mirror of
				https://git.proxmox.com/git/mirror_frr
				synced 2025-11-04 08:28:50 +00:00 
			
		
		
		
	Fix ANVL-OSPF-5.1 reported ospfd crash. vertex_nexthop_free was added as valgrind reported potential memory leak, but in some cases nexthop would not be available freed. The actual nexthop free is part of ospf_canonical_nexthops_free(), upon trying to free, qfree checks mtype count becomes 0 and asserts. Removing vertex_nexthop_free() from ospf_spf_flush_parents(). Signed-off-by: Chirag Shah <chirag@cumulusnetworks.com>
		
			
				
	
	
		
			1468 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1468 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* OSPF SPF calculation.
 | 
						|
 * Copyright (C) 1999, 2000 Kunihiro Ishiguro, Toshiaki Takada
 | 
						|
 *
 | 
						|
 * This file is part of GNU Zebra.
 | 
						|
 *
 | 
						|
 * GNU Zebra is free software; you can redistribute it and/or modify it
 | 
						|
 * under the terms of the GNU General Public License as published by the
 | 
						|
 * Free Software Foundation; either version 2, or (at your option) any
 | 
						|
 * later version.
 | 
						|
 *
 | 
						|
 * GNU Zebra is distributed in the hope that it will be useful, but
 | 
						|
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License along
 | 
						|
 * with this program; see the file COPYING; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
#include <zebra.h>
 | 
						|
 | 
						|
#include "monotime.h"
 | 
						|
#include "thread.h"
 | 
						|
#include "memory.h"
 | 
						|
#include "hash.h"
 | 
						|
#include "linklist.h"
 | 
						|
#include "prefix.h"
 | 
						|
#include "if.h"
 | 
						|
#include "table.h"
 | 
						|
#include "log.h"
 | 
						|
#include "sockunion.h" /* for inet_ntop () */
 | 
						|
#include "pqueue.h"
 | 
						|
 | 
						|
#include "ospfd/ospfd.h"
 | 
						|
#include "ospfd/ospf_interface.h"
 | 
						|
#include "ospfd/ospf_ism.h"
 | 
						|
#include "ospfd/ospf_asbr.h"
 | 
						|
#include "ospfd/ospf_lsa.h"
 | 
						|
#include "ospfd/ospf_lsdb.h"
 | 
						|
#include "ospfd/ospf_neighbor.h"
 | 
						|
#include "ospfd/ospf_nsm.h"
 | 
						|
#include "ospfd/ospf_spf.h"
 | 
						|
#include "ospfd/ospf_route.h"
 | 
						|
#include "ospfd/ospf_ia.h"
 | 
						|
#include "ospfd/ospf_ase.h"
 | 
						|
#include "ospfd/ospf_abr.h"
 | 
						|
#include "ospfd/ospf_dump.h"
 | 
						|
 | 
						|
/* Variables to ensure a SPF scheduled log message is printed only once */
 | 
						|
 | 
						|
static unsigned int spf_reason_flags = 0;
 | 
						|
 | 
						|
static void ospf_clear_spf_reason_flags(void)
 | 
						|
{
 | 
						|
	spf_reason_flags = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void ospf_spf_set_reason(ospf_spf_reason_t reason)
 | 
						|
{
 | 
						|
	spf_reason_flags |= 1 << reason;
 | 
						|
}
 | 
						|
 | 
						|
static void ospf_vertex_free(void *);
 | 
						|
/* List of allocated vertices, to simplify cleanup of SPF.
 | 
						|
 * Not thread-safe obviously. If it ever needs to be, it'd have to be
 | 
						|
 * dynamically allocated at begin of ospf_spf_calculate
 | 
						|
 */
 | 
						|
static struct list vertex_list = {.del = ospf_vertex_free};
 | 
						|
 | 
						|
/* Heap related functions, for the managment of the candidates, to
 | 
						|
 * be used with pqueue. */
 | 
						|
static int cmp(void *node1, void *node2)
 | 
						|
{
 | 
						|
	struct vertex *v1 = (struct vertex *)node1;
 | 
						|
	struct vertex *v2 = (struct vertex *)node2;
 | 
						|
	if (v1 != NULL && v2 != NULL) {
 | 
						|
		/* network vertices must be chosen before router vertices of
 | 
						|
		 * same
 | 
						|
		 * cost in order to find all shortest paths
 | 
						|
		 */
 | 
						|
		if (((v1->distance - v2->distance) == 0)
 | 
						|
		    && (v1->type != v2->type)) {
 | 
						|
			switch (v1->type) {
 | 
						|
			case OSPF_VERTEX_NETWORK:
 | 
						|
				return -1;
 | 
						|
			case OSPF_VERTEX_ROUTER:
 | 
						|
				return 1;
 | 
						|
			}
 | 
						|
		} else
 | 
						|
			return (v1->distance - v2->distance);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void update_stat(void *node, int position)
 | 
						|
{
 | 
						|
	struct vertex *v = node;
 | 
						|
 | 
						|
	/* Set the status of the vertex, when its position changes. */
 | 
						|
	*(v->stat) = position;
 | 
						|
}
 | 
						|
 | 
						|
static struct vertex_nexthop *vertex_nexthop_new(void)
 | 
						|
{
 | 
						|
	return XCALLOC(MTYPE_OSPF_NEXTHOP, sizeof(struct vertex_nexthop));
 | 
						|
}
 | 
						|
 | 
						|
static void vertex_nexthop_free(struct vertex_nexthop *nh)
 | 
						|
{
 | 
						|
	XFREE(MTYPE_OSPF_NEXTHOP, nh);
 | 
						|
}
 | 
						|
 | 
						|
/* Free the canonical nexthop objects for an area, ie the nexthop objects
 | 
						|
 * attached to the first-hop router vertices, and any intervening network
 | 
						|
 * vertices.
 | 
						|
 */
 | 
						|
static void ospf_canonical_nexthops_free(struct vertex *root)
 | 
						|
{
 | 
						|
	struct listnode *node, *nnode;
 | 
						|
	struct vertex *child;
 | 
						|
 | 
						|
	for (ALL_LIST_ELEMENTS(root->children, node, nnode, child)) {
 | 
						|
		struct listnode *n2, *nn2;
 | 
						|
		struct vertex_parent *vp;
 | 
						|
 | 
						|
		/* router vertices through an attached network each
 | 
						|
		 * have a distinct (canonical / not inherited) nexthop
 | 
						|
		 * which must be freed.
 | 
						|
		 *
 | 
						|
		 * A network vertex can only have router vertices as its
 | 
						|
		 * children, so only one level of recursion is possible.
 | 
						|
		 */
 | 
						|
		if (child->type == OSPF_VERTEX_NETWORK)
 | 
						|
			ospf_canonical_nexthops_free(child);
 | 
						|
 | 
						|
		/* Free child nexthops pointing back to this root vertex */
 | 
						|
		for (ALL_LIST_ELEMENTS(child->parents, n2, nn2, vp))
 | 
						|
			if (vp->parent == root && vp->nexthop) {
 | 
						|
				vertex_nexthop_free(vp->nexthop);
 | 
						|
				vp->nexthop = NULL;
 | 
						|
			}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* TODO: Parent list should be excised, in favour of maintaining only
 | 
						|
 * vertex_nexthop, with refcounts.
