Merge pull request #6810 from Orange-OpenSource/link_state

Lib: Add Link State Database
This commit is contained in:
Russ White 2021-01-05 10:25:38 -05:00 committed by GitHub
commit 7e9492a9a6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 2380 additions and 0 deletions

View File

@ -0,0 +1,314 @@
Link State API Documentation
============================
Introduction
------------
The Link State (LS) API aims to provide a set of structures and functions to
build and manage a Traffic Engineering Database for the various FRR daemons.
This API has been designed for several use cases:
- BGP Link State (BGP-LS): where BGP protocol need to collect the link state
information from the routing daemons (IS-IS and/or OSPF) to implement RFC7572
- Path Computation Element (PCE): where path computation algorithms are based
on Traffic Engineering Database
- ReSerVation Protocol (RSVP): where signaling need to know the Traffic
Engineering topology of the network in order to determine the path of
RSVP tunnels
Architecture
------------
The main requirements from the various uses cases are as follow:
- Provides a set of data model and function to ease Link State information
manipulation (storage, serialize, parse ...)
- Ease and normalize Link State information exchange between FRR daemons
- Provides database structure for Traffic Engineering Database (TED)
To ease Link State understanding, FRR daemons have been classified into two
categories:
- **Consumer**: Daemons that consume Link State information e.g. BGPd
- **Producer**: Daemons that are able to collect Link State information and
send them to consumer daemons e.g. OSPFd IS-ISd
Zebra daemon, and more precisely, the ZAPI message is used to convey the Link
State information between *producer* and *consumer*, but, Zebra acts as a
simple pass through and does not store any Link State information. A new ZAPI
**Opaque** message has been design for that purpose.
Each consumer and producer daemons are free to store or not Link State data and
organise the information following the Traffic Engineering Database model
provided by the API or any other data structure e.g. Hash, RB-tree ...
Link State API
--------------
This is the low level API that allows any daemons manipulate the Link State
elements that are stored in the Link State Database.
Data structures
^^^^^^^^^^^^^^^
3 types of Link State structure have been defined:
.. c:type:: struct ls_node
that groups all information related to a node
.. c:type:: struct ls_attributes
that groups all information related to a link
.. c:type:: struct ls_prefix
that groups all information related to a prefix
These 3 types of structures are those handled by BGP-LS (see RFC7752) and
suitable to describe a Traffic Engineering topology.
Each structure, in addition to the specific parameters, embed the node
identifier which advertises the Link State and a bit mask as flags to
indicates which parameters are valid i.e. for which the value is valid and
corresponds to a Link State information conveyed by the routing protocol.
.. c:type:: struct ls_node_id
defines the Node identifier as router ID IPv4 address plus the area ID for
OSPF or the ISO System ID plus the IS-IS level for IS-IS.
Functions
^^^^^^^^^
A set of functions is provided to create, delete and compare Link State Node:
.. c:function:: struct ls_node *ls_node_new(struct ls_node_id adv, struct in_addr router_id, struct in6_addr router6_id)
.. c:function:: voidls_node_del(struct ls_node *node)
.. c:function:: int ls_node_same(struct ls_node *n1, struct ls_node *n2)
and Link State Attributes:
.. c:function:: struct ls_attributes *ls_attributes_new(struct ls_node_id adv, struct in_addr local, struct in6_addr local6, uint32_t local_id)
.. c:function:: void ls_attributes_del(struct ls_attributes *attr)
.. c:function:: int ls_attributes_same(struct ls_attributes *a1, struct ls_attributes *a2)
The low level API doesn't provide any particular functions for the Link State
Prefix structure as this latter is simpler to manipulate.
Link State TED
--------------
This is the high level API that provides functions to create, update, delete a
Link State Database to from a Traffic Engineering Database (TED).
Data Structures
^^^^^^^^^^^^^^^
The Traffic Engineering is modeled as a Graph in order to ease Path Computation
algorithm implementation. Denoted **G(V, E)**, a graph is composed by a list of
**Vertices (V)** which represents the network Node and a list of **Edges (E)**
which represents Link. An additional list of **prefixes (P)** is also added and
also attached to the *Vertex (V)* which advertise it.
*Vertex (V)* contains the list of outgoing *Edges (E)* that connect this Vertex
with its direct neighbors and the list of incoming *Edges (E)* that connect
the direct neighbors to this Vertex. Indeed, the *Edge (E)* is unidirectional,
thus, it is necessary to add 2 Edges to model a bidirectional relation between
2 Vertices. Finally, the *Vertex (V)* contains a pointer to the corresponding
Link State Node.
*Edge (E)* contains the source and destination Vertex that this Edge
is connecting and a pointer to the corresponding Link State Attributes.
A unique Key is used to identify both Vertices and Edges within the Graph.
