When we are processing a bond member's protodown we get from
the dataplane, check to make sure we haven't already queued
up a set. If we have, it's likely this is just a notification
we get from the kernel after we set protodown and before we have
processed the result in our dplane pthread.
This change is needed now that we set protodown via the dplane
pthread.
Signed-off-by: Stephen Worley <sworley@nvidia.com>
Only clear protodown reason on shutdown/sweep, retain protodown
state.
This is to retain traditional and expected behavior with daemons
like vrrpd setting protodown. They expet it to be set on shutdown
and retained on bring up to prevent traffic from being dropped.
We must cleanup our reason code though to prevent us from blocking
others.
Signed-off-by: Stephen Worley <sworley@nvidia.com>
Add functionality to clear any reason code set on shutdown
of zebra when we are freeing the interface, in case a bad
client didn't tell us to clear it when the shutdown.
Also, in case of a crash or failure to do the above, clear reason
on startup if it is set.
Signed-off-by: Stephen Worley <sworley@nvidia.com>
Add command for use to set protodown via frr.conf in
the case our default conflicts with another application
they are using.
Signed-off-by: Stephen Worley <sworley@nvidia.com>
Add support for setting the protodown reason code.
829eb208e8
These patches handle all our netlink code for setting the reason.
For protodown reason we only set `frr` as the reason externally
but internally we have more descriptive reasoning available via
`show interface IFNAME`. The kernel only provides a bitwidth of 32
that all userspace programs have to share so this makes the most sense.
Since this is new functionality, it needs to be added to the dplane
pthread instead. So these patches, also move the protodown setting we
were doing before into the dplane pthread. For this, we abstract it a
bit more to make it a general interface LINK update dplane API. This
API can be expanded to support gernal link creation/updating when/if
someone ever adds that code.
We also move a more common entrypoint for evpn-mh and from zapi clients
like vrrpd. They both call common code now to set our internal flags
for protodown and protodown reason.
Also add debugging code for dumping netlink packets with
protodown/protodown_reason.
Signed-off-by: Stephen Worley <sworley@nvidia.com>
With recent changes to interface up mechanics in if_netlink.c
FRR was receiving as many as 4 up events for an interface
on ifdown/ifup events. This was causing timing issues
in FRR based upon some fun timings. Remove this from
happening.
Ticket: CM-31623
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Vxlan interfaces flap (protodown/up) event,
non ptm operative interfaces do not come up
as protodown up event do not trigger "if_up()"
event.
Ticket:CM-30477
Reviewed By:CCR-10681
Testing Done:
validated interfaces flaps, ip link down, ifdown
and protodown followed by UP event. all Vxlan interfaces
come up in bgpd post flap.
Signed-off-by: Chirag Shah <chirag@nvidia.com>
Frr need to handle protocol down event for vxlan
interface.
In MLAG scenario, one of the pair switch can put
vxlan port to protodown state, followed by
tunnel-ip change from anycast IP to individual IP.
In absence of protodown handling, evpn end up
advertising locally learn EVPN (MAC-IP) routes
with individual IP as nexthop.
This leads an issue of overwriting locally learn
entries as remote on MLAG pair.
Ticket:CM-24545
Reviewed By:CCR-10310
Testing Done:
In EVPN deployment, restart one of the MLAG
daemon, which puts vxlan interfaces in protodown state.
FRR treats protodown as oper down for vxlan interfaces.
VNI down cleans up/withdraws locally learn routes.
Followed by vxlan device UP event, re-advertise
locally learn routes.
Signed-off-by: Chirag Shah <chirag@nvidia.com>
Use the dataplane to query and read interface NETCONF data;
add netconf-oriented data to the dplane context object, and
add accessors for it. Add handler for incoming update
processing.
Signed-off-by: Mark Stapp <mstapp@nvidia.com>
a) We'll need to pass the info up via some dataplane control method
(This way bsd and linux can both be zebra agnostic of each other)
b) We'll need to modify `struct interface *` to track this data
and when it changes to notify upper level protocols about it.
c) Work is needed to dump the entire mpls state at the start
so we can gather interface state. This should be done
after interface data gathering from the kernel.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Signed-off-by: Mark Stapp <mstapp@nvidia.com>
Since f60a1188 we store a pointer to the VRF in the interface structure.