 | 
						|
 */
 | 
						|
static struct vertex_parent *vertex_parent_new(struct vertex *v, int backlink,
 | 
						|
					       struct vertex_nexthop *hop)
 | 
						|
{
 | 
						|
	struct vertex_parent *new;
 | 
						|
 | 
						|
	new = XMALLOC(MTYPE_OSPF_VERTEX_PARENT, sizeof(struct vertex_parent));
 | 
						|
 | 
						|
	if (new == NULL)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	new->parent = v;
 | 
						|
	new->backlink = backlink;
 | 
						|
	new->nexthop = hop;
 | 
						|
	return new;
 | 
						|
}
 | 
						|
 | 
						|
static void vertex_parent_free(void *p)
 | 
						|
{
 | 
						|
	XFREE(MTYPE_OSPF_VERTEX_PARENT, p);
 | 
						|
}
 | 
						|
 | 
						|
static struct vertex *ospf_vertex_new(struct ospf_lsa *lsa)
 | 
						|
{
 | 
						|
	struct vertex *new;
 | 
						|
 | 
						|
	new = XCALLOC(MTYPE_OSPF_VERTEX, sizeof(struct vertex));
 | 
						|
 | 
						|
	new->flags = 0;
 | 
						|
	new->stat = &(lsa->stat);
 | 
						|
	new->type = lsa->data->type;
 | 
						|
	new->id = lsa->data->id;
 | 
						|
	new->lsa = lsa->data;
 | 
						|
	new->children = list_new();
 | 
						|
	new->parents = list_new();
 | 
						|
	new->parents->del = vertex_parent_free;
 | 
						|
 | 
						|
	listnode_add(&vertex_list, new);
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("%s: Created %s vertex %s", __func__,
 | 
						|
			   new->type == OSPF_VERTEX_ROUTER ? "Router"
 | 
						|
							   : "Network",
 | 
						|
			   inet_ntoa(new->lsa->id));
 | 
						|
	return new;
 | 
						|
}
 | 
						|
 | 
						|
static void ospf_vertex_free(void *data)
 | 
						|
{
 | 
						|
	struct vertex *v = data;
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("%s: Free %s vertex %s", __func__,
 | 
						|
			   v->type == OSPF_VERTEX_ROUTER ? "Router" : "Network",
 | 
						|
			   inet_ntoa(v->lsa->id));
 | 
						|
 | 
						|
	/* There should be no parents potentially holding references to this
 | 
						|
	 * vertex
 | 
						|
	 * Children however may still be there, but presumably referenced by
 | 
						|
	 * other
 | 
						|
	 * vertices
 | 
						|
	 */
 | 
						|
	// assert (listcount (v->parents) == 0);
 | 
						|
 | 
						|
	if (v->children)
 | 
						|
		list_delete(v->children);
 | 
						|
	v->children = NULL;
 | 
						|
 | 
						|
	if (v->parents)
 | 
						|
		list_delete(v->parents);
 | 
						|
	v->parents = NULL;
 | 
						|
 | 
						|
	v->lsa = NULL;
 | 
						|
 | 
						|
	XFREE(MTYPE_OSPF_VERTEX, v);
 | 
						|
}
 | 
						|
 | 
						|
static void ospf_vertex_dump(const char *msg, struct vertex *v,
 | 
						|
			     int print_parents, int print_children)
 | 
						|
{
 | 
						|
	if (!IS_DEBUG_OSPF_EVENT)
 | 
						|
		return;
 | 
						|
 | 
						|
	zlog_debug("%s %s vertex %s  distance %u flags %u", msg,
 | 
						|
		   v->type == OSPF_VERTEX_ROUTER ? "Router" : "Network",
 | 
						|
		   inet_ntoa(v->lsa->id), v->distance, (unsigned int)v->flags);
 | 
						|
 | 
						|
	if (print_parents) {
 | 
						|
		struct listnode *node;
 | 
						|
		struct vertex_parent *vp;
 | 
						|
 | 
						|
		for (ALL_LIST_ELEMENTS_RO(v->parents, node, vp)) {
 | 
						|
			char buf1[BUFSIZ];
 | 
						|
 | 
						|
			if (vp) {
 | 
						|
				zlog_debug(
 | 
						|
					"parent %s backlink %d nexthop %s  interface %s",
 | 
						|
					inet_ntoa(vp->parent->lsa->id),
 | 
						|
					vp->backlink,
 | 
						|
					inet_ntop(AF_INET, &vp->nexthop->router,
 | 
						|
						  buf1, BUFSIZ),
 | 
						|
					vp->nexthop->oi
 | 
						|
						? IF_NAME(vp->nexthop->oi)
 | 
						|
						: "NULL");
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (print_children) {
 | 
						|
		struct listnode *cnode;
 | 
						|
		struct vertex *cv;
 | 
						|
 | 
						|
		for (ALL_LIST_ELEMENTS_RO(v->children, cnode, cv))
 | 
						|
			ospf_vertex_dump(" child:", cv, 0, 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Add a vertex to the list of children in each of its parents. */
 | 
						|
static void ospf_vertex_add_parent(struct vertex *v)
 | 
						|
{
 | 
						|
	struct vertex_parent *vp;
 | 
						|
	struct listnode *node;
 | 
						|
 | 
						|
	assert(v && v->parents);
 | 
						|
 | 
						|
	for (ALL_LIST_ELEMENTS_RO(v->parents, node, vp)) {
 | 
						|
		assert(vp->parent && vp->parent->children);
 | 
						|
 | 
						|
		/* No need to add two links from the same parent. */
 | 
						|
		if (listnode_lookup(vp->parent->children, v) == NULL)
 | 
						|
			listnode_add(vp->parent->children, v);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void ospf_spf_init(struct ospf_area *area)
 | 
						|
{
 | 
						|
	struct vertex *v;
 | 
						|
 | 
						|
	/* Create root node. */
 | 
						|
	v = ospf_vertex_new(area->router_lsa_self);
 | 
						|
 | 
						|
	area->spf = v;
 | 
						|
 | 
						|
	/* Reset ABR and ASBR router counts. */
 | 
						|
	area->abr_count = 0;
 | 
						|
	area->asbr_count = 0;
 | 
						|
}
 | 
						|
 | 
						|
/* return index of link back to V from W, or -1 if no link found */
 | 
						|
static int ospf_lsa_has_link(struct lsa_header *w, struct lsa_header *v)
 | 
						|
{
 | 
						|
	unsigned int i, length;
 | 
						|
	struct router_lsa *rl;
 | 
						|
	struct network_lsa *nl;
 | 
						|
 | 
						|
	/* In case of W is Network LSA. */
 | 
						|
	if (w->type == OSPF_NETWORK_LSA) {
 | 
						|
		if (v->type == OSPF_NETWORK_LSA)
 | 
						|
			return -1;
 | 
						|
 | 
						|
		nl = (struct network_lsa *)w;
 | 
						|
		length = (ntohs(w->length) - OSPF_LSA_HEADER_SIZE - 4) / 4;
 | 
						|
 | 
						|
		for (i = 0; i < length; i++)
 | 
						|
			if (IPV4_ADDR_SAME(&nl->routers[i], &v->id))
 | 
						|
				return i;
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* In case of W is Router LSA. */
 | 
						|
	if (w->type == OSPF_ROUTER_LSA) {
 | 
						|
		rl = (struct router_lsa *)w;
 | 
						|
 | 
						|
		length = ntohs(w->length);
 | 
						|
 | 
						|
		for (i = 0; i < ntohs(rl->links)
 | 
						|
			    && length >= sizeof(struct router_lsa);
 | 
						|
		     i++, length -= 12) {
 | 
						|
			switch (rl->link[i].type) {
 | 
						|
			case LSA_LINK_TYPE_POINTOPOINT:
 | 
						|
			case LSA_LINK_TYPE_VIRTUALLINK:
 | 
						|
				/* Router LSA ID. */
 | 
						|
				if (v->type == OSPF_ROUTER_LSA
 | 
						|
				    && IPV4_ADDR_SAME(&rl->link[i].link_id,
 | 
						|
						      &v->id)) {
 | 
						|
					return i;
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case LSA_LINK_TYPE_TRANSIT:
 | 
						|
				/* Network LSA ID. */
 | 
						|
				if (v->type == OSPF_NETWORK_LSA
 | 
						|
				    && IPV4_ADDR_SAME(&rl->link[i].link_id,
 | 
						|
						      &v->id)) {
 | 
						|
					return i;
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case LSA_LINK_TYPE_STUB:
 | 
						|
				/* Stub can't lead anywhere, carry on */
 | 
						|
				continue;
 | 
						|
			default:
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/* Find the next link after prev_link from v to w.  If prev_link is
 | 
						|
 * NULL, return the first link from v to w.  Ignore stub and virtual links;
 | 
						|
 * these link types will never be returned.
 | 
						|
 */
 | 
						|
static struct router_lsa_link *
 | 
						|
ospf_get_next_link(struct vertex *v, struct vertex *w,
 | 
						|
		   struct router_lsa_link *prev_link)
 | 
						|
{
 | 
						|
	u_char *p;
 | 
						|
	u_char *lim;
 | 
						|
	u_char lsa_type = LSA_LINK_TYPE_TRANSIT;
 | 
						|
	struct router_lsa_link *l;
 | 
						|
 | 
						|
	if (w->type == OSPF_VERTEX_ROUTER)
 | 
						|
		lsa_type = LSA_LINK_TYPE_POINTOPOINT;
 | 
						|
 | 
						|
	if (prev_link == NULL)
 | 
						|
		p = ((u_char *)v->lsa) + OSPF_LSA_HEADER_SIZE + 4;
 | 
						|
	else {
 | 
						|
		p = (u_char *)prev_link;
 | 
						|
		p += (OSPF_ROUTER_LSA_LINK_SIZE
 | 
						|
		      + (prev_link->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));
 | 
						|
	}
 | 
						|
 | 
						|
	lim = ((u_char *)v->lsa) + ntohs(v->lsa->length);
 | 
						|
 | 
						|
	while (p < lim) {
 | 
						|
		l = (struct router_lsa_link *)p;
 | 
						|
 | 
						|
		p += (OSPF_ROUTER_LSA_LINK_SIZE
 | 
						|
		      + (l->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));
 | 
						|
 | 
						|
		if (l->m[0].type != lsa_type)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (IPV4_ADDR_SAME(&l->link_id, &w->id))
 | 
						|
			return l;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void ospf_spf_flush_parents(struct vertex *w)
 | 
						|
{
 | 
						|
	struct vertex_parent *vp;
 | 
						|
	struct listnode *ln, *nn;
 | 
						|
 | 
						|
	/* delete the existing nexthops */
 | 
						|
	for (ALL_LIST_ELEMENTS(w->parents, ln, nn, vp)) {
 | 
						|
		list_delete_node(w->parents, ln);
 | 
						|
		vertex_parent_free(vp);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Consider supplied next-hop for inclusion to the supplied list of
 | 
						|
 * equal-cost next-hops, adjust list as neccessary.