::
-------------- --------------------------- --------------
| Connected |---->| Connected Edge Va to Vb |--->| Connected |
--->| Vertex | --------------------------- | Vertex |---->
| | | |
| - Key (Va) | | - Key (Vb) |
<---| - Vertex | --------------------------- | - Vertex |<----
| |<----| Connected Edge Vb to Va |<---| |
-------------- --------------------------- --------------
4 data structures have been defined to implement the Graph model:
.. c:type:: struct ls_vertex
.. c:type:: struct ls_edge
.. c:type:: struct ls_prefix
.. c:type:: struct ls_ted
Functions
^^^^^^^^^
.. c:function:: struct ls_vertex *ls_vertex_add(struct ls_ted *ted, struct ls_node *node)
.. c:function:: struct ls_vertex *ls_vertex_update(struct ls_ted *ted, struct ls_node *node)
.. c:function:: void ls_vertex_del(struct ls_ted *ted, struct ls_vertex *vertex)
.. c:function:: struct ls_vertex *ls_find_vertex_by_key(struct ls_ted *ted, const uint64_t key)
.. c:function:: struct ls_vertex *ls_find_vertex_by_id(struct ls_ted *ted, struct ls_node_id id)
.. c:function:: int ls_vertex_same(struct ls_vertex *v1, struct ls_vertex *v2)
.. c:function:: struct ls_edge *ls_edge_add(struct ls_ted *ted, struct ls_attributes *attributes)
.. c:function:: struct ls_edge *ls_edge_update(struct ls_ted *ted, struct ls_attributes *attributes)
.. c:function:: void ls_edge_del(struct ls_ted *ted, struct ls_edge *edge)
.. c:function:: struct ls_edge *ls_find_edge_by_key(struct ls_ted *ted, const uint64_t key)
.. c:function:: struct ls_edge *ls_find_edge_by_source(struct ls_ted *ted, struct ls_attributes *attributes);
.. c:function:: struct ls_edge *ls_find_edge_by_destination(struct ls_ted *ted, struct ls_attributes *attributes);
.. c:function:: struct ls_subnet *ls_subnet_add(struct ls_ted *ted, struct ls_prefix *pref)
.. c:function:: void ls_subnet_del(struct ls_ted *ted, struct ls_subnet *subnet)
.. c:function:: struct ls_subnet *ls_find_subnet(struct ls_ted *ted, const struct prefix prefix)
.. c:function:: struct ls_ted *ls_ted_new(const uint32_t key, char *name, uint32_t asn)
.. c:function:: void ls_ted_del(struct ls_ted *ted)
.. c:function:: void ls_connect_vertices(struct ls_vertex *src, struct ls_vertex *dst, struct ls_edge *edge)
.. c:function:: void ls_connect(struct ls_vertex *vertex, struct ls_edge *edge, bool source)
.. c:function:: void ls_disconnect(struct ls_vertex *vertex, struct ls_edge *edge, bool source)
.. c:function:: void ls_disconnect_edge(struct ls_edge *edge)
Link State Messages
-------------------
This part of the API provides functions and data structure to ease the
communication between the *Producer* and *Consumer* daemons.
Communications principles
^^^^^^^^^^^^^^^^^^^^^^^^^
Recent ZAPI Opaque Message is used to exchange Link State data between daemons.
For that purpose, Link State API provides new functions to serialize and parse
Link State information through the ZAPI Opaque message. A dedicated flag,
named ZAPI_OPAQUE_FLAG_UNICAST, allows daemons to send a unicast or a multicast
Opaque message and is used as follow for the Link State exchange:
- Multicast: To send data update to all daemons that have subscribed to the
Link State Update message
- Unicast: To send initial Link State information from a particular daemon. All
data are send only to the daemon that request Link State Synchronisatio
Figure 1 below, illustrates the ZAPI Opaque message exchange between a
*Producer* (an IGP like OSPF or IS-IS) and a *Consumer* (e.g. BGP). The
message sequences are as follows:
- First, both *Producer* and *Consumer* must register to their respective ZAPI
Opaque Message. **Link State Sync** for the *Producer* in order to receive
Database synchronisation request from a *Consumer*. **Link State Update** for
the *Consumer* in order to received any Link State update from a *Producer*.
These register messages are stored by Zebra to determine to which daemon it
should redistribute the ZAPI messages it receives.
- Then, the *Consumer* sends a **Link State Synchronistation** request with the
Multicast method in order to receive the complete Link State Database from a
*Producer*. ZEBRA daemon forwards this message to any *Producer* daemons that
previously registered to this message. If no *Producer* has yet registered,
the request is lost. Thus, if the *Consumer* receives no response whithin a
given timer, it means that no *Producer* are available right now. So, the
*Consumer* must send the same request until it receives a Link State Database
Synchronistation message. This behaviour is necessary as we can't control in
which order daemons are started. It is up to the *Consumer* daemon to fix the
timeout and the number of retry.
- When a *Producer* receives a **Link State Synchronisation** request, it
starts sending all elements of its own Link State Database through the
**Link State Database Synchronisation** message. These messages are send with
the Unicast method to avoid flooding other daemons with these elements. ZEBRA
layer ensures to forward the message to the right daemon.
- When a *Producer* update its Link State Database, it automatically sends a
**Link State Update** message with the Multicast method. In turn, ZEBRA
daemon forwards the message to all *Consumer* daemons that previously
registered to this message. if no daemon is registered, the message is lost.
- A daemon could unregister from the ZAPI Opaque message registry at any time.
In this case, the ZEBRA daemon stops to forward any messages it receives to
this daemon, even if it was previously converns.