There's no need anymore to store a separate vrf_id field.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
It allows FRR to read the interface config even when the necessary VRFs
are not yet created and interfaces are in "wrong" VRFs. Currently, such
config is rejected.
For VRF-lite backend, we don't care at all about the VRF of the inactive
interface. When the interface is created in the OS and becomes active,
we always use its actual VRF instead of the configured one. So there's
no need to reject the config.
For netns backend, we may have multiple interfaces with the same name in
different VRFs. So we care about the VRF of inactive interfaces. And we
must allow to preconfigure the interface in a VRF even before it is
moved to the corresponding netns. From now on, we allow to create
multiple configs for the same interface name in different VRFs and
the necessary config is applied once the OS interface is moved to the
corresponding netns.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
Currently, the ll_type is set only in `netlink_interface` which is
executed only during startup. If the interface is created when the FRR
is already running, the type is not stored.
Fixes#1164.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
In startup, zebra would dump interface information from Kernel in 3
steps w/o lock: step1, get interface information; step2, get interface
ipv4 address; step3, get interface ipv6 address.
If any interface gets added after step1, but before step2/3, zebra
would get extra interface addresses in step2/3 that has not been added
into zebra in step1. Returning error in the referenced interface lookup
would cause the startup interface retrieval to be incomplete.
Signed-off-by: Yuan Yuan <yyuanam@amazon.com>
There were two identical blocks of code run at init time that
requested info about AF_BRIDGE - don't see any reason to do that
twice, so remove one block.
Signed-off-by: Mark Stapp <mstapp@nvidia.com>
When using bgp evpn rt5 setup, after BGP configuration has been
loaded, if the user attempts to detach and reattach the bridged
vxlan interface from the bridge, then BGP loses its BGP EVPN
contexts, and a refresh of BGP configuration is necessary to
maintain consistency between linux configuration and BGP EVPN
contexts (RIB). The following command can lead to inconsistency:
ip netns exec cust1 ip link set dev vxlan1000 nomaster
ip netns exec cust1 ip link set dev vxlan1000 master br1000
consecutive to the, BGP l2vpn evpn RIB is empty, and the way to
solve this until now is to reconfigure EVPN like this:
vrf cust1
no vni 1000
vni 1000
exit-vrf
Actually, the link information is correctly handled. In fact,
at the time of link event, the lower link status of the bridge
interface was not yet up, thus preventing from establishing
BGP EVPN contexts. In fact, when a bridge interface does not
have any slave interface, the link status of the bridge interface
is down. That change of status comes a bit after, and is not
detected by slave interfaces, as this event is not intercepted.
This commit intercepts the bridge link up event, and triggers
a check on slaved vxlan interfaces.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
when running bgp evpn rt5 setup, the Rmac sent in BGP updates
stands for the MAC address of the bridge interface. After
having loaded frr configuration, the Rmac address is not refreshed.
This issue can be easily reproduced by executing some commands:
ip netns exec cust1 ip link set dev br1000 address 2e🆎45:aa:bb:cc
Actually, the BGP EVPN contexts are kept unchanged.
That commit proposes to fix this by intercepting the mac address
change, and refreshing the vxlan interfaces attached to te bridge
interface that changed its MAC address.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
Move the handler for incoming interface address events
to a neutral source file - it's not netlink-specific and
shouldn't have been in a netlink file.
Signed-off-by: Mark Stapp <mjs.ietf@gmail.com>
Add new apis for dplane interface address handling, based on
the existing api. The existing api is basically split in two:
the first part processes an incoming netlink message in the
dplane pthread, creating a dplane context with info about
the event. The second part runs in the main pthread and uses
the context data to update an interface or connected object.
Signed-off-by: Mark Stapp <mjs.ietf@gmail.com>
When port was removed from last access vlan, the linux kernel
won't send any vlan info in the netlink message, it might affact
the evpn mh not withdraw EAD-EVI routes.
Signed-off-by: Gord Chen <gord_chen@edge-core.com>
if_netlink.c created it's on nested parsing #define which
is identical to netlink_parse_rtattr_nested. Consolidate
on one instead of having this duality.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
In order to parse the netlink message into the
`struct rtattr *tb[size]` it is assumed that the buffer is
memset to 0 before the parsing. As such if you attempt
to read a value that was not returned in the message
you will not crash when you test for it.