 | 
						|
 */
 | 
						|
static void ospf_spf_add_parent(struct vertex *v, struct vertex *w,
 | 
						|
				struct vertex_nexthop *newhop,
 | 
						|
				unsigned int distance)
 | 
						|
{
 | 
						|
	struct vertex_parent *vp, *wp;
 | 
						|
	struct listnode *node;
 | 
						|
 | 
						|
	/* we must have a newhop, and a distance */
 | 
						|
	assert(v && w && newhop);
 | 
						|
	assert(distance);
 | 
						|
 | 
						|
	/* IFF w has already been assigned a distance, then we shouldn't get
 | 
						|
	 * here
 | 
						|
	 * unless callers have determined V(l)->W is shortest / equal-shortest
 | 
						|
	 * path (0 is a special case distance (no distance yet assigned)).
 | 
						|
	 */
 | 
						|
	if (w->distance)
 | 
						|
		assert(distance <= w->distance);
 | 
						|
	else
 | 
						|
		w->distance = distance;
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT) {
 | 
						|
		char buf[2][INET_ADDRSTRLEN];
 | 
						|
		zlog_debug(
 | 
						|
			"%s: Adding %s as parent of %s", __func__,
 | 
						|
			inet_ntop(AF_INET, &v->lsa->id, buf[0], sizeof(buf[0])),
 | 
						|
			inet_ntop(AF_INET, &w->lsa->id, buf[1],
 | 
						|
				  sizeof(buf[1])));
 | 
						|
	}
 | 
						|
 | 
						|
	/* Adding parent for a new, better path: flush existing parents from W.
 | 
						|
	 */
 | 
						|
	if (distance < w->distance) {
 | 
						|
		if (IS_DEBUG_OSPF_EVENT)
 | 
						|
			zlog_debug(
 | 
						|
				"%s: distance %d better than %d, flushing existing parents",
 | 
						|
				__func__, distance, w->distance);
 | 
						|
		ospf_spf_flush_parents(w);
 | 
						|
		w->distance = distance;
 | 
						|
	}
 | 
						|
 | 
						|
	/* new parent is <= existing parents, add it to parent list (if nexthop
 | 
						|
	 * not on parent list)
 | 
						|
	 */
 | 
						|
	for (ALL_LIST_ELEMENTS_RO(w->parents, node, wp)) {
 | 
						|
		if (memcmp(newhop, wp->nexthop, sizeof(*newhop)) == 0) {
 | 
						|
			if (IS_DEBUG_OSPF_EVENT)
 | 
						|
				zlog_debug(
 | 
						|
					"%s: ... nexthop already on parent list, skipping add",
 | 
						|
					__func__);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	vp = vertex_parent_new(v, ospf_lsa_has_link(w->lsa, v->lsa), newhop);
 | 
						|
	listnode_add(w->parents, vp);
 | 
						|
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
/* 16.1.1.  Calculate nexthop from root through V (parent) to
 | 
						|
 * vertex W (destination), with given distance from root->W.
 | 
						|
 *
 | 
						|
 * The link must be supplied if V is the root vertex. In all other cases
 | 
						|
 * it may be NULL.
 | 
						|
 *
 | 
						|
 * Note that this function may fail, hence the state of the destination
 | 
						|
 * vertex, W, should /not/ be modified in a dependent manner until
 | 
						|
 * this function returns. This function will update the W vertex with the
 | 
						|
 * provided distance as appropriate.
 | 
						|
 */
 | 
						|
static unsigned int ospf_nexthop_calculation(struct ospf_area *area,
 | 
						|
					     struct vertex *v, struct vertex *w,
 | 
						|
					     struct router_lsa_link *l,
 | 
						|
					     unsigned int distance, int lsa_pos)
 | 
						|
{
 | 
						|
	struct listnode *node, *nnode;
 | 
						|
	struct vertex_nexthop *nh;
 | 
						|
	struct vertex_parent *vp;
 | 
						|
	struct ospf_interface *oi = NULL;
 | 
						|
	unsigned int added = 0;
 | 
						|
	char buf1[BUFSIZ];
 | 
						|
	char buf2[BUFSIZ];
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT) {
 | 
						|
		zlog_debug("ospf_nexthop_calculation(): Start");
 | 
						|
		ospf_vertex_dump("V (parent):", v, 1, 1);
 | 
						|
		ospf_vertex_dump("W (dest)  :", w, 1, 1);
 | 
						|
		zlog_debug("V->W distance: %d", distance);
 | 
						|
	}
 | 
						|
 | 
						|
	if (v == area->spf) {
 | 
						|
		/* 16.1.1 para 4.  In the first case, the parent vertex (V) is
 | 
						|
		   the
 | 
						|
		   root (the calculating router itself).  This means that the
 | 
						|
		   destination is either a directly connected network or
 | 
						|
		   directly
 | 
						|
		   connected router.  The outgoing interface in this case is
 | 
						|
		   simply
 | 
						|
		   the OSPF interface connecting to the destination
 | 
						|
		   network/router.
 | 
						|
		*/
 | 
						|
 | 
						|
		/* we *must* be supplied with the link data */
 | 
						|
		assert(l != NULL);
 | 
						|
		oi = ospf_if_lookup_by_lsa_pos(area, lsa_pos);
 | 
						|
		if (!oi) {
 | 
						|
			zlog_debug(
 | 
						|
				"%s: OI not found in LSA: lsa_pos:%d link_id:%s link_data:%s",
 | 
						|
				__func__, lsa_pos,
 | 
						|
				inet_ntop(AF_INET, &l->link_id, buf1, BUFSIZ),
 | 
						|
				inet_ntop(AF_INET, &l->link_data, buf2,
 | 
						|
					  BUFSIZ));
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
 | 
						|
		if (IS_DEBUG_OSPF_EVENT) {
 | 
						|
			zlog_debug(
 | 
						|
				"%s: considering link:%s "
 | 
						|
				"type:%d link_id:%s link_data:%s",
 | 
						|
				__func__, oi->ifp->name, l->m[0].type,
 | 
						|
				inet_ntop(AF_INET, &l->link_id, buf1, BUFSIZ),
 | 
						|
				inet_ntop(AF_INET, &l->link_data, buf2,
 | 
						|
					  BUFSIZ));
 | 
						|
		}
 | 
						|
 | 
						|
		if (w->type == OSPF_VERTEX_ROUTER) {
 | 
						|
			/* l  is a link from v to w
 | 
						|
			 * l2 will be link from w to v
 | 
						|
			 */
 | 
						|
			struct router_lsa_link *l2 = NULL;
 | 
						|
 | 
						|
			if (l->m[0].type == LSA_LINK_TYPE_POINTOPOINT) {
 | 
						|
				struct in_addr nexthop = {.s_addr = 0};
 | 
						|
 | 
						|
				/* If the destination is a router which connects
 | 
						|
				   to
 | 
						|
				   the calculating router via a
 | 
						|
				   Point-to-MultiPoint
 | 
						|
				   network, the destination's next hop IP
 | 
						|
				   address(es)
 | 
						|
				   can be determined by examining the
 | 
						|
				   destination's
 | 
						|
				   router-LSA: each link pointing back to the
 | 
						|
				   calculating router and having a Link Data
 | 
						|
				   field
 | 
						|
				   belonging to the Point-to-MultiPoint network
 | 
						|
				   provides an IP address of the next hop
 | 
						|
				   router.
 | 
						|
 | 
						|
				   At this point l is a link from V to W, and V
 | 
						|
				   is the
 | 
						|
				   root ("us"). If it is a point-to-multipoint
 | 
						|
				   interface,
 | 
						|
				   then look through the links in the opposite
 | 
						|
				   direction (W to V).
 | 
						|
				   If any of them have an address that lands
 | 
						|
				   within the
 | 
						|
				   subnet declared by the PtMP link, then that
 | 
						|
				   link
 | 
						|
				   is a constituent of the PtMP link, and its
 | 
						|
				   address is
 | 
						|
				   a nexthop address for V.
