The FSF's address changed, and we had a mixture of comment styles for
the GPL file header. (The style with * at the beginning won out with
580 to 141 in existing files.)
Note: I've intentionally left intact other "variations" of the copyright
header, e.g. whether it says "Zebra", "Quagga", "FRR", or nothing.
Signed-off-by: David Lamparter <equinox@opensourcerouting.org>
Pass pointer to pointer instead of assigning by return value. See
previous commit message.
To ensure that the behavior stays functionally correct, any assignments
with the result of a thread_add* function have been transformed to set
the pointer to null before passing it. These can be removed wherever the
pointer is known to already be null.
Signed-off-by: Quentin Young <qlyoung@cumulusnetworks.com>
The way thread.c is written, a caller who wishes to be able to cancel a
thread or avoid scheduling it twice must keep a reference to the thread.
Typically this is done with a long lived pointer whose value is checked
for null in order to know if the thread is currently scheduled. The
check-and-schedule idiom is so common that several wrapper macros in
thread.h existed solely to provide it.
This patch removes those macros and adds a new parameter to all
thread_add_* functions which is a pointer to the struct thread * to
store the result of a scheduling call. If the value passed is non-null,
the thread will only be scheduled if the value is null. This helps with
consistency.
A Coccinelle spatch has been used to transform code of the form:
if (t == NULL)
t = thread_add_* (...)
to the form
thread_add_* (..., &t)
The THREAD_ON macros have also been transformed to the underlying
thread.c calls.
Signed-off-by: Quentin Young <qlyoung@cumulusnetworks.com>
Be a bit more rigoruous about what we can receive
from another protocol and attempt to make the code
less likely to crash and to just safely bail
out when an error is received.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
flags is set but never used. Since we
plan to use it in the future, make
it evident what is going on here.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
Implement BGP Prefix-SID IETF draft to be able to signal a labeled-unicast
prefix with a label index (segment ID). This makes it easier to deploy
global MPLS labels with BGP, even without other aspects of Segment Routing
implemented.
This patch implements the handling of the BGP-Prefix-SID Label Index
attribute. When received from a peer and the index is acceptable, the local
label is picked up from the SRGB and is programmed as the incoming label as
well as advertised to peers. If the index is not acceptable, no local label
is assigned. The outgoing label will always be the one advertised by the
downstream neighbor.
Signed-off-by: Vivek Venkatraman <vivek@cumulusnetworks.com>
Support install of labeled-unicast routes by a client. This would be
BGP, in order to install routes corresponding to AFI/SAFI 1/4 (IPv4)
or 2/4 (IPv6). Convert labeled-unicast routes into label forwarding
entries (i.e., transit LSPs) when there is a static label binding.
Signed-off-by: Don Slice <dslice@cumulusnetworks.com>
Implement interface that allows a client to register a FEC for obtaining
a label binding (in-label). Update client whenever the label binding is
updated and cleanup when client goes away.
Signed-off-by: Don Slice <dslice@cumulusnetworks.com>
This is a prepatory commit for future improvements.
Add a change to the zapi to pass the interface speed up.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
Label Manager allows to share MPLS label space among different
daemons. Each daemon can request a chunk of consecutive labels and
release it if it doesn't need them anymore. Label Manager stores the
daemon protocol and instance to identify the owner client. It uses them
to perform garbage collection, releasing all label chunks from a client
when it gets disconnected or reconnected.
Additionally, every client can request that the chunk is never garbage
collected. In that case client has the responsibility to release
non-used labels.
Zebra can host the label manager itself (if no -l param is provided) or
connect to an external one using zserv/zclient (providing its address
with -l param).
Client code is in lib/zclient.c, but currently only LDP is using it.
TODO: Allow for custom ranges requests, i.e., specify the start label
besides the chunk.
TODO: Release labels from LDP.
Signed-off-by: Bingen Eguzkitza <bingen@voltanet.io>
When starting up bgp and zebra now, you can specify
-e <number> or --ecmp <number>
and that number will be used as the maximum ecmp
that can be used.
The <number specified must be >= 1 and <= MULTIPATH_NUM
that Quagga is compiled with.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
Check and read the IPv6 source prefix on ZAPI messages, and pass it down
to the RIB functions (which do nothing with it yet.) Since the RIB
functions now all have a new extra argument, this also updates the
kernel route read functions to supply NULL.