::
IGP ZEBRA Consumer
(OSPF/IS-IS) (ZAPI Opaque Thread) (e.g. BGP)
| | | \
| | Register LS Update | |
| |<----------------------------| Register Phase
| | | |
| | Request LS Sync | |
| |<----------------------------| |
: : : A |
| Register LS Sync | | | |
|----------------------------->| | | /
: : : |TimeOut
: : : |
| | | |
| | Request LS Sync | v \
| Request LS Sync |<----------------------------| |
|<-----------------------------| | Synchronistation
| LS DB Sync | | Phase
|----------------------------->| LS DB Sync | |
| |---------------------------->| |
| LS DB Sync (cont'd) | | |
|----------------------------->| LS DB Sync (cont'd) | |
| . |---------------------------->| |
| . | . | |
| . | . | |
| LS DB Sync (end) | . | |
|----------------------------->| LS DB Sync (end) | |
| |---------------------------->| |
| | | /
: : :
: : :
| LS Update | | \
|----------------------------->| LS Update | |
| |---------------------------->| Update Phase
| | | |
: : : /
: : :
| | | \
| | Unregister LS Update | |
| |<----------------------------| Deregister Phase
| | | |
| LS Update | | |
|----------------------------->| | |
| | | /
| | |
Figure 1: Link State messages exchange
Data Structures
^^^^^^^^^^^^^^^
The Link State Message is defined to convey Link State parameters from
the routing protocol (OSPF or IS-IS) to other daemons e.g. BGP.
.. c:type:: struct ls_message
The structure is composed of:
- Event of the message:
- Sync: Send the whole LS DB following a request
- Add: Send the a new Link State element
- Update: Send an update of an existing Link State element
- Delete: Indicate that the given Link State element is removed
- Type of Link State element: Node, Attribute or Prefix
- Remote node id when known
- Data: Node, Attributes or Prefix
A Link State Message can carry only one Link State Element (Node, Attributes
of Prefix) at once, and only one Link State Message is sent through ZAPI
Opaque Link State type at once.
Functions
^^^^^^^^^
.. c:function:: struct ls_message *ls_parse_msg(struct stream *s)
.. c:function:: int ls_send_msg(struct zclient *zclient, struct ls_message *msg, struct zapi_opaque_reg_info *dst)
.. c:function:: struct ls_message *ls_vertex2msg(struct ls_message *msg, struct ls_vertex *vertex)
.. c:function:: struct ls_message *ls_edge2msg(struct ls_message *msg, struct ls_edge *edge)
.. c:function:: struct ls_message *ls_subnet2msg(struct ls_message *msg, struct ls_subnet *subnet)
.. c:function:: int ls_sync_ted(struct ls_ted *ted, struct zclient *zclient, struct zapi_opaque_reg_info *dst)

1284
lib/link_state.c Normal file

File diff suppressed because it is too large Load Diff

780
lib/link_state.h Normal file
View File

@ -0,0 +1,780 @@
/*
* Link State Database definition - ted.h
*
* Author: Olivier Dugeon <olivier.dugeon@orange.com>
*
* Copyright (C) 2020 Orange http://www.orange.com
*
* This file is part of Free Range Routing (FRR).
*
* FRR is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* FRR is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; see the file COPYING; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _FRR_LINK_STATE_H_
#define _FRR_LINK_STATE_H_
#include "typesafe.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* This file defines the model used to implement a Link State Database
* suitable to be used by various protocol like RSVP-TE, BGP-LS, PCEP ...
* This database is normally fulfill by the link state routing protocol,
* commonly OSPF or ISIS, carrying Traffic Engineering information within
* Link State Attributes. See, RFC3630.(OSPF-TE) and RFC5305 (ISIS-TE).
*
* At least, 3 types of Link State structure are defined:
* - Link State Node that groups all information related to a node
* - Link State Attributes that groups all information related to a link
* - Link State Prefix that groups all information related to a prefix
*
* These 3 types of structures are those handled by BGP-LS (see RFC7752).
*
* Each structure, in addition to the specific parameters, embed the node
* identifier which advertises the Link State and a bit mask as flags to
* indicates which parameters are valid i.e. for which the value corresponds
* to a Link State information convey by the routing protocol.
* Node identifier is composed of the route id as IPv4 address plus the area
* id for OSPF and the ISO System id plus the IS-IS level for IS-IS.