 | 
						|
				*/
 | 
						|
				if (oi->type == OSPF_IFTYPE_POINTOPOINT) {
 | 
						|
					/* Having nexthop = 0 is tempting, but
 | 
						|
					   NOT acceptable.
 | 
						|
					   It breaks AS-External routes with a
 | 
						|
					   forwarding address,
 | 
						|
					   since
 | 
						|
					   ospf_ase_complete_direct_routes()
 | 
						|
					   will mistakenly
 | 
						|
					   assume we've reached the last hop and
 | 
						|
					   should place the
 | 
						|
					   forwarding address as nexthop.
 | 
						|
					   Also, users may configure
 | 
						|
					   multi-access links in p2p mode,
 | 
						|
					   so we need the IP to ARP the nexthop.
 | 
						|
					*/
 | 
						|
					struct ospf_neighbor *nbr_w;
 | 
						|
 | 
						|
					nbr_w = ospf_nbr_lookup_by_routerid(
 | 
						|
						oi->nbrs, &l->link_id);
 | 
						|
					if (nbr_w != NULL) {
 | 
						|
						added = 1;
 | 
						|
						nexthop = nbr_w->src;
 | 
						|
					}
 | 
						|
				} else if (oi->type
 | 
						|
					   == OSPF_IFTYPE_POINTOMULTIPOINT) {
 | 
						|
					struct prefix_ipv4 la;
 | 
						|
 | 
						|
					la.family = AF_INET;
 | 
						|
					la.prefixlen = oi->address->prefixlen;
 | 
						|
 | 
						|
					/* V links to W on PtMP interface
 | 
						|
					   - find the interface address on W */
 | 
						|
					while ((l2 = ospf_get_next_link(w, v,
 | 
						|
									l2))) {
 | 
						|
						la.prefix = l2->link_data;
 | 
						|
 | 
						|
						if (prefix_cmp((struct prefix
 | 
						|
									*)&la,
 | 
						|
							       oi->address)
 | 
						|
						    != 0)
 | 
						|
							continue;
 | 
						|
						/* link_data is on our PtMP
 | 
						|
						 * network */
 | 
						|
						added = 1;
 | 
						|
						nexthop = l2->link_data;
 | 
						|
						break;
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				if (added) {
 | 
						|
					/* found all necessary info to build
 | 
						|
					 * nexthop */
 | 
						|
					nh = vertex_nexthop_new();
 | 
						|
					nh->oi = oi;
 | 
						|
					nh->router = nexthop;
 | 
						|
					ospf_spf_add_parent(v, w, nh, distance);
 | 
						|
					return 1;
 | 
						|
				} else
 | 
						|
					zlog_info(
 | 
						|
						"%s: could not determine nexthop for link %s",
 | 
						|
						__func__, oi->ifp->name);
 | 
						|
			} /* end point-to-point link from V to W */
 | 
						|
			else if (l->m[0].type == LSA_LINK_TYPE_VIRTUALLINK) {
 | 
						|
				struct ospf_vl_data *vl_data;
 | 
						|
 | 
						|
				/* VLink implementation limitations:
 | 
						|
				 * a) vl_data can only reference one nexthop, so
 | 
						|
				 * no ECMP
 | 
						|
				 *    to backbone through VLinks. Though
 | 
						|
				 * transit-area
 | 
						|
				 *    summaries may be considered, and those can
 | 
						|
				 * be ECMP.
 | 
						|
				 * b) We can only use /one/ VLink, even if
 | 
						|
				 * multiple ones
 | 
						|
				 *    exist this router through multiple
 | 
						|
				 * transit-areas.
 | 
						|
				 */
 | 
						|
				vl_data = ospf_vl_lookup(area->ospf, NULL,
 | 
						|
							 l->link_id);
 | 
						|
 | 
						|
				if (vl_data
 | 
						|
				    && CHECK_FLAG(vl_data->flags,
 | 
						|
						  OSPF_VL_FLAG_APPROVED)) {
 | 
						|
					nh = vertex_nexthop_new();
 | 
						|
					nh->oi = vl_data->nexthop.oi;
 | 
						|
					nh->router = vl_data->nexthop.router;
 | 
						|
					ospf_spf_add_parent(v, w, nh, distance);
 | 
						|
					return 1;
 | 
						|
				} else
 | 
						|
					zlog_info(
 | 
						|
						"ospf_nexthop_calculation(): "
 | 
						|
						"vl_data for VL link not found");
 | 
						|
			} /* end virtual-link from V to W */
 | 
						|
			return 0;
 | 
						|
		} /* end W is a Router vertex */
 | 
						|
		else {
 | 
						|
			assert(w->type == OSPF_VERTEX_NETWORK);
 | 
						|
 | 
						|
			nh = vertex_nexthop_new();
 | 
						|
			nh->oi = oi;
 | 
						|
			nh->router.s_addr = 0; /* Nexthop not required */
 | 
						|
			ospf_spf_add_parent(v, w, nh, distance);
 | 
						|
			return 1;
 | 
						|
		}
 | 
						|
	} /* end V is the root */
 | 
						|
	/* Check if W's parent is a network connected to root. */
 | 
						|
	else if (v->type == OSPF_VERTEX_NETWORK) {
 | 
						|
		/* See if any of V's parents are the root. */
 | 
						|
		for (ALL_LIST_ELEMENTS(v->parents, node, nnode, vp)) {
 | 
						|
			if (vp->parent == area->spf) /* connects to root? */
 | 
						|
			{
 | 
						|
				/* 16.1.1 para 5. ...the parent vertex is a
 | 
						|
				 * network that
 | 
						|
				 * directly connects the calculating router to
 | 
						|
				 * the destination
 | 
						|
				 * router.  The list of next hops is then
 | 
						|
				 * determined by
 | 
						|
				 * examining the destination's router-LSA...
 | 
						|
				 */
 | 
						|
 | 
						|
				assert(w->type == OSPF_VERTEX_ROUTER);
 | 
						|
				while ((l = ospf_get_next_link(w, v, l))) {
 | 
						|
					/* ...For each link in the router-LSA
 | 
						|
					 * that points back to the
 | 
						|
					 * parent network, the link's Link Data
 | 
						|
					 * field provides the IP
 | 
						|
					 * address of a next hop router.  The
 | 
						|
					 * outgoing interface to
 | 
						|
					 * use can then be derived from the next
 | 
						|
					 * hop IP address (or
 | 
						|
					 * it can be inherited from the parent
 | 
						|
					 * network).
 | 
						|
					 */
 | 
						|
					nh = vertex_nexthop_new();
 | 
						|
					nh->oi = vp->nexthop->oi;
 | 
						|
					nh->router = l->link_data;
 | 
						|
					added = 1;
 | 
						|
					ospf_spf_add_parent(v, w, nh, distance);
 | 
						|
				}
 | 
						|
				/* Note lack of return is deliberate. See next
 | 
						|
				 * comment. */
 | 
						|
			}
 | 
						|
		}
 | 
						|
		/* NB: This code is non-trivial.
 | 
						|
		 *
 | 
						|
		 * E.g. it is not enough to know that V connects to the root. It
 | 
						|
		 * is
 | 
						|
		 * also important that the while above, looping through all
 | 
						|
		 * links from
 | 
						|
		 * W->V found at least one link, so that we know there is
 | 
						|
		 * bi-directional connectivity between V and W (which need not
 | 
						|
		 * be the
 | 
						|
		 * case, e.g.  when OSPF has not yet converged fully).
 | 
						|
		 * Otherwise, if
 | 
						|
		 * we /always/ return here, without having checked that
 | 
						|
		 * root->V->-W
 | 
						|
		 * actually resulted in a valid nexthop being created, then we
 | 
						|
		 * we will
 | 
						|
		 * prevent SPF from finding/using higher cost paths.
 | 
						|
		 *
 | 
						|
		 * It is important, if root->V->W has not been added, that we
 | 
						|
		 * continue
 | 
						|
		 * through to the intervening-router nexthop code below.  So as
 | 
						|
		 * to
 | 
						|
		 * ensure other paths to V may be used.  This avoids unnecessary
 | 
						|
		 * blackholes while OSPF is convergening.
 | 
						|
		 *
 | 
						|
		 * I.e. we may have arrived at this function, examining V -> W,
 | 
						|
		 * via
 | 
						|
		 * workable paths other than root -> V, and it's important to
 | 
						|
		 * avoid
 | 
						|
		 * getting "confused" by non-working root->V->W path - it's
 | 
						|
		 * important
 | 
						|
		 * to *not* lose the working non-root paths, just because of a
 | 
						|
		 * non-viable root->V->W.