The code has places were we memset it and places where we don't.
This *will* lead to crashes when the kernel changes. In
our parsing routines let's have them memset instead of having
to remember to do it pre pass in to the parser.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
- gre keys are collected and stored locally.
- when gre source set is requested, and the link interface
configured is different, the gre information collected is
pushed in the query, namely source ip or gre keys if present.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
preserve mtu upon interface flapping and tunnel source change.
Signed-off-by:Reuben Dowle <reuben.dowle@4rf.com>
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
This action is initiated by nhrp and has been stubbed when
moving to zebra. Now, a netlink request is forged to set
the link interface of a gre interface if that gre interface
does not have already a link interface.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
zebra is able to get information about gre tunnels.
zebra_gre file is created to handle hooks, but is not yet used.
also, debug zebra gre command is done to add gre traces.
A zebra_gre file is used for complementary actions that may be needed.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
when zebra has vrf backend mapped to namespaces, the polling
of interfaces leads to fix all linkages of interfaces. This
was not done on non default namespace. do it for other namespaces.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
There are cases where either link information is not present at
interface creation or link information changed. handle this
situation.
Signed-off-by: Philippe.Guibert <philippe.guibert@6wind.com>
zebra dd link
The first change in this commit is the processing of the VRF termination.
When we terminate the VRF, we should not delete the underlying interfaces,
because there may be pointers to them in the northbound configuration. We
should move them to the default VRF instead.
Because of the first change, the VRF interface itself is also not deleted
when deleting the VRF. It should be handled in netlink_link_change. This
is done by the second change.
Signed-off-by: Igor Ryzhov <iryzhov@nfware.com>
This one also needed a bit of shuffling around, but MTYPE_RE is the only
one left used across file boundaries now.
Signed-off-by: David Lamparter <equinox@diac24.net>
This was caused because of uninitialized netlint attrs in the bond-member
netlink parse API.
PS: It was caught by the upstream topotests on ARM8 (passed everywhere
else).
Signed-off-by: Anuradha Karuppiah <anuradhak@nvidia.com>
Feature overview:
=================
A 802.3ad bond can be setup to allow lacp-bypass. This is done to enable
servers to pxe boot without a LACP license i.e. allows the bond to go oper
up (with a single link) without LACP converging.
If an ES-bond is oper-up in an "LACP-bypass" state MH treats it as a non-ES
bond. This involves the following special handling -
1. If the bond is in a bypass-state the associated ES is placed in a
bypass state.
2. If an ES is in a bypass state -
a. DF election is disabled (i.e. assumed DF)
b. SPH filter is not installed.
3. MACs learnt via the host bond are advertised with a zero ESI.
When the ES moves out of "bypass" the MACs are moved from a zero-ESI to
the correct non-zero id. This is treated as a local station move.
Implementation:
===============
When (a) an ES is detached from a hostbond or (b) an ES-bond goes into
LACP bypass zebra deletes all the local macs (with that ES as destination)
in the kernel and its local db. BGP re-sends any imported MAC-IP routes
that may exist with this ES destination as remote routes i.e. zebra can
end up programming a MAC that was perviously local as remote pointing
to a VTEP-ECMP group.
When an ES is attached to a hostbond or an ES-bond goes
LACP-up (out of bypss) zebra again deletes all the local macs in the
kernel and its local db. At this point BGP resends any imported MAC-IP
routes that may exist with this ES destination as sync routes i.e.
zebra can end up programming a MAC that was perviously remote
as local pointing to an access port.
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
Added support for advertising SVI MAC if EVPN-MH is enabled.
In the case of EVPN MH arp replies from an attached server can be sent to
the ES-peer. To prevent flooding of the reply the SVI MAC needs to be
advertised by default.
Note:
advertise-svi-ip could have been used as an alternate way to advertise
SVI MAC. However that config cannot be turned on if SVI IPs are
re-used (which is done to avoid wasting IP addresses in a subnet).
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
Description: When we get a new vrf add and vrf with same name, but different vrf-id already
exists in the database, we should treat vrf add as update.
This happens mostly when there are lots of vrf and other configuration being replayed.
There may be a stale vrf delete followed by new vrf add. This
can cause timing race condition where vrf delete could be missed and
further same vrf add would get rejected instead of treating last arrived
vrf add as update.
