and instance.
This is done in case it restarted from an unexpected shutdown.
*/
release_daemon_chunks(proto, instance);
zlog_debug(
" Label Manager client connected: sock %d, proto %s, instance %u",
client->sock, zebra_route_string(proto), instance);
/* send response back */
zsend_label_manager_connect_response(client, vrf_id, 0);
}
/* Send response to a get label chunk request to client */
static int zsend_assign_label_chunk_response(struct zserv *client,
vrf_id_t vrf_id,
struct label_manager_chunk *lmc)
{
struct stream *s;
s = client->obuf;
stream_reset(s);
zserv_create_header(s, ZEBRA_GET_LABEL_CHUNK, vrf_id);
if (lmc) {
/* keep */
stream_putc(s, lmc->keep);
/* start and end labels */
stream_putl(s, lmc->start);
stream_putl(s, lmc->end);
}
/* Write packet size. */
stream_putw_at(s, 0, stream_get_endp(s));
return writen(client->sock, s->data, stream_get_endp(s));
}
static void zread_get_label_chunk(struct zserv *client, vrf_id_t vrf_id)
{
struct stream *s;
u_char keep;
uint32_t size;
struct label_manager_chunk *lmc;
/* Get input stream. */
s = client->ibuf;
/* Get data. */
keep = stream_getc(s);
size = stream_getl(s);
lmc = assign_label_chunk(client->proto, client->instance, keep, size);
if (!lmc)
zlog_err("%s: Unable to assign Label Chunk of size %u",
__func__, size);
else
zlog_debug("Assigned Label Chunk %u - %u to %u", lmc->start,
lmc->end, keep);
/* send response back */
zsend_assign_label_chunk_response(client, vrf_id, lmc);
}
static void zread_release_label_chunk(struct zserv *client)
{
struct stream *s;
uint32_t start, end;
/* Get input stream. */
s = client->ibuf;
/* Get data. */
start = stream_getl(s);
end = stream_getl(s);
release_label_chunk(client->proto, client->instance, start, end);
}
static void zread_label_manager_request(int cmd, struct zserv *client,
vrf_id_t vrf_id)
{
/* to avoid sending other messages like ZERBA_INTERFACE_UP */
if (cmd == ZEBRA_LABEL_MANAGER_CONNECT)
client->is_synchronous = 1;
/* external label manager */
if (lm_is_external)
zread_relay_label_manager_request(cmd, client, vrf_id);
/* this is a label manager */
else {
if (cmd == ZEBRA_LABEL_MANAGER_CONNECT)
zread_label_manager_connect(client, vrf_id);
else {
/* Sanity: don't allow 'unidentified' requests */
if (!client->proto) {
zlog_err(
"Got label request from an unidentified client");
return;
}
if (cmd == ZEBRA_GET_LABEL_CHUNK)
zread_get_label_chunk(client, vrf_id);
else if (cmd == ZEBRA_RELEASE_LABEL_CHUNK)
zread_release_label_chunk(client);
}
}
}
/* Cleanup registered nexthops (across VRFs) upon client disconnect. */
static void zebra_client_close_cleanup_rnh(struct zserv *client)
{
struct vrf *vrf;
struct zebra_vrf *zvrf;
RB_FOREACH(vrf, vrf_id_head, &vrfs_by_id)
{
if ((zvrf = vrf->info) != NULL) {
zebra_cleanup_rnh_client(zvrf_id(zvrf), AF_INET, client,
RNH_NEXTHOP_TYPE);
zebra_cleanup_rnh_client(zvrf_id(zvrf), AF_INET6,
client, RNH_NEXTHOP_TYPE);
zebra_cleanup_rnh_client(zvrf_id(zvrf), AF_INET, client,
RNH_IMPORT_CHECK_TYPE);
zebra_cleanup_rnh_client(zvrf_id(zvrf), AF_INET6,
client, RNH_IMPORT_CHECK_TYPE);
if (client->proto == ZEBRA_ROUTE_LDP) {
hash_iterate(zvrf->lsp_table,
mpls_ldp_lsp_uninstall_all,
zvrf->lsp_table);
mpls_ldp_ftn_uninstall_all(zvrf, AFI_IP);