 | 
						|
		 *
 | 
						|
		 * See also bug #330 (required reading!), and:
 | 
						|
		 *
 | 
						|
		 * http://blogs.oracle.com/paulj/entry/the_difference_a_line_makes
 | 
						|
		 */
 | 
						|
		if (added)
 | 
						|
			return added;
 | 
						|
	}
 | 
						|
 | 
						|
	/* 16.1.1 para 4.  If there is at least one intervening router in the
 | 
						|
	 * current shortest path between the destination and the root, the
 | 
						|
	 * destination simply inherits the set of next hops from the
 | 
						|
	 * parent.
 | 
						|
	 */
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("%s: Intervening routers, adding parent(s)",
 | 
						|
			   __func__);
 | 
						|
 | 
						|
	for (ALL_LIST_ELEMENTS(v->parents, node, nnode, vp)) {
 | 
						|
		added = 1;
 | 
						|
		ospf_spf_add_parent(v, w, vp->nexthop, distance);
 | 
						|
	}
 | 
						|
 | 
						|
	return added;
 | 
						|
}
 | 
						|
 | 
						|
/* RFC2328 Section 16.1 (2).
 | 
						|
 * v is on the SPF tree.  Examine the links in v's LSA.  Update the list
 | 
						|
 * of candidates with any vertices not already on the list.  If a lower-cost
 | 
						|
 * path is found to a vertex already on the candidate list, store the new cost.
 | 
						|
 */
 | 
						|
static void ospf_spf_next(struct vertex *v, struct ospf_area *area,
 | 
						|
			  struct pqueue *candidate)
 | 
						|
{
 | 
						|
	struct ospf_lsa *w_lsa = NULL;
 | 
						|
	u_char *p;
 | 
						|
	u_char *lim;
 | 
						|
	struct router_lsa_link *l = NULL;
 | 
						|
	struct in_addr *r;
 | 
						|
	int type = 0, lsa_pos = -1, lsa_pos_next = 0;
 | 
						|
 | 
						|
	/* If this is a router-LSA, and bit V of the router-LSA (see Section
 | 
						|
	   A.4.2:RFC2328) is set, set Area A's TransitCapability to TRUE.  */
 | 
						|
	if (v->type == OSPF_VERTEX_ROUTER) {
 | 
						|
		if (IS_ROUTER_LSA_VIRTUAL((struct router_lsa *)v->lsa))
 | 
						|
			area->transit = OSPF_TRANSIT_TRUE;
 | 
						|
	}
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("%s: Next vertex of %s vertex %s", __func__,
 | 
						|
			   v->type == OSPF_VERTEX_ROUTER ? "Router" : "Network",
 | 
						|
			   inet_ntoa(v->lsa->id));
 | 
						|
 | 
						|
	p = ((u_char *)v->lsa) + OSPF_LSA_HEADER_SIZE + 4;
 | 
						|
	lim = ((u_char *)v->lsa) + ntohs(v->lsa->length);
 | 
						|
 | 
						|
	while (p < lim) {
 | 
						|
		struct vertex *w;
 | 
						|
		unsigned int distance;
 | 
						|
 | 
						|
		/* In case of V is Router-LSA. */
 | 
						|
		if (v->lsa->type == OSPF_ROUTER_LSA) {
 | 
						|
			l = (struct router_lsa_link *)p;
 | 
						|
 | 
						|
			lsa_pos = lsa_pos_next; /* LSA link position */
 | 
						|
			lsa_pos_next++;
 | 
						|
			p += (OSPF_ROUTER_LSA_LINK_SIZE
 | 
						|
			      + (l->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));
 | 
						|
 | 
						|
			/* (a) If this is a link to a stub network, examine the
 | 
						|
			   next
 | 
						|
			   link in V's LSA.  Links to stub networks will be
 | 
						|
			   considered in the second stage of the shortest path
 | 
						|
			   calculation. */
 | 
						|
			if ((type = l->m[0].type) == LSA_LINK_TYPE_STUB)
 | 
						|
				continue;
 | 
						|
 | 
						|
			/* (b) Otherwise, W is a transit vertex (router or
 | 
						|
			   transit
 | 
						|
			   network).  Look up the vertex W's LSA (router-LSA or
 | 
						|
			   network-LSA) in Area A's link state database. */
 | 
						|
			switch (type) {
 | 
						|
			case LSA_LINK_TYPE_POINTOPOINT:
 | 
						|
			case LSA_LINK_TYPE_VIRTUALLINK:
 | 
						|
				if (type == LSA_LINK_TYPE_VIRTUALLINK) {
 | 
						|
					if (IS_DEBUG_OSPF_EVENT)
 | 
						|
						zlog_debug(
 | 
						|
							"looking up LSA through VL: %s",
 | 
						|
							inet_ntoa(l->link_id));
 | 
						|
				}
 | 
						|
 | 
						|
				w_lsa = ospf_lsa_lookup(area, OSPF_ROUTER_LSA,
 | 
						|
							l->link_id, l->link_id);
 | 
						|
				if (w_lsa) {
 | 
						|
					if (IS_DEBUG_OSPF_EVENT)
 | 
						|
						zlog_debug(
 | 
						|
							"found Router LSA %s",
 | 
						|
							inet_ntoa(l->link_id));
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case LSA_LINK_TYPE_TRANSIT:
 | 
						|
				if (IS_DEBUG_OSPF_EVENT)
 | 
						|
					zlog_debug(
 | 
						|
						"Looking up Network LSA, ID: %s",
 | 
						|
						inet_ntoa(l->link_id));
 | 
						|
				w_lsa = ospf_lsa_lookup_by_id(
 | 
						|
					area, OSPF_NETWORK_LSA, l->link_id);
 | 
						|
				if (w_lsa)
 | 
						|
					if (IS_DEBUG_OSPF_EVENT)
 | 
						|
						zlog_debug("found the LSA");
 | 
						|
				break;
 | 
						|
			default:
 | 
						|
				zlog_warn("Invalid LSA link type %d", type);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			/* In case of V is Network-LSA. */
 | 
						|
			r = (struct in_addr *)p;
 | 
						|
			p += sizeof(struct in_addr);
 | 
						|
 | 
						|
			/* Lookup the vertex W's LSA. */
 | 
						|
			w_lsa = ospf_lsa_lookup_by_id(area, OSPF_ROUTER_LSA,
 | 
						|
						      *r);
 | 
						|
			if (w_lsa) {
 | 
						|
				if (IS_DEBUG_OSPF_EVENT)
 | 
						|
					zlog_debug("found Router LSA %s",
 | 
						|
						   inet_ntoa(w_lsa->data->id));
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* (b cont.) If the LSA does not exist, or its LS age is equal
 | 
						|
		   to MaxAge, or it does not have a link back to vertex V,
 | 
						|
		   examine the next link in V's LSA.[23] */
 | 
						|
		if (w_lsa == NULL) {
 | 
						|
			if (IS_DEBUG_OSPF_EVENT)
 | 
						|
				zlog_debug("No LSA found");
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (IS_LSA_MAXAGE(w_lsa)) {
 | 
						|
			if (IS_DEBUG_OSPF_EVENT)
 | 
						|
				zlog_debug("LSA is MaxAge");
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (ospf_lsa_has_link(w_lsa->data, v->lsa) < 0) {
 | 
						|
			if (IS_DEBUG_OSPF_EVENT)
 | 
						|
				zlog_debug("The LSA doesn't have a link back");
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* (c) If vertex W is already on the shortest-path tree, examine
 | 
						|
		   the next link in the LSA. */
 | 
						|
		if (w_lsa->stat == LSA_SPF_IN_SPFTREE) {
 | 
						|
			if (IS_DEBUG_OSPF_EVENT)
 | 
						|
				zlog_debug("The LSA is already in SPF");
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* (d) Calculate the link state cost D of the resulting path
 | 
						|
		   from the root to vertex W.  D is equal to the sum of the link
 | 
						|
		   state cost of the (already calculated) shortest path to
 | 
						|
		   vertex V and the advertised cost of the link between vertices
 | 
						|
		   V and W.  If D is: */
 | 
						|
 | 
						|
		/* calculate link cost D. */
 | 
						|
		if (v->lsa->type == OSPF_ROUTER_LSA)
 | 
						|
			distance = v->distance + ntohs(l->m[0].metric);
 | 
						|
		else /* v is not a Router-LSA */
 | 
						|
			distance = v->distance;
 | 
						|
 | 
						|
		/* Is there already vertex W in candidate list? */
 | 
						|
		if (w_lsa->stat == LSA_SPF_NOT_EXPLORED) {
 | 
						|
			/* prepare vertex W. */
 | 
						|
			w = ospf_vertex_new(w_lsa);
 | 
						|
 | 
						|
			/* Calculate nexthop to W. */
 | 
						|
			if (ospf_nexthop_calculation(area, v, w, l, distance,
 | 
						|
						     lsa_pos))
 | 
						|
				pqueue_enqueue(w, candidate);
 | 
						|
			else if (IS_DEBUG_OSPF_EVENT)
 | 
						|
				zlog_debug("Nexthop Calc failed");
 | 
						|
		} else if (w_lsa->stat >= 0) {
 | 
						|
			/* Get the vertex from candidates. */
 | 
						|
			w = candidate->array[w_lsa->stat];
 | 
						|
 | 
						|
			/* if D is greater than. */
 | 
						|
			if (w->distance < distance) {
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			/* equal to. */
 | 
						|
			else if (w->distance == distance) {
 | 
						|
				/* Found an equal-cost path to W.
