Add a new CLI command `show segment-routing srv6 manager [json]` to
verify the overall SRv6 state. The current output displays only the
configured source address of outer encapsulating IPv6 header. The output
can be extended in the future to show more information, including
summary SRv6 information and supported capabilities.
Example:
```
r1# show segment-routing srv6 manager
Parameters:
Encapsulation:
Source Address:
Configured: fc00:0:1::1
r1# show segment-routing srv6 manager json
{
"parameters":{
"encapsulation":{
"sourceAddress":{
"configured":"fc00:0:1::1"
}
}
}
}
```
Signed-off-by: Carmine Scarpitta <carmine.scarpitta@uniroma2.it>
- Add a new node `SRV6_ENCAP_NODE` to the CLI graph. This node allows
users to configure encapsulation parameters for SRv6, including the
source address of the outer encapsulating IPv6 header.
- Install a new CLI command `source-address` under the
`SRV6_ENCAP_NODE` node. This command is used to configure the source
address of the outer encapsulating IPv6 header.
- Install a new CLI command `no source-address` under the
`SRV6_ENCAP_NODE` node. This command is used to unset the
source address of the outer encapsulating IPv6 header and restore the
default source address.
Examples:
```
router# segment-routing
router(sr)# srv6
router(srv6)# encapsulation
router(srv6-encap)# source-address fc00:0:1::1
```
```
router# segment-routing
router(sr)# srv6
router(srv6)# encapsulation
router(srv6-encap)# no source-address
```
Signed-off-by: Carmine Scarpitta <carmine.scarpitta@uniroma2.it>
Add a bunch of set functions and associated data structure in
zebra_dplane to allow the configuration of the source address for SRv6
encap in the data plane.
Signed-off-by: Carmine Scarpitta <carmine.scarpitta@uniroma2.it>
Generic Netlink is an extension of Netlink meant for kernel-user space
communications. It supports the dynamic allocation of communication
channels. Kernel and user space applications register their services
with a Generic Netlink controller. The Generic Netlink controller is
responsible for assigning a unique channel number with each service.
Clients who want to use a service query the controller to see if
the service exists and to determine the correct channel number. The
channel number is used to access the requested service.
This commit adds the base functionality to get the channel number
assigned to a specific service. More precisely, this commit adds a
function `genl_resolve_family()` that takes the service name (called
family in the Generic Netlink terminology) as an input parameter and
queries the Generic Netlink controller to get the channel number
assigned with the requested service.
Signed-off-by: Carmine Scarpitta <carmine.scarpitta@uniroma2.it>
zebra already supports several Netlink sockets which allow it to
communicate with the kernel. Each Netlink socket has a specific purpose:
we have a socket for incoming events from the kernel, a socket for
programming the dataplane, a socket for the kernel messages, a socket
used as the command channel. All the currently supported sockets are
based on the `NETLINK_ROUTE` protocol.
This commit adds a new Netlink socket that allows zebra to send
commands to the kernel using the `Generic Netlink` protocol.
Signed-off-by: Carmine Scarpitta <carmine.scarpitta@uniroma2.it>
The `netlink_socket()` function is used in many places to create and
initialize Netlink sockets. Currently, it can only create
`NETLINK_ROUTE` Netlink sockets.
This commit generalizes the behavior of the `netlink_socket()` function,
enabling it to generate Netlink sockets of any type. Specifically, it
extends the `netlink_socket()` function with a new argument `nl_family`,
which allows developers to specify the Netlink family of the socket to
be created.
Signed-off-by: Carmine Scarpitta <carmine.scarpitta@uniroma2.it>
The adata variable was being leaked on shutdown since
it was calloc'ed. There is no need to make this dynamic
memory. Just choose a size and use that. Add a bit
of code to ensure that if it's not large enough,
it will just stop and the developer will fix it.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
the zebra pseudo wire code was registering a callback
per vrf. These callbacks are not per vrf based. They
are vrf agnostic so this was a mistake. Modify the code
to on startup register once and on shutdown unregister once.