mpls_ldp_ftn_uninstall_all(zvrf, AFI_IP6);
}
}
}
}
/* Close zebra client. */
static void zebra_client_close(struct zserv *client)
{
/* Send client de-registration to BFD */
zebra_ptm_bfd_client_deregister(client->proto);
/* Cleanup any registered nexthops - across all VRFs. */
zebra_client_close_cleanup_rnh(client);
/* Release Label Manager chunks */
release_daemon_chunks(client->proto, client->instance);
/* Cleanup any FECs registered by this client. */
zebra_mpls_cleanup_fecs_for_client(vrf_info_lookup(VRF_DEFAULT),
client);
/* Close file descriptor. */
if (client->sock) {
unsigned long nroutes;
close(client->sock);
nroutes = rib_score_proto(client->proto, client->instance);
zlog_notice(
"client %d disconnected. %lu %s routes removed from the rib",
client->sock, nroutes,
zebra_route_string(client->proto));
client->sock = -1;
}
/* Free stream buffers. */
if (client->ibuf)
stream_free(client->ibuf);
if (client->obuf)
stream_free(client->obuf);
if (client->wb)
buffer_free(client->wb);
/* Release threads. */
if (client->t_read)
thread_cancel(client->t_read);
if (client->t_write)
thread_cancel(client->t_write);
if (client->t_suicide)
thread_cancel(client->t_suicide);
/* Free bitmaps. */
for (afi_t afi = AFI_IP; afi < AFI_MAX; afi++)
for (int i = 0; i < ZEBRA_ROUTE_MAX; i++)
vrf_bitmap_free(client->redist[afi][i]);
vrf_bitmap_free(client->redist_default);
vrf_bitmap_free(client->ifinfo);
vrf_bitmap_free(client->ridinfo);
/* Free client structure. */
listnode_delete(zebrad.client_list, client);
XFREE(MTYPE_TMP, client);
}
/* Make new client. */
static void zebra_client_create(int sock)
{
struct zserv *client;
int i;
afi_t afi;
client = XCALLOC(MTYPE_TMP, sizeof(struct zserv));
/* Make client input/output buffer. */
client->sock = sock;
client->ibuf = stream_new(ZEBRA_MAX_PACKET_SIZ);
client->obuf = stream_new(ZEBRA_MAX_PACKET_SIZ);
client->wb = buffer_new(0);
/* Set table number. */
client->rtm_table = zebrad.rtm_table_default;
client->connect_time = monotime(NULL);
/* Initialize flags */
for (afi = AFI_IP; afi < AFI_MAX; afi++)
for (i = 0; i < ZEBRA_ROUTE_MAX; i++)
client->redist[afi][i] = vrf_bitmap_init();
client->redist_default = vrf_bitmap_init();
client->ifinfo = vrf_bitmap_init();
client->ridinfo = vrf_bitmap_init();
/* by default, it's not a synchronous client */
client->is_synchronous = 0;
/* Add this client to linked list. */
listnode_add(zebrad.client_list, client);
/* Make new read thread. */
zebra_event(ZEBRA_READ, sock, client);
zebra_vrf_update_all(client);
}
static int zread_interface_set_master(struct zserv *client, int sock,
u_short length)
{
struct interface *master;
struct interface *slave;
struct stream *s = client->ibuf;
int ifindex;
vrf_id_t vrf_id;
vrf_id = stream_getw(s);
ifindex = stream_getl(s);
master = if_lookup_by_index(ifindex, vrf_id);
vrf_id = stream_getw(s);
ifindex = stream_getl(s);
slave = if_lookup_by_index(ifindex, vrf_id);
if (!master || !slave)
return 0;
kernel_interface_set_master(master, slave);
return 1;
}
/* Handler of zebra service request. */
static int zebra_client_read(struct thread *thread)
{
int sock;
struct zserv *client;
size_t already;
uint16_t length, command;
uint8_t marker, version;
vrf_id_t vrf_id;
struct zebra_vrf *zvrf;