*/
/* Link State Common definitions */
#define MAX_NAME_LENGTH 256
#define ISO_SYS_ID_LEN 6
/* Type of Node */
enum ls_node_type {
STANDARD, /* a P or PE node */
ABR, /* an Array Border Node */
ASBR, /* an Autonomous System Border Node */
PSEUDO, /* a Pseudo Node */
};
/* Origin of the Link State information */
enum ls_origin {NONE = 0, ISIS_L1, ISIS_L2, OSPFv2, DIRECT, STATIC};
/**
* Link State Node Identifier as:
* - IPv4 address + Area ID for OSPF
* - ISO System ID + ISIS Level for ISIS
*/
struct ls_node_id {
enum ls_origin origin; /* Origin of the LS information */
union {
struct {
struct in_addr addr; /* OSPF Router IS */
struct in_addr area_id; /* OSPF Area ID */
} ip;
struct {
uint8_t sys_id[ISO_SYS_ID_LEN]; /* ISIS System ID */
uint8_t level; /* ISIS Level */
uint8_t padding;
} iso;
} id __attribute__((aligned(8)));
};
/* Link State flags to indicate which Node parameters are valid */
#define LS_NODE_UNSET 0x0000
#define LS_NODE_NAME 0x0001
#define LS_NODE_ROUTER_ID 0x0002
#define LS_NODE_ROUTER_ID6 0x0004
#define LS_NODE_FLAG 0x0008
#define LS_NODE_TYPE 0x0010
#define LS_NODE_AS_NUMBER 0x0020
#define LS_NODE_SR 0x0040
#define LS_NODE_SRLB 0x0080
#define LS_NODE_MSD 0x0100
/* Link State Node structure */
struct ls_node {
uint16_t flags; /* Flag for parameters validity */
struct ls_node_id adv; /* Adv. Router of this Link State */
char name[MAX_NAME_LENGTH]; /* Name of the Node (IS-IS only) */
struct in_addr router_id; /* IPv4 Router ID */
struct in6_addr router6_id; /* IPv6 Router ID */
uint8_t node_flag; /* IS-IS or OSPF Node flag */
enum node_type type; /* Type of Node */
uint32_t as_number; /* Local or neighbor AS number */
struct { /* Segment Routing Global Block */
uint32_t lower_bound; /* MPLS label lower bound */
uint32_t range_size; /* MPLS label range size */
uint8_t flag; /* IS-IS SRGB flags */
} srgb;
#define LS_NODE_SRGB_SIZE 9
struct { /* Segment Routing Local Block */
uint32_t lower_bound; /* MPLS label lower bound */
uint32_t range_size; /* MPLS label range size */
} srlb;
#define LS_NODE_SRLB_SIZE 8
uint8_t algo[2]; /* Segment Routing Algorithms */
uint8_t msd; /* Maximum Stack Depth */
};
/* Link State flags to indicate which Attribute parameters are valid */
#define LS_ATTR_UNSET 0x00000000
#define LS_ATTR_NAME 0x00000001
#define LS_ATTR_METRIC 0x00000002
#define LS_ATTR_TE_METRIC 0x00000004
#define LS_ATTR_ADM_GRP 0x00000008
#define LS_ATTR_LOCAL_ADDR 0x00000010
#define LS_ATTR_NEIGH_ADDR 0x00000020
#define LS_ATTR_LOCAL_ADDR6 0x00000040
#define LS_ATTR_NEIGH_ADDR6 0x00000080
#define LS_ATTR_LOCAL_ID 0x00000100
#define LS_ATTR_NEIGH_ID 0x00000200
#define LS_ATTR_MAX_BW 0x00000400
#define LS_ATTR_MAX_RSV_BW 0x00000800
#define LS_ATTR_UNRSV_BW 0x00001000
#define LS_ATTR_REMOTE_AS 0x00002000
#define LS_ATTR_REMOTE_ADDR 0x00004000
#define LS_ATTR_REMOTE_ADDR6 0x00008000
#define LS_ATTR_DELAY 0x00010000
#define LS_ATTR_MIN_MAX_DELAY 0x00020000
#define LS_ATTR_JITTER 0x00040000
#define LS_ATTR_PACKET_LOSS 0x00080000
#define LS_ATTR_AVA_BW 0x00100000
#define LS_ATTR_RSV_BW 0x00200000
#define LS_ATTR_USE_BW 0x00400000
#define LS_ATTR_ADJ_SID 0x00800000
#define LS_ATTR_BCK_ADJ_SID 0x01000000
#define LS_ATTR_SRLG 0x02000000
/* Link State Attributes */
struct ls_attributes {
uint32_t flags; /* Flag for parameters validity */
struct ls_node_id adv; /* Adv. Router of this Link State */
char name[MAX_NAME_LENGTH]; /* Name of the Edge. Could be null */
struct { /* Standard TE metrics */
uint32_t metric; /* IGP standard metric */
uint32_t te_metric; /* Traffic Engineering metric */
uint32_t admin_group; /* Administrative Group */
struct in_addr local; /* Local IPv4 address */
struct in_addr remote; /* Remote IPv4 address */
struct in6_addr local6; /* Local IPv6 address */
struct in6_addr remote6; /* Remote IPv6 address */
uint32_t local_id; /* Local Identifier */
uint32_t remote_id; /* Remote Identifier */
float max_bw; /* Maximum Link Bandwidth */
float max_rsv_bw; /* Maximum Reservable BW */
float unrsv_bw[8]; /* Unreserved BW per CT (8) */
uint32_t remote_as; /* Remote AS number */
struct in_addr remote_addr; /* Remote IPv4 address */
struct in6_addr remote_addr6; /* Remote IPv6 address */
} standard;
#define LS_ATTR_STANDARD_SIZE 124
struct { /* Extended TE Metrics */
uint32_t delay; /* Unidirectional average delay */
uint32_t min_delay; /* Unidirectional minimum delay */
uint32_t max_delay; /* Unidirectional maximum delay */
uint32_t jitter; /* Unidirectional delay variation */