Treat vrf add for existing vrf as update.
Implicitly disable this VRF to cleanup routes and other functions as part of vrf disable.
Update vrf_id for the vrf and update vrf_id tree.
Re-enable VRF so that all routes are freshly installed.
Above 3 steps are mandatory since it can happen that with config reload
stale routes which are installed in vrf-1 table might contain routes from
older vrf-0 table which might have got deleted due to missing vrf-0 in new configuration.
Signed-off-by: sudhanshukumar22 <sudhanshu.kumar@broadcom.com>
1. When a bond is associated with an ES we may need to re-sync
the dplane protodown state (which maybe stale/set by some other
app).
2. Also change the uplink state display to avoid confusion with
protodown reason code (both used to show uplink-up).
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
Local ethernet segments are held in a protodown or error-disabled state
if access to the VxLAN overlay is not ready -
1. When FRR comes up the local-ESs/access-port are kept protodown
for the startup-delay duration. During this time the underlay and
EVPN routes via it are expected to converge.
2. When all the uplinks/core-links attached to the underlay go down
the access-ports are similarly protodowned.
The ES-bond protodown state is propagated to each ES-bond member
and programmed in the dataplane/kernel (per-bond-member).
Configuring uplinks -
vtysh -c "conf t" vtysh -c "interface swp4" vtysh -c "evpn mh uplink"
Configuring startup delay -
vtysh -c "conf t" vtysh -c "evpn mh startup-delay 100"
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
EVPN protodown display -
========================
root@torm-11:mgmt:~# vtysh -c "show evpn"
L2 VNIs: 10
L3 VNIs: 3
Advertise gateway mac-ip: No
Advertise svi mac-ip: No
Duplicate address detection: Disable
Detection max-moves 5, time 180
EVPN MH:
mac-holdtime: 60s, neigh-holdtime: 60s
startup-delay: 180s, start-delay-timer: 00:01:14 <<<<<<<<<<<<
uplink-cfg-cnt: 4, uplink-active-cnt: 4
protodown: startup-delay <<<<<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
ES-bond protodown display -
===========================
root@torm-11:mgmt:~# vtysh -c "show interface hostbond1"
Interface hostbond1 is up, line protocol is down
Link ups: 0 last: (never)
Link downs: 1 last: 2020/04/26 20:38:03.53
PTM status: disabled
vrf: default
OS Description: Local Node/s torm-11 and Ports swp5 <==> Remote Node/s hostd-11 and Ports swp1
index 58 metric 0 mtu 9152 speed 4294967295
flags: <UP,BROADCAST,MULTICAST>
Type: Ethernet
HWaddr: 00:02:00:00:00:35
Interface Type bond
Master interface: bridge
EVPN-MH: ES id 1 ES sysmac 00:00:00:00:01:11
protodown: off rc: startup-delay <<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
ES-bond member protodown display -
==================================
root@torm-11:mgmt:~# vtysh -c "show interface swp5"
Interface swp5 is up, line protocol is down
Link ups: 0 last: (never)
Link downs: 3 last: 2020/04/26 20:38:03.52
PTM status: disabled
vrf: default
index 7 metric 0 mtu 9152 speed 10000
flags: <UP,BROADCAST,MULTICAST>
Type: Ethernet
HWaddr: 00:02:00:00:00:35
Interface Type Other
Master interface: hostbond1
protodown: on rc: startup-delay <<<<<<<<<<<<<<<<
root@torm-11:mgmt:~#
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Signed-off-by: Anuradha Karuppiah <anuradhak@cumulusnetworks.com>
when working with vrf netns backend, two bridges interfaces may have the
same bridge interface index, but not the same namespace. because in vrf
netns backend mode, a bridge slave always belong to the same network
namespace, then a check with the namespace id and the ns id of the
bridge interface permits to resolve correctly the interface pointer.
The problem could occur if a same index of two bridge interfaces can be
found on two different namespaces.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
when receiving a netlink API for an interface in a namespace, this
interface may come with LINK_NSID value, which means that the interface
has its link in an other namespace. Unfortunately, the link_nsid value
is self to that namespace, and there is a need to know what is its
associated nsid value from the default namespace point of view.
The information collected previously on each namespace, can then be
compared with that value to check if the link belongs to the default
namespace or not.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>