/* Get thread data. Reset reading thread because I'm running. */
sock = THREAD_FD(thread);
client = THREAD_ARG(thread);
client->t_read = NULL;
if (client->t_suicide) {
zebra_client_close(client);
return -1;
}
/* Read length and command (if we don't have it already). */
if ((already = stream_get_endp(client->ibuf)) < ZEBRA_HEADER_SIZE) {
ssize_t nbyte;
if (((nbyte = stream_read_try(client->ibuf, sock,
ZEBRA_HEADER_SIZE - already))
== 0)
|| (nbyte == -1)) {
if (IS_ZEBRA_DEBUG_EVENT)
zlog_debug("connection closed socket [%d]",
sock);
zebra_client_close(client);
return -1;
}
if (nbyte != (ssize_t)(ZEBRA_HEADER_SIZE - already)) {
/* Try again later. */
zebra_event(ZEBRA_READ, sock, client);
return 0;
}
already = ZEBRA_HEADER_SIZE;
}
/* Reset to read from the beginning of the incoming packet. */
stream_set_getp(client->ibuf, 0);
/* Fetch header values */
length = stream_getw(client->ibuf);
marker = stream_getc(client->ibuf);
version = stream_getc(client->ibuf);
vrf_id = stream_getw(client->ibuf);
command = stream_getw(client->ibuf);
if (marker != ZEBRA_HEADER_MARKER || version != ZSERV_VERSION) {
zlog_err(
"%s: socket %d version mismatch, marker %d, version %d",
__func__, sock, marker, version);
zebra_client_close(client);
return -1;
}
if (length < ZEBRA_HEADER_SIZE) {
zlog_warn(
"%s: socket %d message length %u is less than header size %d",
__func__, sock, length, ZEBRA_HEADER_SIZE);
zebra_client_close(client);
return -1;
}
if (length > STREAM_SIZE(client->ibuf)) {
zlog_warn(
"%s: socket %d message length %u exceeds buffer size %lu",
__func__, sock, length,
(u_long)STREAM_SIZE(client->ibuf));
zebra_client_close(client);
return -1;
}
/* Read rest of data. */
if (already < length) {
ssize_t nbyte;
if (((nbyte = stream_read_try(client->ibuf, sock,
length - already))
== 0)
|| (nbyte == -1)) {
if (IS_ZEBRA_DEBUG_EVENT)
zlog_debug(
"connection closed [%d] when reading zebra data",
sock);
zebra_client_close(client);
return -1;
}
if (nbyte != (ssize_t)(length - already)) {
/* Try again later. */
zebra_event(ZEBRA_READ, sock, client);
return 0;
}
}
length -= ZEBRA_HEADER_SIZE;
/* Debug packet information. */
if (IS_ZEBRA_DEBUG_EVENT)
zlog_debug("zebra message comes from socket [%d]", sock);
if (IS_ZEBRA_DEBUG_PACKET && IS_ZEBRA_DEBUG_RECV)
zlog_debug("zebra message received [%s] %d in VRF %u",
zserv_command_string(command), length, vrf_id);
client->last_read_time = monotime(NULL);
client->last_read_cmd = command;
zvrf = zebra_vrf_lookup_by_id(vrf_id);
if (!zvrf) {
if (IS_ZEBRA_DEBUG_PACKET && IS_ZEBRA_DEBUG_RECV)
zlog_debug("zebra received unknown VRF[%u]", vrf_id);
goto zclient_read_out;
}
switch (command) {
case ZEBRA_ROUTER_ID_ADD:
zread_router_id_add(client, length, zvrf);
break;
case ZEBRA_ROUTER_ID_DELETE:
zread_router_id_delete(client, length, zvrf);
break;
case ZEBRA_INTERFACE_ADD:
zread_interface_add(client, length, zvrf);
break;
case ZEBRA_INTERFACE_DELETE:
zread_interface_delete(client, length, zvrf);
break;
case ZEBRA_IPV4_ROUTE_ADD:
zread_ipv4_add(client, length, zvrf);
break;
case ZEBRA_IPV4_ROUTE_DELETE:
zread_ipv4_delete(client, length, zvrf);
break;
case ZEBRA_IPV4_ROUTE_IPV6_NEXTHOP_ADD:
zread_ipv4_route_ipv6_nexthop_add(client, length, zvrf);
break;