 | 
						|
				 * Calculate nexthop of to W from V. */
 | 
						|
				ospf_nexthop_calculation(area, v, w, l,
 | 
						|
							 distance, lsa_pos);
 | 
						|
			}
 | 
						|
			/* less than. */
 | 
						|
			else {
 | 
						|
				/* Found a lower-cost path to W.
 | 
						|
				 * nexthop_calculation is conditional, if it
 | 
						|
				 * finds
 | 
						|
				 * valid nexthop it will call spf_add_parents,
 | 
						|
				 * which
 | 
						|
				 * will flush the old parents
 | 
						|
				 */
 | 
						|
				if (ospf_nexthop_calculation(area, v, w, l,
 | 
						|
							     distance, lsa_pos))
 | 
						|
					/* Decrease the key of the node in the
 | 
						|
					 * heap.
 | 
						|
					 * trickle-sort it up towards root, just
 | 
						|
					 * in case this
 | 
						|
					 * node should now be the new root due
 | 
						|
					 * the cost change.
 | 
						|
					 * (next pqueu_{de,en}queue will fully
 | 
						|
					 * re-heap the queue).
 | 
						|
					 */
 | 
						|
					trickle_up(w_lsa->stat, candidate);
 | 
						|
			}
 | 
						|
		} /* end W is already on the candidate list */
 | 
						|
	}	 /* end loop over the links in V's LSA */
 | 
						|
}
 | 
						|
 | 
						|
static void ospf_spf_dump(struct vertex *v, int i)
 | 
						|
{
 | 
						|
	struct listnode *cnode;
 | 
						|
	struct listnode *nnode;
 | 
						|
	struct vertex_parent *parent;
 | 
						|
 | 
						|
	if (v->type == OSPF_VERTEX_ROUTER) {
 | 
						|
		if (IS_DEBUG_OSPF_EVENT)
 | 
						|
			zlog_debug("SPF Result: %d [R] %s", i,
 | 
						|
				   inet_ntoa(v->lsa->id));
 | 
						|
	} else {
 | 
						|
		struct network_lsa *lsa = (struct network_lsa *)v->lsa;
 | 
						|
		if (IS_DEBUG_OSPF_EVENT)
 | 
						|
			zlog_debug("SPF Result: %d [N] %s/%d", i,
 | 
						|
				   inet_ntoa(v->lsa->id),
 | 
						|
				   ip_masklen(lsa->mask));
 | 
						|
	}
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		for (ALL_LIST_ELEMENTS_RO(v->parents, nnode, parent)) {
 | 
						|
			zlog_debug(" nexthop %p %s %s", (void *)parent->nexthop,
 | 
						|
				   inet_ntoa(parent->nexthop->router),
 | 
						|
				   parent->nexthop->oi
 | 
						|
					   ? IF_NAME(parent->nexthop->oi)
 | 
						|
					   : "NULL");
 | 
						|
		}
 | 
						|
 | 
						|
	i++;
 | 
						|
 | 
						|
	for (ALL_LIST_ELEMENTS_RO(v->children, cnode, v))
 | 
						|
		ospf_spf_dump(v, i);
 | 
						|
}
 | 
						|
 | 
						|
/* Second stage of SPF calculation. */
 | 
						|
static void ospf_spf_process_stubs(struct ospf_area *area, struct vertex *v,
 | 
						|
				   struct route_table *rt, int parent_is_root)
 | 
						|
{
 | 
						|
	struct listnode *cnode, *cnnode;
 | 
						|
	struct vertex *child;
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("ospf_process_stub():processing stubs for area %s",
 | 
						|
			   inet_ntoa(area->area_id));
 | 
						|
	if (v->type == OSPF_VERTEX_ROUTER) {
 | 
						|
		u_char *p;
 | 
						|
		u_char *lim;
 | 
						|
		struct router_lsa_link *l;
 | 
						|
		struct router_lsa *rlsa;
 | 
						|
		int lsa_pos = 0;
 | 
						|
 | 
						|
		if (IS_DEBUG_OSPF_EVENT)
 | 
						|
			zlog_debug(
 | 
						|
				"ospf_process_stubs():processing router LSA, id: %s",
 | 
						|
				inet_ntoa(v->lsa->id));
 | 
						|
		rlsa = (struct router_lsa *)v->lsa;
 | 
						|
 | 
						|
 | 
						|
		if (IS_DEBUG_OSPF_EVENT)
 | 
						|
			zlog_debug(
 | 
						|
				"ospf_process_stubs(): we have %d links to process",
 | 
						|
				ntohs(rlsa->links));
 | 
						|
		p = ((u_char *)v->lsa) + OSPF_LSA_HEADER_SIZE + 4;
 | 
						|
		lim = ((u_char *)v->lsa) + ntohs(v->lsa->length);
 | 
						|
 | 
						|
		while (p < lim) {
 | 
						|
			l = (struct router_lsa_link *)p;
 | 
						|
 | 
						|
			p += (OSPF_ROUTER_LSA_LINK_SIZE
 | 
						|
			      + (l->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));
 | 
						|
 | 
						|
			if (l->m[0].type == LSA_LINK_TYPE_STUB)
 | 
						|
				ospf_intra_add_stub(rt, l, v, area,
 | 
						|
						    parent_is_root, lsa_pos);
 | 
						|
			lsa_pos++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ospf_vertex_dump("ospf_process_stubs(): after examining links: ", v, 1,
 | 
						|
			 1);
 | 
						|
 | 
						|
	for (ALL_LIST_ELEMENTS(v->children, cnode, cnnode, child)) {
 | 
						|
		if (CHECK_FLAG(child->flags, OSPF_VERTEX_PROCESSED))
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* the first level of routers connected to the root
 | 
						|
		 * should have 'parent_is_root' set, including those
 | 
						|
		 * connected via a network vertex.