Finally rename the zebra_pw_init and zebra_pw_exit functions
to more properly reflect when they are called.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
The route entry created when using a ctx to pass route
entry data backup to the master pthread in zebra is
being leaked. Prevent this from happening.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
The NHG_DEL operation is done directly from ZAPI call, whereas
the NHG_ADD operation is done in the rib_nhg meta queue.
This may be problematic when ADD is followed by DEL. Imagine a
scenarion with two protocol NHIDs. <NH1> depends of <NH2> and
<NH3>. The deletion of <NH3> at the protocol level will trigger
2 messages to ZEBRA: NHG_ADD(<NH1>) and NHG_DEL(<NH3>).
Those operations are properly enqueued in ZAPI, but in the end,
the NHG_DEL is executed first. This causes NHG_ADD to unlink an
already freed NHG.
Fix this by consistently enqueuing NHG_DEL and NHG_ADD operations.
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
Add ability for the connected routes to know
if they are a prefix route or not.
sharpd@eva:/work/home/sharpd/frr1$ ip addr show dev dummy1
13: dummy1: <BROADCAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default qlen 1000
link/ether aa:93:ce:ce:3f:62 brd ff:ff:ff:ff:ff:ff
inet 192.168.55.1/24 scope global noprefixroute dummy1
valid_lft forever preferred_lft forever
inet 192.168.56.1/24 scope global dummy1
valid_lft forever preferred_lft forever
inet6 fe80::a893:ceff:fece:3f62/64 scope link
valid_lft forever preferred_lft forever
sharpd@eva:/work/home/sharpd/frr1$ sudo vtysh -c "show int dummy1"
Interface dummy1 is up, line protocol is up
Link ups: 0 last: (never)
Link downs: 0 last: (never)
vrf: default
index 13 metric 0 mtu 1500 speed 0 txqlen 1000
flags: <UP,BROADCAST,RUNNING,NOARP>
Type: Ethernet
HWaddr: aa:93:ce:ce:3f:62
inet 192.168.55.1/24 noprefixroute
inet 192.168.56.1/24
inet6 fe80::a893:ceff:fece:3f62/64
Interface Type Other
Interface Slave Type None
protodown: off
sharpd@eva:/work/home/sharpd/frr1$ sudo vtysh -c "show ip route"
Codes: K - kernel route, C - connected, L - local, S - static,
R - RIP, O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
F - PBR, f - OpenFabric, t - Table-Direct,
> - selected route, * - FIB route, q - queued, r - rejected, b - backup
t - trapped, o - offload failure
K>* 0.0.0.0/0 [0/100] via 192.168.119.1, enp13s0, 00:00:08
K>* 169.254.0.0/16 [0/1000] is directly connected, virbr2 linkdown, 00:00:08
L>* 192.168.44.1/32 is directly connected, dummy2, 00:00:08
L>* 192.168.55.1/32 is directly connected, dummy1, 00:00:08
C>* 192.168.56.0/24 is directly connected, dummy1, 00:00:08
L>* 192.168.56.1/32 is directly connected, dummy1, 00:00:08
L>* 192.168.119.205/32 is directly connected, enp13s0, 00:00:08
sharpd@eva:/work/home/sharpd/frr1$ ip route show
default via 192.168.119.1 dev enp13s0 proto dhcp metric 100
169.254.0.0/16 dev virbr2 scope link metric 1000 linkdown
172.17.0.0/16 dev docker0 proto kernel scope link src 172.17.0.1 linkdown
192.168.45.0/24 dev virbr2 proto kernel scope link src 192.168.45.1 linkdown
192.168.56.0/24 dev dummy1 proto kernel scope link src 192.168.56.1
192.168.119.0/24 dev enp13s0 proto kernel scope link src 192.168.119.205 metric 100
192.168.122.0/24 dev virbr0 proto kernel scope link src 192.168.122.1 linkdown
sharpd@eva:/work/home/sharpd/frr1$ ip route show table 255
local 127.0.0.0/8 dev lo proto kernel scope host src 127.0.0.1
local 127.0.0.1 dev lo proto kernel scope host src 127.0.0.1
broadcast 127.255.255.255 dev lo proto kernel scope link src 127.0.0.1