case ZEBRA_IPV4_NEXTHOP_ADD:
zread_ipv4_add(client, length,
zvrf); /* LB: r1.0 merge - id was 1 */
break;
case ZEBRA_IPV4_NEXTHOP_DELETE:
zread_ipv4_delete(client, length,
zvrf); /* LB: r1.0 merge - id was 1 */
break;
case ZEBRA_IPV6_ROUTE_ADD:
zread_ipv6_add(client, length, zvrf);
break;
case ZEBRA_IPV6_ROUTE_DELETE:
zread_ipv6_delete(client, length, zvrf);
break;
case ZEBRA_REDISTRIBUTE_ADD:
zebra_redistribute_add(command, client, length, zvrf);
break;
case ZEBRA_REDISTRIBUTE_DELETE:
zebra_redistribute_delete(command, client, length, zvrf);
break;
case ZEBRA_REDISTRIBUTE_DEFAULT_ADD:
zebra_redistribute_default_add(command, client, length, zvrf);
break;
case ZEBRA_REDISTRIBUTE_DEFAULT_DELETE:
zebra_redistribute_default_delete(command, client, length,
zvrf);
break;
case ZEBRA_IPV4_NEXTHOP_LOOKUP_MRIB:
zread_ipv4_nexthop_lookup_mrib(client, length, zvrf);
break;
case ZEBRA_HELLO:
zread_hello(client);
break;
case ZEBRA_NEXTHOP_REGISTER:
zserv_rnh_register(client, sock, length, RNH_NEXTHOP_TYPE,
zvrf);
break;
case ZEBRA_NEXTHOP_UNREGISTER:
zserv_rnh_unregister(client, sock, length, RNH_NEXTHOP_TYPE,
zvrf);
break;
case ZEBRA_IMPORT_ROUTE_REGISTER:
zserv_rnh_register(client, sock, length, RNH_IMPORT_CHECK_TYPE,
zvrf);
break;
case ZEBRA_IMPORT_ROUTE_UNREGISTER:
zserv_rnh_unregister(client, sock, length,
RNH_IMPORT_CHECK_TYPE, zvrf);
break;
case ZEBRA_BFD_DEST_UPDATE:
case ZEBRA_BFD_DEST_REGISTER:
zebra_ptm_bfd_dst_register(client, sock, length, command, zvrf);
break;
case ZEBRA_BFD_DEST_DEREGISTER:
zebra_ptm_bfd_dst_deregister(client, sock, length, zvrf);
break;
case ZEBRA_VRF_UNREGISTER:
zread_vrf_unregister(client, length, zvrf);
break;
case ZEBRA_BFD_CLIENT_REGISTER:
zebra_ptm_bfd_client_register(client, sock, length);
break;
case ZEBRA_INTERFACE_ENABLE_RADV:
#if defined(HAVE_RTADV)
zebra_interface_radv_set(client, sock, length, zvrf, 1);
#endif
break;
case ZEBRA_INTERFACE_DISABLE_RADV:
#if defined(HAVE_RTADV)
zebra_interface_radv_set(client, sock, length, zvrf, 0);
#endif
break;
case ZEBRA_MPLS_LABELS_ADD:
case ZEBRA_MPLS_LABELS_DELETE:
zread_mpls_labels(command, client, length, vrf_id);
break;
case ZEBRA_IPMR_ROUTE_STATS:
zebra_ipmr_route_stats(client, sock, length, zvrf);
break;
case ZEBRA_LABEL_MANAGER_CONNECT:
case ZEBRA_GET_LABEL_CHUNK:
case ZEBRA_RELEASE_LABEL_CHUNK:
zread_label_manager_request(command, client, vrf_id);
break;
case ZEBRA_FEC_REGISTER:
zserv_fec_register(client, sock, length);
break;
case ZEBRA_FEC_UNREGISTER:
zserv_fec_unregister(client, sock, length);
break;
case ZEBRA_ADVERTISE_ALL_VNI:
zebra_vxlan_advertise_all_vni(client, sock, length, zvrf);
break;
case ZEBRA_REMOTE_VTEP_ADD:
zebra_vxlan_remote_vtep_add(client, sock, length, zvrf);
break;
case ZEBRA_REMOTE_VTEP_DEL:
zebra_vxlan_remote_vtep_del(client, sock, length, zvrf);
break;
case ZEBRA_REMOTE_MACIP_ADD:
zebra_vxlan_remote_macip_add(client, sock, length, zvrf);
break;
case ZEBRA_REMOTE_MACIP_DEL:
zebra_vxlan_remote_macip_del(client, sock, length, zvrf);
case ZEBRA_INTERFACE_SET_MASTER:
zread_interface_set_master(client, sock, length);
break;
default:
zlog_info("Zebra received unknown command %d", command);
break;
}
if (client->t_suicide) {
/* No need to wait for thread callback, just kill immediately.