uint32_t pkt_loss; /* Unidirectional packet loss */
float ava_bw; /* Available Bandwidth */
float rsv_bw; /* Reserved Bandwidth */
float used_bw; /* Utilized Bandwidth */
} extended;
#define LS_ATTR_EXTENDED_SIZE 32
struct { /* (LAN)-Adjacency SID for OSPF */
uint32_t sid; /* SID as MPLS label or index */
uint8_t flags; /* Flags */
uint8_t weight; /* Administrative weight */
union {
struct in_addr addr; /* Neighbor @IP for OSPF */
uint8_t sysid[ISO_SYS_ID_LEN]; /* or Sys-ID for ISIS */
} neighbor;
} adj_sid[2]; /* Primary & Backup (LAN)-Adj. SID */
#define LS_ATTR_ADJ_SID_SIZE 120
uint32_t *srlgs; /* List of Shared Risk Link Group */
uint8_t srlg_len; /* number of SRLG in the list */
};
/* Link State flags to indicate which Prefix parameters are valid */
#define LS_PREF_UNSET 0x00
#define LS_PREF_IGP_FLAG 0x01
#define LS_PREF_ROUTE_TAG 0x02
#define LS_PREF_EXTENDED_TAG 0x04
#define LS_PREF_METRIC 0x08
#define LS_PREF_SR 0x10
/* Link State Prefix */
struct ls_prefix {
uint8_t flags; /* Flag for parameters validity */
struct ls_node_id adv; /* Adv. Router of this Link State */
struct prefix pref; /* IPv4 or IPv6 prefix */
uint8_t igp_flag; /* IGP Flags associated to the prefix */
uint32_t route_tag; /* IGP Route Tag */
uint64_t extended_tag; /* IGP Extended Route Tag */
uint32_t metric; /* Route metric for this prefix */
struct {
uint32_t sid; /* Segment Routing ID */
uint8_t sid_flag; /* Segment Routing Flags */
uint8_t algo; /* Algorithm for Segment Routing */
} sr;
};
/**
* Create a new Link State Node. Structure is dynamically allocated.
*
* @param adv Mandatory Link State Node ID i.e. advertise router information
* @param rid Router ID as IPv4 address
* @param rid6 Router ID as IPv6 address
*
* @return New Link State Node
*/
extern struct ls_node *ls_node_new(struct ls_node_id adv, struct in_addr rid,
struct in6_addr rid6);
/**
* Remove Link State Node. Data structure is freed.
*
* @param node Pointer to a valid Link State Node structure
*/
extern void ls_node_del(struct ls_node *node);
/**
* Check if two Link State Nodes are equal. Note that this routine has the same
* return value sense as '==' (which is different from a comparison).
*
* @param n1 First Link State Node to be compare
* @param n2 Second Link State Node to be compare
*
* @return 1 if equal, 0 otherwise
*/
extern int ls_node_same(struct ls_node *n1, struct ls_node *n2);
/**
* Create a new Link State Attributes. Structure is dynamically allocated.
* At least one of parameters MUST be valid and not equal to 0.
*
* @param adv Mandatory Link State Node ID i.e. advertise router ID
* @param local Local IPv4 address
* @param local6 Local Ipv6 address
* @param local_id Local Identifier
*
* @return New Link State Attributes
*/
extern struct ls_attributes *ls_attributes_new(struct ls_node_id adv,
struct in_addr local,
struct in6_addr local6,
uint32_t local_id);
/**
* Remove Link State Attributes. Data structure is freed.
*
* @param attr Pointer to a valid Link State Attribute structure
*/
extern void ls_attributes_del(struct ls_attributes *attr);
/**
* Check if two Link State Attributes are equal. Note that this routine has the
* same return value sense as '==' (which is different from a comparison).
*
* @param a1 First Link State Attributes to be compare
* @param a2 Second Link State Attributes to be compare
*
* @return 1 if equal, 0 otherwise
*/
extern int ls_attributes_same(struct ls_attributes *a1,
struct ls_attributes *a2);
/**
* In addition a Graph model is defined as an overlay on top of link state
* database in order to ease Path Computation algorithm implementation.
* Denoted G(V, E), a graph is composed by a list of Vertices (V) which
* represents the network Node and a list of Edges (E) which represents node
* Link. An additional list of prefixes (P) is also added.
* A prefix (P) is also attached to the Vertex (V) which advertise it.
*
* Vertex (V) contains the list of outgoing Edges (E) that connect this Vertex
* with its direct neighbors and the list of incoming Edges (E) that connect
* the direct neighbors to this Vertex. Indeed, the Edge (E) is unidirectional,
* thus, it is necessary to add 2 Edges to model a bidirectional relation
* between 2 Vertices.
*
* Edge (E) contains the source and destination Vertex that this Edge
* is connecting.
*
* A unique Key is used to identify both Vertices and Edges within the Graph.
* An easy way to build this key is to used the IP address: i.e. loopback
* address for Vertices and link IP address for Edges.