local 172.17.0.1 dev docker0 proto kernel scope host src 172.17.0.1
broadcast 172.17.255.255 dev docker0 proto kernel scope link src 172.17.0.1 linkdown
local 192.168.44.1 dev dummy2 proto kernel scope host src 192.168.44.1
broadcast 192.168.44.255 dev dummy2 proto kernel scope link src 192.168.44.1
local 192.168.45.1 dev virbr2 proto kernel scope host src 192.168.45.1
broadcast 192.168.45.255 dev virbr2 proto kernel scope link src 192.168.45.1 linkdown
local 192.168.55.1 dev dummy1 proto kernel scope host src 192.168.55.1
broadcast 192.168.55.255 dev dummy1 proto kernel scope link src 192.168.55.1
local 192.168.56.1 dev dummy1 proto kernel scope host src 192.168.56.1
broadcast 192.168.56.255 dev dummy1 proto kernel scope link src 192.168.56.1
local 192.168.119.205 dev enp13s0 proto kernel scope host src 192.168.119.205
broadcast 192.168.119.255 dev enp13s0 proto kernel scope link src 192.168.119.205
local 192.168.122.1 dev virbr0 proto kernel scope host src 192.168.122.1
broadcast 192.168.122.255 dev virbr0 proto kernel scope link src 192.168.122.1 linkdown
Fixes: #14952
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
The linux kernel can send up a flag that tells us that the
connected address is not a PREFIXROUTE. Add the ability
to note this and pass it up from the data plane.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
When allocating big protocol level identifiers, the number range is
big, and when pushing to netlink messages, the first nexthop group
is truncated, whereas the nexthop has been installed on the kernel.
> ubuntu2204(config)# nexthop-group A
> ubuntu2204(config-nh-group)# group 1
> ubuntu2204(config-nh-group)# group 2
> ubuntu2204(config-nh-group)# exi
> ubuntu2204(config)# nexthop-group 1
> ubuntu2204(config-nh-group)# nexthop 192.0.2.130 loop1 enable-proto-nhg-control
> ubuntu2204(config-nh-group)# exi
> ubuntu2204(config)# nexthop-group 2
> ubuntu2204(config-nh-group)# nexthop 192.0.2.131 loop1 enable-proto-nhg-control
> [..]
> 2023/11/24 16:47:40 ZEBRA: [VNMVB-91G3G] _netlink_nexthop_build_group: ID (179687500): group 17968/179687502
> # ip nexthop ls
> id 179687500 group 179687501/179687502 proto 194
Fix this by increasing the buffer size when appending the first number.
Fixes: 8d03bc501b ("zebra: Handle nhg_hash_entry encaps/more debugging")
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
Add three counters that account for the nhg operations
that are using the zebra API with the NHG_ADD and NHG_DEL
commands.
> # show zebra client
> [..]
> Type Add Update Del
> ==================================================
> IPv4 100 0 0
> IPv6 0 0 0
> Redist:v4 0 0 0
> Redist:v6 0 0 0
> NHG 1 1 1
> VRF 3 0 0
> [..]
Signed-off-by: Philippe Guibert <philippe.guibert@6wind.com>
If there happens to be a entry in the zebra rib
that has a lower admin distance then a newly received
re, zebra would not notify the upper level protocol
about this happening. Imagine a case where there
is a connected route for say a /32 and bgp receives
a route from a peer that is the same route as the
connected. Since BGP has no network statement and
perceives the route as being `good` bgp will install
the route into zebra. Zebra will look at the new
bgp re and correctly identify that the re is not
something that it will use and do nothing. This
change notices this and sends up a BETTER_ADMIN_WON
route notification.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Configure hash table cleanup with specific free functions for `zrouter.filter_hash`, `zrouter.qdisc_hash`, and `zrouter.class_hash`.