*/
zebra_client_close(client);
return -1;
}
zclient_read_out:
stream_reset(client->ibuf);
zebra_event(ZEBRA_READ, sock, client);
return 0;
}
/* Accept code of zebra server socket. */
static int zebra_accept(struct thread *thread)
{
int accept_sock;
int client_sock;
struct sockaddr_in client;
socklen_t len;
accept_sock = THREAD_FD(thread);
/* Reregister myself. */
zebra_event(ZEBRA_SERV, accept_sock, NULL);
len = sizeof(struct sockaddr_in);
client_sock = accept(accept_sock, (struct sockaddr *)&client, &len);
if (client_sock < 0) {
zlog_warn("Can't accept zebra socket: %s",
safe_strerror(errno));
return -1;
}
/* Make client socket non-blocking. */
set_nonblocking(client_sock);
/* Create new zebra client. */
zebra_client_create(client_sock);
return 0;
}
#ifdef HAVE_TCP_ZEBRA
/* Make zebra's server socket. */
static void zebra_serv()
{
int ret;
int accept_sock;
struct sockaddr_in addr;
accept_sock = socket(AF_INET, SOCK_STREAM, 0);
if (accept_sock < 0) {
zlog_warn("Can't create zserv stream socket: %s",
safe_strerror(errno));
zlog_warn(
"zebra can't provice full functionality due to above error");
return;
}
memset(&addr, 0, sizeof(struct sockaddr_in));
addr.sin_family = AF_INET;
addr.sin_port = htons(ZEBRA_PORT);
#ifdef HAVE_STRUCT_SOCKADDR_IN_SIN_LEN
addr.sin_len = sizeof(struct sockaddr_in);
#endif /* HAVE_STRUCT_SOCKADDR_IN_SIN_LEN */
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
sockopt_reuseaddr(accept_sock);
sockopt_reuseport(accept_sock);
if (zserv_privs.change(ZPRIVS_RAISE))
zlog_err("Can't raise privileges");
ret = bind(accept_sock, (struct sockaddr *)&addr,
sizeof(struct sockaddr_in));
if (ret < 0) {
zlog_warn("Can't bind to stream socket: %s",
safe_strerror(errno));
zlog_warn(
"zebra can't provice full functionality due to above error");
close(accept_sock); /* Avoid sd leak. */
return;
}
if (zserv_privs.change(ZPRIVS_LOWER))
zlog_err("Can't lower privileges");
ret = listen(accept_sock, 1);
if (ret < 0) {
zlog_warn("Can't listen to stream socket: %s",
safe_strerror(errno));
zlog_warn(
"zebra can't provice full functionality due to above error");
close(accept_sock); /* Avoid sd leak. */
return;
}
zebra_event(ZEBRA_SERV, accept_sock, NULL);
}
#else /* HAVE_TCP_ZEBRA */
/* For sockaddr_un. */
#include <sys/un.h>
/* zebra server UNIX domain socket. */
static void zebra_serv_un(const char *path)
{
int ret;
int sock, len;
struct sockaddr_un serv;
mode_t old_mask;
/* First of all, unlink existing socket */
unlink(path);
/* Set umask */
old_mask = umask(0077);
/* Make UNIX domain socket. */
sock = socket(AF_UNIX, SOCK_STREAM, 0);
if (sock < 0) {
zlog_warn("Can't create zserv unix socket: %s",
safe_strerror(errno));
zlog_warn(
"zebra can't provide full functionality due to above error");
return;
}
/* Make server socket. */
memset(&serv, 0, sizeof(struct sockaddr_un));
serv.sun_family = AF_UNIX;
strncpy(serv.sun_path, path, strlen(path));
#ifdef HAVE_STRUCT_SOCKADDR_UN_SUN_LEN
len = serv.sun_len = SUN_LEN(&serv);
#else
len = sizeof(serv.sun_family) + strlen(serv.sun_path);
#endif /* HAVE_STRUCT_SOCKADDR_UN_SUN_LEN */
ret = bind(sock, (struct sockaddr *)&serv, len);
if (ret < 0) {
zlog_warn("Can't bind to unix socket %s: %s", path,
safe_strerror(errno));
zlog_warn(
"zebra can't provide full functionality due to above error");
close(sock);
return;
}
ret = listen(sock, 5);
if (ret < 0) {
zlog_warn("Can't listen to unix socket %s: %s", path,
safe_strerror(errno));
zlog_warn(
"zebra can't provide full functionality due to above error");
close(sock);
return;
}
umask(old_mask);
zebra_event(ZEBRA_SERV, sock, NULL);
}