*
* -------------- --------------------------- --------------
* | Connected |---->| Connected Edge Va to Vb |--->| Connected |
* --->| Vertex | --------------------------- | Vertex |---->
* | | | |
* | - Key (Va) | | - Key (Vb) |
* <---| - Vertex | --------------------------- | - Vertex |<----
* | |<----| Connected Edge Vb to Va |<---| |
* -------------- --------------------------- --------------
*
*/
/* Link State Vertex structure */
PREDECL_RBTREE_UNIQ(vertices)
struct ls_vertex {
struct vertices_item entry; /* Entry in RB Tree */
uint64_t key; /* Unique Key identifier */
struct ls_node *node; /* Link State Node */
struct list *incoming_edges; /* List of incoming Link State links */
struct list *outgoing_edges; /* List of outgoing Link State links */
struct list *prefixes; /* List of advertised prefix */
};
/* Link State Edge structure */
PREDECL_RBTREE_UNIQ(edges)
struct ls_edge {
struct edges_item entry; /* Entry in RB tree */
uint64_t key; /* Unique Key identifier */
struct ls_attributes *attributes; /* Link State attributes */
struct ls_vertex *source; /* Pointer to the source Vertex */
struct ls_vertex *destination; /* Pointer to the destination Vertex */
};
/* Link State Subnet structure */
PREDECL_RBTREE_UNIQ(subnets)
struct ls_subnet {
struct subnets_item entry; /* Entry in RB tree */
struct prefix key; /* Unique Key identifier */
struct ls_vertex *vertex; /* Back pointer to the Vertex owner */
struct ls_prefix *ls_pref; /* Link State Prefix */
};
/* Declaration of Vertices, Edges and Prefixes RB Trees */
macro_inline int vertex_cmp(const struct ls_vertex *node1,
const struct ls_vertex *node2)
{
return (node1->key - node2->key);
}
DECLARE_RBTREE_UNIQ(vertices, struct ls_vertex, entry, vertex_cmp)
macro_inline int edge_cmp(const struct ls_edge *edge1,
const struct ls_edge *edge2)
{
return (edge1->key - edge2->key);
}
DECLARE_RBTREE_UNIQ(edges, struct ls_edge, entry, edge_cmp)
macro_inline int subnet_cmp(const struct ls_subnet *a,
const struct ls_subnet *b)
{
return prefix_cmp(&a->key, &b->key);
}
DECLARE_RBTREE_UNIQ(subnets, struct ls_subnet, entry, subnet_cmp)
/* Link State TED Structure */
struct ls_ted {
uint32_t key; /* Unique identifier */
char name[MAX_NAME_LENGTH]; /* Name of this graph. Could be null */
uint32_t as_number; /* AS number of the modeled network */
struct ls_vertex *self; /* Vertex of the FRR instance */
struct vertices_head vertices; /* List of Vertices */
struct edges_head edges; /* List of Edges */
struct subnets_head subnets; /* List of Subnets */
};
/**
* Create a new Link State Vertex structure and initialize is with the Link
* State Node parameter.
*
* @param node Link State Node
*
* @return New Vertex
*/
extern struct ls_vertex *ls_vertex_new(struct ls_node *node);
/**
* Delete Link State Vertex. This function clean internal Vertex lists (incoming
* and outgoing Link State Edge and Link State Subnet). Note that referenced
* objects of the different lists (Edges & SubNet) are not removed as they could
* be connected to other Vertices.
*
* @param vertex Link State Vertex to be removed
*/
extern void ls_vertex_del(struct ls_vertex *vertex);
/**
* Add new vertex to the Link State DB. Vertex is created from the Link State
* Node. Vertex data structure is dynamically allocated.
*
* @param ted Traffic Engineering Database structure
* @param node Link State Node
*
* @return New Vertex or NULL in case of error
*/
extern struct ls_vertex *ls_vertex_add(struct ls_ted *ted,
struct ls_node *node);
/**
* Update Vertex with the Link State Node. A new vertex is created if no one
* corresponds to the Link State Node.
*
* @param ted Link State Data Base
* @param node Link State Node to be updated
*
* @return Updated Link State Vertex or Null in case of error
*/
extern struct ls_vertex *ls_vertex_update(struct ls_ted *ted,
struct ls_node *node);
/**
* Remove Vertex from the Link State DB. Vertex Data structure is freed but
* not the Link State Node. Link State DB is not modified if Vertex is NULL or
* not found in the Data Base.
*
* @param ted Link State Data Base
* @param vertex Vertex to be removed
*/
extern void ls_vertex_remove(struct ls_ted *ted, struct ls_vertex *vertex);
/**
* Find Vertex in the Link State DB by its unique key.
*
* @param ted Link State Data Base
* @param key Vertex Key different from 0
*
* @return Vertex if found, NULL otherwise
*/
extern struct ls_vertex *ls_find_vertex_by_key(struct ls_ted *ted,
const uint64_t key);
/**
* Find Vertex in the Link State DB by its Link State Node.
*
* @param ted Link State Data Base
* @param nid Link State Node ID
*
* @return Vertex if found, NULL otherwise
*/
extern struct ls_vertex *ls_find_vertex_by_id(struct ls_ted *ted,
struct ls_node_id nid);
/**
* Check if two Vertices are equal. Note that this routine has the same return
* value sense as '==' (which is different from a comparison).