Signed-off-by: David Lamparter <equinox@opensourcerouting.org>
NEXTHOP_TYPE_IPV4 has the ifindex of the route. Pass it
along so the other side can use it if it is needed.
This will make pim much happier in that we will need to do less
recursive lookups.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
There's no need to duplicate the 'vrf_id' and 'name' fields from the 'vrf'
structure into the 'zebra_vrf' structure. Instead of that, add a back
pointer in 'zebra_vrf' that should point to the associated 'vrf' structure.
Additionally, modify the vrf callbacks to pass the whole vrf structure
as a parameter. This allow us to make further simplifications in the code.
Signed-off-by: Renato Westphal <renato@opensourcerouting.org>
Since VRFs can be searched by vrf_id or name, make this explicit in the
helper functions.
s/vrf_lookup/vrf_lookup_by_id/
s/zebra_vrf_lookup/zebra_vrf_lookup_by_id/
Signed-off-by: Renato Westphal <renato@opensourcerouting.org>
As a general rule of thumb, we should write functions that do one thing
and that do it well. All callers of zsend_redistribute_route() are already
checking if the route should be redistributed or not (as the comment
says), so we definitely shouldn't bother with that in this function.
Signed-off-by: Renato Westphal <renato@opensourcerouting.org>
If a command is put into the VIEW_NODE, it is going into the
ENABLE_NODE as well. This is especially true for show commands.
As such if a command is in both consolidate it down to VIEW_NODE.
Signed-off-by: Donald Sharp <sharpd@cumulusnetworks.com>
This patch improves zebra,ripd,ripngd,ospfd and bgpd so that they can
make use of 32-bit route tags in the case of zebra,ospf,bgp or 16-bit
route-tags in the case of ripd,ripngd.
It is based on the following patch:
commit d25764028829a3a30cdbabe85f32408a63cccadf
Author: Paul Jakma <paul.jakma@hpe.com>
Date: Fri Jul 1 14:23:45 2016 +0100
*: Widen width of Zserv routing tag field.
But also contains the changes which make this actually useful for all
the daemons.
Signed-off-by: Christian Franke <chris@opensourcerouting.org>
This feature adds an L3 & L2 VPN application that makes use of the VPN
and Encap SAFIs. This code is currently used to support IETF NVO3 style
operation. In NVO3 terminology it provides the Network Virtualization
Authority (NVA) and the ability to import/export IP prefixes and MAC
addresses from Network Virtualization Edges (NVEs). The code supports
per-NVE tables.
The NVE-NVA protocol used to communicate routing and Ethernet / Layer 2
(L2) forwarding information between NVAs and NVEs is referred to as the
Remote Forwarder Protocol (RFP). OpenFlow is an example RFP. For
general background on NVO3 and RFP concepts see [1]. For information on
Openflow see [2].
RFPs are integrated with BGP via the RF API contained in the new "rfapi"
BGP sub-directory. Currently, only a simple example RFP is included in
Quagga. Developers may use this example as a starting point to integrate
Quagga with an RFP of their choosing, e.g., OpenFlow. The RFAPI code
also supports the ability import/export of routing information between
VNC and customer edge routers (CEs) operating within a virtual
network. Import/export may take place between BGP views or to the
default zebera VRF.
BGP, with IP VPNs and Tunnel Encapsulation, is used to distribute VPN
information between NVAs. BGP based IP VPN support is defined in
RFC4364, BGP/MPLS IP Virtual Private Networks (VPNs), and RFC4659,
BGP-MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPN . Use
of both the Encapsulation Subsequent Address Family Identifier (SAFI)
and the Tunnel Encapsulation Attribute, RFC5512, The BGP Encapsulation
Subsequent Address Family Identifier (SAFI) and the BGP Tunnel
Encapsulation Attribute, are supported. MAC address distribution does
not follow any standard BGB encoding, although it was inspired by the
early IETF EVPN concepts.
The feature is conditionally compiled and disabled by default.
Use the --enable-bgp-vnc configure option to enable.
The majority of this code was authored by G. Paul Ziemba
<paulz@labn.net>.
[1] http://tools.ietf.org/html/draft-ietf-nvo3-nve-nva-cp-req
[2] https://www.opennetworking.org/sdn-resources/technical-library
Now includes changes needed to merge with cmaster-next.