#endif /* HAVE_TCP_ZEBRA */
static void zebra_event(enum event event, int sock, struct zserv *client)
{
switch (event) {
case ZEBRA_SERV:
thread_add_read(zebrad.master, zebra_accept, client, sock,
NULL);
break;
case ZEBRA_READ:
client->t_read = NULL;
thread_add_read(zebrad.master, zebra_client_read, client, sock,
&client->t_read);
break;
case ZEBRA_WRITE:
/**/
break;
}
}
#define ZEBRA_TIME_BUF 32
static char *zserv_time_buf(time_t *time1, char *buf, int buflen)
{
struct tm *tm;
time_t now;
assert(buf != NULL);
assert(buflen >= ZEBRA_TIME_BUF);
assert(time1 != NULL);
if (!*time1) {
snprintf(buf, buflen, "never ");
return (buf);
}
now = monotime(NULL);
now -= *time1;
tm = gmtime(&now);
/* Making formatted timer strings. */
#define ONE_DAY_SECOND 60*60*24
#define ONE_WEEK_SECOND 60*60*24*7
if (now < ONE_DAY_SECOND)
snprintf(buf, buflen, "%02d:%02d:%02d", tm->tm_hour, tm->tm_min,
tm->tm_sec);
else if (now < ONE_WEEK_SECOND)
snprintf(buf, buflen, "%dd%02dh%02dm", tm->tm_yday, tm->tm_hour,
tm->tm_min);
else
snprintf(buf, buflen, "%02dw%dd%02dh", tm->tm_yday / 7,
tm->tm_yday - ((tm->tm_yday / 7) * 7), tm->tm_hour);
return buf;
}
static void zebra_show_client_detail(struct vty *vty, struct zserv *client)
{
char cbuf[ZEBRA_TIME_BUF], rbuf[ZEBRA_TIME_BUF];
char wbuf[ZEBRA_TIME_BUF], nhbuf[ZEBRA_TIME_BUF], mbuf[ZEBRA_TIME_BUF];
vty_out(vty, "Client: %s", zebra_route_string(client->proto));
if (client->instance)
vty_out(vty, " Instance: %d", client->instance);
vty_out(vty, "\n");
vty_out(vty, "------------------------ \n");
vty_out(vty, "FD: %d \n", client->sock);
vty_out(vty, "Route Table ID: %d \n", client->rtm_table);
vty_out(vty, "Connect Time: %s \n",
zserv_time_buf(&client->connect_time, cbuf, ZEBRA_TIME_BUF));
if (client->nh_reg_time) {
vty_out(vty, "Nexthop Registry Time: %s \n",
zserv_time_buf(&client->nh_reg_time, nhbuf,
ZEBRA_TIME_BUF));
if (client->nh_last_upd_time)
vty_out(vty, "Nexthop Last Update Time: %s \n",
zserv_time_buf(&client->nh_last_upd_time, mbuf,
ZEBRA_TIME_BUF));
else
vty_out(vty, "No Nexthop Update sent\n");
} else
vty_out(vty, "Not registered for Nexthop Updates\n");
vty_out(vty, "Last Msg Rx Time: %s \n",
zserv_time_buf(&client->last_read_time, rbuf, ZEBRA_TIME_BUF));
vty_out(vty, "Last Msg Tx Time: %s \n",
zserv_time_buf(&client->last_write_time, wbuf, ZEBRA_TIME_BUF));
if (client->last_read_time)
vty_out(vty, "Last Rcvd Cmd: %s \n",
zserv_command_string(client->last_read_cmd));
if (client->last_write_time)
vty_out(vty, "Last Sent Cmd: %s \n",
zserv_command_string(client->last_write_cmd));
vty_out(vty, "\n");
vty_out(vty, "Type Add Update Del \n");
vty_out(vty, "================================================== \n");
vty_out(vty, "IPv4 %-12d%-12d%-12d\n", client->v4_route_add_cnt,
client->v4_route_upd8_cnt, client->v4_route_del_cnt);
vty_out(vty, "IPv6 %-12d%-12d%-12d\n", client->v6_route_add_cnt,
client->v6_route_upd8_cnt, client->v6_route_del_cnt);
vty_out(vty, "Redist:v4 %-12d%-12d%-12d\n", client->redist_v4_add_cnt,
0, client->redist_v4_del_cnt);
vty_out(vty, "Redist:v6 %-12d%-12d%-12d\n", client->redist_v6_add_cnt,
0, client->redist_v6_del_cnt);
vty_out(vty, "Connected %-12d%-12d%-12d\n", client->ifadd_cnt, 0,
client->ifdel_cnt);
vty_out(vty, "BFD peer %-12d%-12d%-12d\n", client->bfd_peer_add_cnt,
client->bfd_peer_upd8_cnt, client->bfd_peer_del_cnt);
vty_out(vty, "Interface Up Notifications: %d\n", client->ifup_cnt);
vty_out(vty, "Interface Down Notifications: %d\n", client->ifdown_cnt);
vty_out(vty, "VNI add notifications: %d\n", client->vniadd_cnt);
vty_out(vty, "VNI delete notifications: %d\n", client->vnidel_cnt);