This ensures proper memory cleanup, addressing memory leaks.
The ASan leak log for reference:
```
***********************************************************************************
Address Sanitizer Error detected in tc_basic.test_tc_basic/r1.asan.zebra.15495
=================================================================
==15495==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 176 byte(s) in 1 object(s) allocated from:
#0 0x7fd5660ffd28 in __interceptor_calloc (/usr/lib/x86_64-linux-gnu/libasan.so.4+0xded28)
#1 0x7fd565afe238 in qcalloc lib/memory.c:105
#2 0x5564521c6c9e in tc_filter_alloc_intern zebra/zebra_tc.c:389
#3 0x7fd565ac49e8 in hash_get lib/hash.c:147
#4 0x5564521c7c74 in zebra_tc_filter_add zebra/zebra_tc.c:409
#5 0x55645210755a in zread_tc_filter zebra/zapi_msg.c:3428
#6 0x5564521127c1 in zserv_handle_commands zebra/zapi_msg.c:4004
#7 0x5564522208b2 in zserv_process_messages zebra/zserv.c:520
#8 0x7fd565b9e034 in event_call lib/event.c:1974
#9 0x7fd565ae142b in frr_run lib/libfrr.c:1214
#10 0x5564520c14b1 in main zebra/main.c:492
#11 0x7fd564ec2c86 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21c86)
Direct leak of 40 byte(s) in 1 object(s) allocated from:
#0 0x7fd5660ffd28 in __interceptor_calloc (/usr/lib/x86_64-linux-gnu/libasan.so.4+0xded28)
#1 0x7fd565afe238 in qcalloc lib/memory.c:105
#2 0x5564521c6c6e in tc_class_alloc_intern zebra/zebra_tc.c:239
#3 0x7fd565ac49e8 in hash_get lib/hash.c:147
#4 0x5564521c784f in zebra_tc_class_add zebra/zebra_tc.c:293
#5 0x556452107ce5 in zread_tc_class zebra/zapi_msg.c:3315
#6 0x5564521127c1 in zserv_handle_commands zebra/zapi_msg.c:4004
#7 0x5564522208b2 in zserv_process_messages zebra/zserv.c:520
#8 0x7fd565b9e034 in event_call lib/event.c:1974
#9 0x7fd565ae142b in frr_run lib/libfrr.c:1214
#10 0x5564520c14b1 in main zebra/main.c:492
#11 0x7fd564ec2c86 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21c86)
Direct leak of 12 byte(s) in 1 object(s) allocated from:
#0 0x7fd5660ffd28 in __interceptor_calloc (/usr/lib/x86_64-linux-gnu/libasan.so.4+0xded28)
#1 0x7fd565afe238 in qcalloc lib/memory.c:105
#2 0x5564521c6c3e in tc_qdisc_alloc_intern zebra/zebra_tc.c:128
#3 0x7fd565ac49e8 in hash_get lib/hash.c:147
#4 0x5564521c753b in zebra_tc_qdisc_install zebra/zebra_tc.c:184
#5 0x556452108203 in zread_tc_qdisc zebra/zapi_msg.c:3286
#6 0x5564521127c1 in zserv_handle_commands zebra/zapi_msg.c:4004
#7 0x5564522208b2 in zserv_process_messages zebra/zserv.c:520
#8 0x7fd565b9e034 in event_call lib/event.c:1974
#9 0x7fd565ae142b in frr_run lib/libfrr.c:1214
#10 0x5564520c14b1 in main zebra/main.c:492
#11 0x7fd564ec2c86 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21c86)
SUMMARY: AddressSanitizer: 228 byte(s) leaked in 3 allocation(s).
***********************************************************************************
```
Signed-off-by: Keelan Cannoo <keelan.cannoo@icloud.com>
Replace `struct list *` with `DLIST(if_connected, ...)`.