 | 
						|
		 */
 | 
						|
		if (area->spf == v)
 | 
						|
			parent_is_root = 1;
 | 
						|
		else if (v->type == OSPF_VERTEX_ROUTER)
 | 
						|
			parent_is_root = 0;
 | 
						|
 | 
						|
		ospf_spf_process_stubs(area, child, rt, parent_is_root);
 | 
						|
 | 
						|
		SET_FLAG(child->flags, OSPF_VERTEX_PROCESSED);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void ospf_rtrs_free(struct route_table *rtrs)
 | 
						|
{
 | 
						|
	struct route_node *rn;
 | 
						|
	struct list *or_list;
 | 
						|
	struct ospf_route * or ;
 | 
						|
	struct listnode *node, *nnode;
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("Route: Router Routing Table free");
 | 
						|
 | 
						|
	for (rn = route_top(rtrs); rn; rn = route_next(rn))
 | 
						|
		if ((or_list = rn->info) != NULL) {
 | 
						|
			for (ALL_LIST_ELEMENTS(or_list, node, nnode, or))
 | 
						|
				ospf_route_free(or);
 | 
						|
 | 
						|
			list_delete(or_list);
 | 
						|
 | 
						|
			/* Unlock the node. */
 | 
						|
			rn->info = NULL;
 | 
						|
			route_unlock_node(rn);
 | 
						|
		}
 | 
						|
	route_table_finish(rtrs);
 | 
						|
}
 | 
						|
 | 
						|
#if 0
 | 
						|
static void
 | 
						|
ospf_rtrs_print (struct route_table *rtrs)
 | 
						|
{
 | 
						|
  struct route_node *rn;
 | 
						|
  struct list *or_list;
 | 
						|
  struct listnode *ln;
 | 
						|
  struct listnode *pnode;
 | 
						|
  struct ospf_route *or;
 | 
						|
  struct ospf_path *path;
 | 
						|
  char buf1[BUFSIZ];
 | 
						|
  char buf2[BUFSIZ];
 | 
						|
 | 
						|
  if (IS_DEBUG_OSPF_EVENT)
 | 
						|
    zlog_debug ("ospf_rtrs_print() start");
 | 
						|
 | 
						|
  for (rn = route_top (rtrs); rn; rn = route_next (rn))
 | 
						|
    if ((or_list = rn->info) != NULL)
 | 
						|
      for (ALL_LIST_ELEMENTS_RO (or_list, ln, or))
 | 
						|
        {
 | 
						|
          switch (or->path_type)
 | 
						|
            {
 | 
						|
            case OSPF_PATH_INTRA_AREA:
 | 
						|
              if (IS_DEBUG_OSPF_EVENT)
 | 
						|
                zlog_debug ("%s   [%d] area: %s",
 | 
						|
                           inet_ntop (AF_INET, &or->id, buf1, BUFSIZ),
 | 
						|
                           or->cost, inet_ntop (AF_INET, &or->u.std.area_id,
 | 
						|
                                                buf2, BUFSIZ));
 | 
						|
              break;
 | 
						|
            case OSPF_PATH_INTER_AREA:
 | 
						|
              if (IS_DEBUG_OSPF_EVENT)
 | 
						|
                zlog_debug ("%s IA [%d] area: %s",
 | 
						|
                           inet_ntop (AF_INET, &or->id, buf1, BUFSIZ),
 | 
						|
                           or->cost, inet_ntop (AF_INET, &or->u.std.area_id,
 | 
						|
                                                buf2, BUFSIZ));
 | 
						|
              break;
 | 
						|
            default:
 | 
						|
              break;
 | 
						|
            }
 | 
						|
 | 
						|
          for (ALL_LIST_ELEMENTS_RO (or->paths, pnode, path))
 | 
						|
            {
 | 
						|
              if (path->nexthop.s_addr == 0)
 | 
						|
                {
 | 
						|
                  if (IS_DEBUG_OSPF_EVENT)
 | 
						|
                    zlog_debug ("   directly attached to %s\r\n",
 | 
						|
				ifindex2ifname (path->ifindex), VRF_DEFAULT);
 | 
						|
                }
 | 
						|
              else
 | 
						|
                {
 | 
						|
                  if (IS_DEBUG_OSPF_EVENT)
 | 
						|
                    zlog_debug ("   via %s, %s\r\n",
 | 
						|
				inet_ntoa (path->nexthop),
 | 
						|
				ifindex2ifname (path->ifindex), VRF_DEFAULT);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
  zlog_debug ("ospf_rtrs_print() end");
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* Calculating the shortest-path tree for an area. */
 | 
						|
static void ospf_spf_calculate(struct ospf_area *area,
 | 
						|
			       struct route_table *new_table,
 | 
						|
			       struct route_table *new_rtrs)
 | 
						|
{
 | 
						|
	struct pqueue *candidate;
 | 
						|
	struct vertex *v;
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT) {
 | 
						|
		zlog_debug("ospf_spf_calculate: Start");
 | 
						|
		zlog_debug("ospf_spf_calculate: running Dijkstra for area %s",
 | 
						|
			   inet_ntoa(area->area_id));
 | 
						|
	}
 | 
						|
 | 
						|
	/* Check router-lsa-self.  If self-router-lsa is not yet allocated,
 | 
						|
	   return this area's calculation. */
 | 
						|
	if (!area->router_lsa_self) {
 | 
						|
		if (IS_DEBUG_OSPF_EVENT)
 | 
						|
			zlog_debug(
 | 
						|
				"ospf_spf_calculate: "
 | 
						|
				"Skip area %s's calculation due to empty router_lsa_self",
 | 
						|
				inet_ntoa(area->area_id));
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* RFC2328 16.1. (1). */
 | 
						|
	/* Initialize the algorithm's data structures. */
 | 
						|
 | 
						|
	/* This function scans all the LSA database and set the stat field to
 | 
						|
	 * LSA_SPF_NOT_EXPLORED. */
 | 
						|
	ospf_lsdb_clean_stat(area->lsdb);
 | 
						|
	/* Create a new heap for the candidates. */
 | 
						|
	candidate = pqueue_create();
 | 
						|
	candidate->cmp = cmp;
 | 
						|
	candidate->update = update_stat;
 | 
						|
 | 
						|
	/* Initialize the shortest-path tree to only the root (which is the
 | 
						|
	   router doing the calculation). */
 | 
						|
	ospf_spf_init(area);
 | 
						|
	v = area->spf;
 | 
						|
	/* Set LSA position to LSA_SPF_IN_SPFTREE. This vertex is the root of
 | 
						|
	 * the
 | 
						|
	 * spanning tree. */
 | 
						|
	*(v->stat) = LSA_SPF_IN_SPFTREE;
 | 
						|
 | 
						|
	/* Set Area A's TransitCapability to FALSE. */
 | 
						|
	area->transit = OSPF_TRANSIT_FALSE;
 | 
						|
	area->shortcut_capability = 1;
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		/* RFC2328 16.1. (2). */
 | 
						|
		ospf_spf_next(v, area, candidate);
 | 
						|
 | 
						|
		/* RFC2328 16.1. (3). */
 | 
						|
		/* If at this step the candidate list is empty, the shortest-
 | 
						|
		   path tree (of transit vertices) has been completely built and
 | 
						|
		   this stage of the procedure terminates. */
 | 
						|
		if (candidate->size == 0)
 | 
						|
			break;
 | 
						|
 | 
						|
		/* Otherwise, choose the vertex belonging to the candidate list
 | 
						|
		   that is closest to the root, and add it to the shortest-path
 | 
						|
		   tree (removing it from the candidate list in the
 | 
						|
		   process). */
 | 
						|
		/* Extract from the candidates the node with the lower key. */
 | 
						|
		v = (struct vertex *)pqueue_dequeue(candidate);
 | 
						|
		/* Update stat field in vertex. */
 | 
						|
		*(v->stat) = LSA_SPF_IN_SPFTREE;
 | 
						|
 | 
						|
		ospf_vertex_add_parent(v);
 | 
						|
 | 
						|
		/* RFC2328 16.1. (4). */
 | 
						|
		if (v->type == OSPF_VERTEX_ROUTER)
 | 
						|
			ospf_intra_add_router(new_rtrs, v, area);
 | 
						|
		else
 | 
						|
			ospf_intra_add_transit(new_table, v, area);
 | 
						|
 | 
						|
		/* RFC2328 16.1. (5). */
 | 
						|
		/* Iterate the algorithm by returning to Step 2. */
 | 
						|
 | 
						|
	} /* end loop until no more candidate vertices */
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT) {
 | 
						|
		ospf_spf_dump(area->spf, 0);
 | 
						|
		ospf_route_table_dump(new_table);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Second stage of SPF calculation procedure's  */
 | 
						|
	ospf_spf_process_stubs(area, area->spf, new_table, 0);
 | 
						|
 | 
						|
	/* Free candidate queue. */
 | 
						|
	pqueue_delete(candidate);
 | 
						|
 | 
						|
	ospf_vertex_dump(__func__, area->spf, 0, 1);
 | 
						|
	/* Free nexthop information, canonical versions of which are attached
 | 
						|
	 * the first level of router vertices attached to the root vertex, see
 | 
						|
	 * ospf_nexthop_calculation.
 | 
						|
	 */
 | 
						|
	ospf_canonical_nexthops_free(area->spf);
 | 
						|
 | 
						|
	/* Increment SPF Calculation Counter. */
 | 
						|
	area->spf_calculation++;
 | 
						|
 | 
						|
	monotime(&area->ospf->ts_spf);
 | 
						|
	area->ts_spf = area->ospf->ts_spf;
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("ospf_spf_calculate: Stop. %zd vertices",
 | 
						|
			   mtype_stats_alloc(MTYPE_OSPF_VERTEX));
 | 
						|
 | 
						|
	/* Free SPF vertices, but not the list. List has ospf_vertex_free
 | 
						|
	 * as deconstructor.