vty_out(vty, "MAC-IP add notifications: %d\n", client->macipadd_cnt);
vty_out(vty, "MAC-IP delete notifications: %d\n", client->macipdel_cnt);
vty_out(vty, "\n");
return;
}
static void zebra_show_client_brief(struct vty *vty, struct zserv *client)
{
char cbuf[ZEBRA_TIME_BUF], rbuf[ZEBRA_TIME_BUF];
char wbuf[ZEBRA_TIME_BUF];
vty_out(vty, "%-8s%12s %12s%12s%8d/%-8d%8d/%-8d\n",
zebra_route_string(client->proto),
zserv_time_buf(&client->connect_time, cbuf, ZEBRA_TIME_BUF),
zserv_time_buf(&client->last_read_time, rbuf, ZEBRA_TIME_BUF),
zserv_time_buf(&client->last_write_time, wbuf, ZEBRA_TIME_BUF),
client->v4_route_add_cnt + client->v4_route_upd8_cnt,
client->v4_route_del_cnt,
client->v6_route_add_cnt + client->v6_route_upd8_cnt,
client->v6_route_del_cnt);
}
struct zserv *zebra_find_client(u_char proto)
{
struct listnode *node, *nnode;
struct zserv *client;
for (ALL_LIST_ELEMENTS(zebrad.client_list, node, nnode, client)) {
if (client->proto == proto)
return client;
}
return NULL;
}
#ifdef HAVE_NETLINK
/* Display default rtm_table for all clients. */
DEFUN (show_table,
show_table_cmd,
"show table",
SHOW_STR
"default routing table to use for all clients\n")
{
vty_out(vty, "table %d\n", zebrad.rtm_table_default);
return CMD_SUCCESS;
}
DEFUN (config_table,
config_table_cmd,
"table TABLENO",
"Configure target kernel routing table\n"
"TABLE integer\n")
{
zebrad.rtm_table_default = strtol(argv[1]->arg, (char **)0, 10);
return CMD_SUCCESS;
}
DEFUN (no_config_table,
no_config_table_cmd,
"no table [TABLENO]",
NO_STR
"Configure target kernel routing table\n"
"TABLE integer\n")
{
zebrad.rtm_table_default = 0;
return CMD_SUCCESS;
}
#endif
DEFUN (ip_forwarding,
ip_forwarding_cmd,
"ip forwarding",
IP_STR
"Turn on IP forwarding")
{
int ret;
ret = ipforward();
if (ret == 0)
ret = ipforward_on();
if (ret == 0) {
vty_out(vty, "Can't turn on IP forwarding\n");
return CMD_WARNING_CONFIG_FAILED;
}
return CMD_SUCCESS;
}
DEFUN (no_ip_forwarding,
no_ip_forwarding_cmd,
"no ip forwarding",
NO_STR
IP_STR
"Turn off IP forwarding")
{
int ret;
ret = ipforward();
if (ret != 0)
ret = ipforward_off();
if (ret != 0) {
vty_out(vty, "Can't turn off IP forwarding\n");
return CMD_WARNING_CONFIG_FAILED;
}
return CMD_SUCCESS;
}
DEFUN (show_zebra,
show_zebra_cmd,
"show zebra",
SHOW_STR
"Zebra information\n")
{
struct vrf *vrf;
vty_out(vty,
" Route Route Neighbor LSP LSP\n");
vty_out(vty,
"VRF Installs Removals Updates Installs Removals\n");
RB_FOREACH(vrf, vrf_name_head, &vrfs_by_name)
{
struct zebra_vrf *zvrf = vrf->info;
vty_out(vty, "%-25s %10" PRIu64 " %10" PRIu64 " %10" PRIu64
" %10" PRIu64 " %10" PRIu64 "\n",
vrf->name, zvrf->installs, zvrf->removals,
zvrf->neigh_updates, zvrf->lsp_installs,
zvrf->lsp_removals);
}
return CMD_SUCCESS;
}
/* This command is for debugging purpose. */
DEFUN (show_zebra_client,
show_zebra_client_cmd,
"show zebra client",
SHOW_STR
"Zebra information\n"
"Client information\n")
{
struct listnode *node;
struct zserv *client;
for (ALL_LIST_ELEMENTS_RO(zebrad.client_list, node, client))
zebra_show_client_detail(vty, client);
return CMD_SUCCESS;
}
/* This command is for debugging purpose. */
DEFUN (show_zebra_client_summary,
show_zebra_client_summary_cmd,
"show zebra client summary",
SHOW_STR
"Zebra information brief\n"
"Client information brief\n"
"Brief Summary\n")
{
struct listnode *node;
struct zserv *client;
vty_out(vty,
"Name Connect Time Last Read Last Write IPv4 Routes IPv6 Routes \n");
vty_out(vty,
"--------------------------------------------------------------------------------\n");
for (ALL_LIST_ELEMENTS_RO(zebrad.client_list, node, client))