*
* @param v1 First vertex to compare
* @param v2 Second vertex to compare
*
* @return 1 if equal, 0 otherwise
*/
extern int ls_vertex_same(struct ls_vertex *v1, struct ls_vertex *v2);
/**
* Add new Edge to the Link State DB. Edge is created from the Link State
* Attributes. Edge data structure is dynamically allocated.
*
* @param ted Link State Data Base
* @param attributes Link State attributes
*
* @return New Edge or NULL in case of error
*/
extern struct ls_edge *ls_edge_add(struct ls_ted *ted,
struct ls_attributes *attributes);
/**
* Update the Link State Attributes information of an existing Edge. If there is
* no corresponding Edge in the Link State Data Base, a new Edge is created.
*
* @param ted Link State Data Base
* @param attributes Link State Attributes
*
* @return Updated Link State Edge, or NULL in case of error
*/
extern struct ls_edge *ls_edge_update(struct ls_ted *ted,
struct ls_attributes *attributes);
/**
* Remove Edge from the Link State DB. Edge data structure is freed but not the
* Link State Attributes data structure. Link State DB is not modified if Edge
* is NULL or not found in the Data Base.
*
* @param ted Link State Data Base
* @param edge Edge to be removed
*/
extern void ls_edge_del(struct ls_ted *ted, struct ls_edge *edge);
/**
* Find Edge in the Link State Data Base by Edge key.
*
* @param ted Link State Data Base
* @param key Edge key
*
* @return Edge if found, NULL otherwise
*/
extern struct ls_edge *ls_find_edge_by_key(struct ls_ted *ted,
const uint64_t key);
/**
* Find Edge in the Link State Data Base by the source (local IPv4 or IPv6
* address or local ID) informations of the Link
* State Attributes
*
* @param ted Link State Data Base
* @param attributes Link State Attributes
*
* @return Edge if found, NULL otherwise
*/
extern struct ls_edge *
ls_find_edge_by_source(struct ls_ted *ted, struct ls_attributes *attributes);
/**
* Find Edge in the Link State Data Base by the destination (remote IPv4 or IPv6
* address of remote ID) information of the Link State Attributes
*
* @param ted Link State Data Base
* @param attributes Link State Attributes
*
* @return Edge if found, NULL otherwise
*/
extern struct ls_edge *
ls_find_edge_by_destination(struct ls_ted *ted,
struct ls_attributes *attributes);
/**
* Add new Subnet to the Link State DB. Subnet is created from the Link State
* prefix. Subnet data structure is dynamically allocated.
*
* @param ted Link State Data Base
* @param pref Link State Prefix
*
* @return New Subnet
*/
extern struct ls_subnet *ls_subnet_add(struct ls_ted *ted,
struct ls_prefix *pref);
/**
* Remove Subnet from the Link State DB. Subnet data structure is freed but
* not the Link State prefix data structure. Link State DB is not modified
* if Subnet is NULL or not found in the Data Base.
*
* @param ted Link State Data Base
* @param subnet Subnet to be removed
*/
extern void ls_subnet_del(struct ls_ted *ted, struct ls_subnet *subnet);
/**
* Find Subnet in the Link State Data Base by prefix.
*
* @param ted Link State Data Base
* @param prefix Link State Prefix
*
* @return Subnet if found, NULL otherwise
*/
extern struct ls_subnet *ls_find_subnet(struct ls_ted *ted,
const struct prefix prefix);
/**
* Create a new Link State Data Base.
*
* @param key Unique key of the data base. Must be different from 0
* @param name Name of the data base (may be NULL)
* @param asn AS Number for this data base. Must be different from 0
*
* @return New Link State Database or NULL in case of error
*/
extern struct ls_ted *ls_ted_new(const uint32_t key, const char *name,
uint32_t asn);
/**
* Delete existing Link State Data Base.
*
* @param ted Link State Data Base
*/
extern void ls_ted_del(struct ls_ted *ted);
/**
* Connect Source and Destination Vertices by given Edge. Only non NULL source
* and destination vertices are connected.
*
* @param src Link State Source Vertex
* @param dst Link State Destination Vertex
* @param edge Link State Edge. Must not be NULL
*/
extern void ls_connect_vertices(struct ls_vertex *src, struct ls_vertex *dst,
struct ls_edge *edge);
/**
* Connect Link State Edge to the Link State Vertex which could be a Source or
* a Destination Vertex.
*
* @param vertex Link State Vertex to be connected. Must not be NULL
* @param edge Link State Edge connection. Must not be NULL
* @param source True for a Source, false for a Destination Vertex
*/
extern void ls_connect(struct ls_vertex *vertex, struct ls_edge *edge,
bool source);
/**
* Disconnect Link State Edge from the Link State Vertex which could be a
* Source or a Destination Vertex.
*
* @param vertex Link State Vertex to be connected. Must not be NULL
* @param edge Link State Edge connection. Must not be NULL
* @param source True for a Source, false for a Destination Vertex
*/
extern void ls_disconnect(struct ls_vertex *vertex, struct ls_edge *edge,
bool source);
/**
* Disconnect Link State Edge from both Source and Destination Vertex.
*
* @param edge Link State Edge to be disconnected
*/
extern void ls_disconnect_edge(struct ls_edge *edge);
/**
* The Link State Message is defined to convey Link State parameters from
* the routing protocol (OSPF or IS-IS) to other daemons e.g. BGP.