 | 
						|
	 */
 | 
						|
	list_delete_all_node(&vertex_list);
 | 
						|
}
 | 
						|
 | 
						|
/* Timer for SPF calculation. */
 | 
						|
static int ospf_spf_calculate_timer(struct thread *thread)
 | 
						|
{
 | 
						|
	struct ospf *ospf = THREAD_ARG(thread);
 | 
						|
	struct route_table *new_table, *new_rtrs;
 | 
						|
	struct ospf_area *area;
 | 
						|
	struct listnode *node, *nnode;
 | 
						|
	struct timeval start_time, spf_start_time;
 | 
						|
	int areas_processed = 0;
 | 
						|
	unsigned long ia_time, prune_time, rt_time;
 | 
						|
	unsigned long abr_time, total_spf_time, spf_time;
 | 
						|
	char rbuf[32]; /* reason_buf */
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("SPF: Timer (SPF calculation expire)");
 | 
						|
 | 
						|
	ospf->t_spf_calc = NULL;
 | 
						|
 | 
						|
	monotime(&spf_start_time);
 | 
						|
	/* Allocate new table tree. */
 | 
						|
	new_table = route_table_init();
 | 
						|
	new_rtrs = route_table_init();
 | 
						|
 | 
						|
	ospf_vl_unapprove(ospf);
 | 
						|
 | 
						|
	/* Calculate SPF for each area. */
 | 
						|
	for (ALL_LIST_ELEMENTS(ospf->areas, node, nnode, area)) {
 | 
						|
		/* Do backbone last, so as to first discover intra-area paths
 | 
						|
		 * for any back-bone virtual-links
 | 
						|
		 */
 | 
						|
		if (ospf->backbone && ospf->backbone == area)
 | 
						|
			continue;
 | 
						|
 | 
						|
		ospf_spf_calculate(area, new_table, new_rtrs);
 | 
						|
		areas_processed++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* SPF for backbone, if required */
 | 
						|
	if (ospf->backbone) {
 | 
						|
		ospf_spf_calculate(ospf->backbone, new_table, new_rtrs);
 | 
						|
		areas_processed++;
 | 
						|
	}
 | 
						|
 | 
						|
	spf_time = monotime_since(&spf_start_time, NULL);
 | 
						|
 | 
						|
	ospf_vl_shut_unapproved(ospf);
 | 
						|
 | 
						|
	monotime(&start_time);
 | 
						|
	ospf_ia_routing(ospf, new_table, new_rtrs);
 | 
						|
	ia_time = monotime_since(&start_time, NULL);
 | 
						|
 | 
						|
	monotime(&start_time);
 | 
						|
	ospf_prune_unreachable_networks(new_table);
 | 
						|
	ospf_prune_unreachable_routers(new_rtrs);
 | 
						|
	prune_time = monotime_since(&start_time, NULL);
 | 
						|
 | 
						|
	/* AS-external-LSA calculation should not be performed here. */
 | 
						|
 | 
						|
	/* If new Router Route is installed,
 | 
						|
	   then schedule re-calculate External routes. */
 | 
						|
	if (1)
 | 
						|
		ospf_ase_calculate_schedule(ospf);
 | 
						|
 | 
						|
	ospf_ase_calculate_timer_add(ospf);
 | 
						|
 | 
						|
	/* Update routing table. */
 | 
						|
	monotime(&start_time);
 | 
						|
	ospf_route_install(ospf, new_table);
 | 
						|
	rt_time = monotime_since(&start_time, NULL);
 | 
						|
 | 
						|
	/* Update ABR/ASBR routing table */
 | 
						|
	if (ospf->old_rtrs) {
 | 
						|
		/* old_rtrs's node holds linked list of ospf_route. --kunihiro.
 | 
						|
		 */
 | 
						|
		/* ospf_route_delete (ospf->old_rtrs); */
 | 
						|
		ospf_rtrs_free(ospf->old_rtrs);
 | 
						|
	}
 | 
						|
 | 
						|
	ospf->old_rtrs = ospf->new_rtrs;
 | 
						|
	ospf->new_rtrs = new_rtrs;
 | 
						|
 | 
						|
	monotime(&start_time);
 | 
						|
	if (IS_OSPF_ABR(ospf))
 | 
						|
		ospf_abr_task(ospf);
 | 
						|
	abr_time = monotime_since(&start_time, NULL);
 | 
						|
 | 
						|
	total_spf_time =
 | 
						|
		monotime_since(&spf_start_time, &ospf->ts_spf_duration);
 | 
						|
 | 
						|
	rbuf[0] = '\0';
 | 
						|
	if (spf_reason_flags) {
 | 
						|
		if (spf_reason_flags & SPF_FLAG_ROUTER_LSA_INSTALL)
 | 
						|
			strncat(rbuf, "R, ", sizeof(rbuf) - strlen(rbuf) - 1);
 | 
						|
		if (spf_reason_flags & SPF_FLAG_NETWORK_LSA_INSTALL)
 | 
						|
			strncat(rbuf, "N, ", sizeof(rbuf) - strlen(rbuf) - 1);
 | 
						|
		if (spf_reason_flags & SPF_FLAG_SUMMARY_LSA_INSTALL)
 | 
						|
			strncat(rbuf, "S, ", sizeof(rbuf) - strlen(rbuf) - 1);
 | 
						|
		if (spf_reason_flags & SPF_FLAG_ASBR_SUMMARY_LSA_INSTALL)
 | 
						|
			strncat(rbuf, "AS, ", sizeof(rbuf) - strlen(rbuf) - 1);
 | 
						|
		if (spf_reason_flags & SPF_FLAG_ABR_STATUS_CHANGE)
 | 
						|
			strncat(rbuf, "ABR, ", sizeof(rbuf) - strlen(rbuf) - 1);
 | 
						|
		if (spf_reason_flags & SPF_FLAG_ASBR_STATUS_CHANGE)
 | 
						|
			strncat(rbuf, "ASBR, ",
 | 
						|
				sizeof(rbuf) - strlen(rbuf) - 1);
 | 
						|
		if (spf_reason_flags & SPF_FLAG_MAXAGE)
 | 
						|
			strncat(rbuf, "M, ", sizeof(rbuf) - strlen(rbuf) - 1);
 | 
						|
 | 
						|
		size_t rbuflen = strlen(rbuf);
 | 
						|
		if (rbuflen >= 2)
 | 
						|
			rbuf[rbuflen - 2] = '\0'; /* skip the last ", " */
 | 
						|
		else
 | 
						|
			rbuf[0] = '\0';
 | 
						|
	}
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT) {
 | 
						|
		zlog_info("SPF Processing Time(usecs): %ld", total_spf_time);
 | 
						|
		zlog_info("\t    SPF Time: %ld", spf_time);
 | 
						|
		zlog_info("\t   InterArea: %ld", ia_time);
 | 
						|
		zlog_info("\t       Prune: %ld", prune_time);
 | 
						|
		zlog_info("\tRouteInstall: %ld", rt_time);
 | 
						|
		if (IS_OSPF_ABR(ospf))
 | 
						|
			zlog_info("\t         ABR: %ld (%d areas)", abr_time,
 | 
						|
				  areas_processed);
 | 
						|
		zlog_info("Reason(s) for SPF: %s", rbuf);
 | 
						|
	}
 | 
						|
 | 
						|
	ospf_clear_spf_reason_flags();
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Add schedule for SPF calculation.  To avoid frequenst SPF calc, we
 | 
						|
   set timer for SPF calc. */
 | 
						|
void ospf_spf_calculate_schedule(struct ospf *ospf, ospf_spf_reason_t reason)
 | 
						|
{
 | 
						|
	unsigned long delay, elapsed, ht;
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("SPF: calculation timer scheduled");
 | 
						|
 | 
						|
	/* OSPF instance does not exist. */
 | 
						|
	if (ospf == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	ospf_spf_set_reason(reason);
 | 
						|
 | 
						|
	/* SPF calculation timer is already scheduled. */
 | 
						|
	if (ospf->t_spf_calc) {
 | 
						|
		if (IS_DEBUG_OSPF_EVENT)
 | 
						|
			zlog_debug(
 | 
						|
				"SPF: calculation timer is already scheduled: %p",
 | 
						|
				(void *)ospf->t_spf_calc);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	elapsed = monotime_since(&ospf->ts_spf, NULL) / 1000;
 | 
						|
 | 
						|
	ht = ospf->spf_holdtime * ospf->spf_hold_multiplier;
 | 
						|
 | 
						|
	if (ht > ospf->spf_max_holdtime)
 | 
						|
		ht = ospf->spf_max_holdtime;
 | 
						|
 | 
						|
	/* Get SPF calculation delay time. */
 | 
						|
	if (elapsed < ht) {
 | 
						|
		/* Got an event within the hold time of last SPF. We need to
 | 
						|
		 * increase the hold_multiplier, if it's not already at/past
 | 
						|
		 * maximum value, and wasn't already increased..
 | 
						|
		 */
 | 
						|
		if (ht < ospf->spf_max_holdtime)
 | 
						|
			ospf->spf_hold_multiplier++;
 | 
						|
 | 
						|
		/* always honour the SPF initial delay */
 | 
						|
		if ((ht - elapsed) < ospf->spf_delay)
 | 
						|
			delay = ospf->spf_delay;
 | 
						|
		else
 | 
						|
			delay = ht - elapsed;
 | 
						|
	} else {
 | 
						|
		/* Event is past required hold-time of last SPF */
 | 
						|
		delay = ospf->spf_delay;
 | 
						|
		ospf->spf_hold_multiplier = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (IS_DEBUG_OSPF_EVENT)
 | 
						|
		zlog_debug("SPF: calculation timer delay = %ld", delay);
 | 
						|
 | 
						|
	zlog_info("SPF: Scheduled in %ld msec", delay);
 | 
						|
 | 
						|
	ospf->t_spf_calc = NULL;
 | 
						|
	thread_add_timer_msec(master, ospf_spf_calculate_timer, ospf, delay,
 | 
						|
			      &ospf->t_spf_calc);
 | 
						|
}
 |