zebra_show_client_brief(vty, client);
vty_out(vty, "Routes column shows (added+updated)/deleted\n");
return CMD_SUCCESS;
}
/* Table configuration write function. */
static int config_write_table(struct vty *vty)
{
if (zebrad.rtm_table_default)
vty_out(vty, "table %d\n", zebrad.rtm_table_default);
return 0;
}
/* table node for routing tables. */
static struct cmd_node table_node = {TABLE_NODE,
"", /* This node has no interface. */
1};
/* Only display ip forwarding is enabled or not. */
DEFUN (show_ip_forwarding,
show_ip_forwarding_cmd,
"show ip forwarding",
SHOW_STR
IP_STR
"IP forwarding status\n")
{
int ret;
ret = ipforward();
if (ret == 0)
vty_out(vty, "IP forwarding is off\n");
else
vty_out(vty, "IP forwarding is on\n");
return CMD_SUCCESS;
}
/* Only display ipv6 forwarding is enabled or not. */
DEFUN (show_ipv6_forwarding,
show_ipv6_forwarding_cmd,
"show ipv6 forwarding",
SHOW_STR
"IPv6 information\n"
"Forwarding status\n")
{
int ret;
ret = ipforward_ipv6();
switch (ret) {
case -1:
vty_out(vty, "ipv6 forwarding is unknown\n");
break;
case 0:
vty_out(vty, "ipv6 forwarding is %s\n", "off");
break;
case 1:
vty_out(vty, "ipv6 forwarding is %s\n", "on");
break;
default:
vty_out(vty, "ipv6 forwarding is %s\n", "off");
break;
}
return CMD_SUCCESS;
}
DEFUN (ipv6_forwarding,
ipv6_forwarding_cmd,
"ipv6 forwarding",
IPV6_STR
"Turn on IPv6 forwarding")
{
int ret;
ret = ipforward_ipv6();
if (ret == 0)
ret = ipforward_ipv6_on();
if (ret == 0) {
vty_out(vty, "Can't turn on IPv6 forwarding\n");
return CMD_WARNING_CONFIG_FAILED;
}
return CMD_SUCCESS;
}
DEFUN (no_ipv6_forwarding,
no_ipv6_forwarding_cmd,
"no ipv6 forwarding",
NO_STR
IPV6_STR
"Turn off IPv6 forwarding")
{
int ret;
ret = ipforward_ipv6();
if (ret != 0)
ret = ipforward_ipv6_off();
if (ret != 0) {
vty_out(vty, "Can't turn off IPv6 forwarding\n");
return CMD_WARNING_CONFIG_FAILED;
}
return CMD_SUCCESS;
}
/* IPForwarding configuration write function. */
static int config_write_forwarding(struct vty *vty)
{
/* FIXME: Find better place for that. */
router_id_write(vty);
if (!ipforward())
vty_out(vty, "no ip forwarding\n");
if (!ipforward_ipv6())
vty_out(vty, "no ipv6 forwarding\n");
vty_out(vty, "!\n");
return 0;
}
/* table node for routing tables. */
static struct cmd_node forwarding_node = {FORWARDING_NODE,
"", /* This node has no interface. */
1};
/* Initialisation of zebra and installation of commands. */
void zebra_init(void)
{
/* Client list init. */
zebrad.client_list = list_new();
/* Install configuration write function. */
install_node(&table_node, config_write_table);
install_node(&forwarding_node, config_write_forwarding);
install_element(VIEW_NODE, &show_ip_forwarding_cmd);
install_element(CONFIG_NODE, &ip_forwarding_cmd);
install_element(CONFIG_NODE, &no_ip_forwarding_cmd);
install_element(ENABLE_NODE, &show_zebra_cmd);
install_element(ENABLE_NODE, &show_zebra_client_cmd);
install_element(ENABLE_NODE, &show_zebra_client_summary_cmd);
#ifdef HAVE_NETLINK
install_element(VIEW_NODE, &show_table_cmd);
install_element(CONFIG_NODE, &config_table_cmd);
install_element(CONFIG_NODE, &no_config_table_cmd);
#endif /* HAVE_NETLINK */
install_element(VIEW_NODE, &show_ipv6_forwarding_cmd);
install_element(CONFIG_NODE, &ipv6_forwarding_cmd);
install_element(CONFIG_NODE, &no_ipv6_forwarding_cmd);
/* Route-map */
zebra_route_map_init();
}
/* Make zebra server socket, wiping any existing one (see bug #403). */
void zebra_zserv_socket_init(char *path)
{
#ifdef HAVE_TCP_ZEBRA
zebra_serv();
#else
zebra_serv_un(path ? path : ZEBRA_SERV_PATH);
#endif /* HAVE_TCP_ZEBRA */
}