*
* The structure is composed of:
* - Event of the message:
* - Sync: Send the whole LS DB following a request
* - Add: Send the a new Link State element
* - Update: Send an update of an existing Link State element
* - Delete: Indicate that the given Link State element is removed
* - Type of Link State element: Node, Attribute or Prefix
* - Remote node id when known
* - Data: Node, Attributes or Prefix
*
* A Link State Message can carry only one Link State Element (Node, Attributes
* of Prefix) at once, and only one Link State Message is sent through ZAPI
* Opaque Link State type at once.
*/
/* ZAPI Opaque Link State Message Event */
#define LS_MSG_EVENT_SYNC 1
#define LS_MSG_EVENT_ADD 2
#define LS_MSG_EVENT_UPDATE 3
#define LS_MSG_EVENT_DELETE 4
/* ZAPI Opaque Link State Message sub-Type */
#define LS_MSG_TYPE_NODE 1
#define LS_MSG_TYPE_ATTRIBUTES 2
#define LS_MSG_TYPE_PREFIX 3
/* Link State Message */
struct ls_message {
uint8_t event; /* Message Event: Sync, Add, Update, Delete */
uint8_t type; /* Message Data Type: Node, Attribute, Prefix */
struct ls_node_id remote_id; /* Remote Link State Node ID */
union {
struct ls_node *node; /* Link State Node */
struct ls_attributes *attr; /* Link State Attributes */
struct ls_prefix *prefix; /* Link State Prefix */
} data;
};
/**
* Parse Link State Message from stream. Used this function once receiving a
* new ZAPI Opaque message of type Link State.
*
* @param s Stream buffer. Must not be NULL.
*
* @return New Link State Message or NULL in case of error
*/
extern struct ls_message *ls_parse_msg(struct stream *s);
/**
* Delete existing message, freeing all substructure.
*
* @param msg Link state message to be deleted
*/
extern void ls_delete_msg(struct ls_message *msg);
/**
* Send Link State Message as new ZAPI Opaque message of type Link State.
* If destination is not NULL, message is sent as Unicast otherwise it is
* broadcast to all registered daemon.
*
* @param zclient Zebra Client
* @param msg Link State Message to be sent
* @param dst Destination daemon for unicast message,
* NULL for broadcast message
*
* @return 0 on success, -1 otherwise
*/
extern int ls_send_msg(struct zclient *zclient, struct ls_message *msg,
struct zapi_opaque_reg_info *dst);
/**
* Create a new Link State Message from a Link State Vertex. If Link State
* Message is NULL, a new data structure is dynamically allocated.
*
* @param msg Link State Message to be filled or NULL
* @param vertex Link State Vertex. Must not be NULL
*
* @return New Link State Message msg parameter is NULL or pointer
* to the provided Link State Message
*/
extern struct ls_message *ls_vertex2msg(struct ls_message *msg,
struct ls_vertex *vertex);
/**
* Create a new Link State Message from a Link State Edge. If Link State
* Message is NULL, a new data structure is dynamically allocated.
*
* @param msg Link State Message to be filled or NULL
* @param edge Link State Edge. Must not be NULL
*
* @return New Link State Message msg parameter is NULL or pointer
* to the provided Link State Message
*/
extern struct ls_message *ls_edge2msg(struct ls_message *msg,
struct ls_edge *edge);
/**
* Create a new Link State Message from a Link State Subnet. If Link State
* Message is NULL, a new data structure is dynamically allocated.
*
* @param msg Link State Message to be filled or NULL
* @param subnet Link State Subnet. Must not be NULL
*
* @return New Link State Message msg parameter is NULL or pointer
* to the provided Link State Message
*/
extern struct ls_message *ls_subnet2msg(struct ls_message *msg,
struct ls_subnet *subnet);
/**
* Send all the content of the Link State Data Base to the given destination.
* Link State content is sent is this order: Vertices, Edges, Subnet.
* This function must be used when a daemon request a Link State Data Base
* Synchronization.
*
* @param ted Link State Data Base. Must not be NULL
* @param zclient Zebra Client. Must not be NULL
* @param dst Destination FRR daemon. Must not be NULL
*
* @return 0 on success, -1 otherwise
*/
extern int ls_sync_ted(struct ls_ted *ted, struct zclient *zclient,
struct zapi_opaque_reg_info *dst);
/**
* Dump all Link State Data Base elements for debugging purposes
*
* @param ted Link State Data Base. Must not be NULL
*
*/
extern void ls_dump_ted(struct ls_ted *ted);
#ifdef __cplusplus
}
#endif
#endif /* _FRR_LINK_STATE_H_ */

View File

@ -48,6 +48,7 @@ lib_libfrr_la_SOURCES = \
lib/libfrr.c \
lib/libfrr_trace.c \
lib/linklist.c \
lib/link_state.c \
lib/log.c \
lib/log_filter.c \
lib/log_vty.c \
@ -208,6 +209,7 @@ pkginclude_HEADERS += \
lib/libfrr_trace.h \
lib/libospf.h \
lib/linklist.h \
lib/link_state.h \
lib/log.h \
lib/log_vty.h \
lib/md5.h \