NB: while converting this, I found multiple places using connected
prefixes assuming they were IPv4 without checking:
- vrrpd/vrrp.c: vrrp_socket()
- zebra/irdp_interface.c: irdp_get_prefix(), irdp_if_start(),
irdp_advert_off()
(these fixes are really hard to split off into separate commits as that
would require going back and reapplying the change but with the old list
handling)
Signed-off-by: David Lamparter <equinox@opensourcerouting.org>
a) Rename rib_init to zebra_rib_init() to better follow how
things are named
b) on shutdown cycle through the rib_dplane_q and free
up any contexts sitting in it.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
INTERFACE_NAMSIZ is just a redefine of IFNAMSIZ and IFNAMSIZ
is the standard for interface name length on all platforms
that FRR currently compiles on.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
The fpm code path in building a ecmp route for evpn has
a bug that caused it to not add the encap attribute to
the netlink message. See #f0f7b285b99dbd971400d33feea007232c0bd4a9
for the single path case being fixed.
Signed-off-by: Donald Sharp <sharpd@nvidia.com>
Replace several switch blocks that contain every dplane opcode
with simpler sets of if()s. In these cases the code only
uses a couple of opcodes.
Signed-off-by: Mark Stapp <mjs@labn.net>
Fix memory leaks by allocating `json_segs` conditionally on `nexthop->nh_srv6->seg6_segs`.
The previous code allocated memory even when not in use or attached to the JSON tree.
The ASan leak log for reference:
```
Direct leak of 3240 byte(s) in 45 object(s) allocated from:
#0 0x7f6e84a35d28 in __interceptor_calloc (/usr/lib/x86_64-linux-gnu/libasan.so.4+0xded28)
#1 0x7f6e83de9e6f in json_object_new_array (/lib/x86_64-linux-gnu/libjson-c.so.3+0x3e6f)
#2 0x564dcab5c1a6 in vty_show_ip_route zebra/zebra_vty.c:705
#3 0x564dcab5cc71 in do_show_route_helper zebra/zebra_vty.c:955
#4 0x564dcab5d418 in do_show_ip_route zebra/zebra_vty.c:1039
#5 0x564dcab63ee5 in show_route_magic zebra/zebra_vty.c:1878
#6 0x564dcab63ee5 in show_route zebra/zebra_vty_clippy.c:659
#7 0x7f6e843b6fb1 in cmd_execute_command_real lib/command.c:978
#8 0x7f6e843b7475 in cmd_execute_command lib/command.c:1036
#9 0x7f6e843b78f4 in cmd_execute lib/command.c:1203
#10 0x7f6e844dfe3b in vty_command lib/vty.c:594
#11 0x7f6e844e02e6 in vty_execute lib/vty.c:1357
#12 0x7f6e844e8bb7 in vtysh_read lib/vty.c:2365
#13 0x7f6e844d3b7a in event_call lib/event.c:1965
#14 0x7f6e844172b0 in frr_run lib/libfrr.c:1214
#15 0x564dcaa50e81 in main zebra/main.c:488
#16 0x7f6e837f7c86 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21c86)
Indirect leak of 11520 byte(s) in 45 object(s) allocated from:
#0 0x7f6e84a35d28 in __interceptor_calloc (/usr/lib/x86_64-linux-gnu/libasan.so.4+0xded28)
#1 0x7f6e83de88c0 in array_list_new (/lib/x86_64-linux-gnu/libjson-c.so.3+0x28c0)
Indirect leak of 1080 byte(s) in 45 object(s) allocated from:
#0 0x7f6e84a35d28 in __interceptor_calloc (/usr/lib/x86_64-linux-gnu/libasan.so.4+0xded28)
#1 0x7f6e83de8897 in array_list_new (/lib/x86_64-linux-gnu/libjson-c.so.3+0x2897)
```
Signed-off-by: Keelan Cannoo <keelan.cannoo@icloud.com>
Signed-off-by: ryndia <dindyalsarvesh@gmail.com>
a) nl_batch_tx_buf was not being freed
b) the mlag_fifo was not being freed
c) the vrf->ns_ctxt was not being freed
Signed-off-by: Donald Sharp <sharpd@nvidia.com>