mirror of
				https://git.proxmox.com/git/mirror_edk2
				synced 2025-10-31 01:16:21 +00:00 
			
		
		
		
	 65ed9d7ff5
			
		
	
	
		65ed9d7ff5
		
	
	
	
	
		
			
			Resolve mainly 'misleading indentation', but also one 'defined but not used' warning when building with GCC 6 (using GCC5 profile). Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org> Reviewed-by: Jaben Carsey <jaben.carsey@intel.com>
		
			
				
	
	
		
			822 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			822 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* $NetBSD: dtoa.c,v 1.3.4.1.4.1 2008/04/08 21:10:55 jdc Exp $ */
 | |
| 
 | |
| /****************************************************************
 | |
| 
 | |
| The author of this software is David M. Gay.
 | |
| 
 | |
| Copyright (C) 1998, 1999 by Lucent Technologies
 | |
| All Rights Reserved
 | |
| 
 | |
| Permission to use, copy, modify, and distribute this software and
 | |
| its documentation for any purpose and without fee is hereby
 | |
| granted, provided that the above copyright notice appear in all
 | |
| copies and that both that the copyright notice and this
 | |
| permission notice and warranty disclaimer appear in supporting
 | |
| documentation, and that the name of Lucent or any of its entities
 | |
| not be used in advertising or publicity pertaining to
 | |
| distribution of the software without specific, written prior
 | |
| permission.
 | |
| 
 | |
| LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
 | |
| INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
 | |
| IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
 | |
| SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | |
| WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
 | |
| IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
 | |
| ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
 | |
| THIS SOFTWARE.
 | |
| 
 | |
| ****************************************************************/
 | |
| 
 | |
| /* Please send bug reports to David M. Gay (dmg at acm dot org,
 | |
|  * with " at " changed at "@" and " dot " changed to ".").  */
 | |
| #include  <LibConfig.h>
 | |
| 
 | |
| #include "gdtoaimp.h"
 | |
| 
 | |
| /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
 | |
|  *
 | |
|  * Inspired by "How to Print Floating-Point Numbers Accurately" by
 | |
|  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
 | |
|  *
 | |
|  * Modifications:
 | |
|  *  1. Rather than iterating, we use a simple numeric overestimate
 | |
|  *     to determine k = floor(log10(d)).  We scale relevant
 | |
|  *     quantities using O(log2(k)) rather than O(k) multiplications.
 | |
|  *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
 | |
|  *     try to generate digits strictly left to right.  Instead, we
 | |
|  *     compute with fewer bits and propagate the carry if necessary
 | |
|  *     when rounding the final digit up.  This is often faster.
 | |
|  *  3. Under the assumption that input will be rounded nearest,
 | |
|  *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
 | |
|  *     That is, we allow equality in stopping tests when the
 | |
|  *     round-nearest rule will give the same floating-point value
 | |
|  *     as would satisfaction of the stopping test with strict
 | |
|  *     inequality.
 | |
|  *  4. We remove common factors of powers of 2 from relevant
 | |
|  *     quantities.
 | |
|  *  5. When converting floating-point integers less than 1e16,
 | |
|  *     we use floating-point arithmetic rather than resorting
 | |
|  *     to multiple-precision integers.
 | |
|  *  6. When asked to produce fewer than 15 digits, we first try
 | |
|  *     to get by with floating-point arithmetic; we resort to
 | |
|  *     multiple-precision integer arithmetic only if we cannot
 | |
|  *     guarantee that the floating-point calculation has given
 | |
|  *     the correctly rounded result.  For k requested digits and
 | |
|  *     "uniformly" distributed input, the probability is
 | |
|  *     something like 10^(k-15) that we must resort to the Long
 | |
|  *     calculation.
 | |
|  */
 | |
| 
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
| #define Rounding rounding
 | |
| #undef Check_FLT_ROUNDS
 | |
| #define Check_FLT_ROUNDS
 | |
| #else
 | |
| #define Rounding Flt_Rounds
 | |
| #endif
 | |
| 
 | |
| #if defined(_MSC_VER)           /* Handle Microsoft VC++ compiler specifics. */
 | |
| // Disable: warning C4700: uninitialized local variable 'xx' used
 | |
| #pragma warning ( disable : 4700 )
 | |
| #endif  /* defined(_MSC_VER) */
 | |
| 
 | |
|  char *
 | |
| dtoa
 | |
| #ifdef KR_headers
 | |
|   (d, mode, ndigits, decpt, sign, rve)
 | |
|   double d; int mode, ndigits, *decpt, *sign; char **rve;
 | |
| #else
 | |
|   (double d, int mode, int ndigits, int *decpt, int *sign, char **rve)
 | |
| #endif
 | |
| {
 | |
|  /* Arguments ndigits, decpt, sign are similar to those
 | |
|   of ecvt and fcvt; trailing zeros are suppressed from
 | |
|   the returned string.  If not null, *rve is set to point
 | |
|   to the end of the return value.  If d is +-Infinity or NaN,
 | |
|   then *decpt is set to 9999.
 | |
| 
 | |
|   mode:
 | |
|     0 ==> shortest string that yields d when read in
 | |
|       and rounded to nearest.
 | |
|     1 ==> like 0, but with Steele & White stopping rule;
 | |
|       e.g. with IEEE P754 arithmetic , mode 0 gives
 | |
|       1e23 whereas mode 1 gives 9.999999999999999e22.
 | |
|     2 ==> max(1,ndigits) significant digits.  This gives a
 | |
|       return value similar to that of ecvt, except
 | |
|       that trailing zeros are suppressed.
 | |
|     3 ==> through ndigits past the decimal point.  This
 | |
|       gives a return value similar to that from fcvt,
 | |
|       except that trailing zeros are suppressed, and
 | |
|       ndigits can be negative.
 | |
|     4,5 ==> similar to 2 and 3, respectively, but (in
 | |
|       round-nearest mode) with the tests of mode 0 to
 | |
|       possibly return a shorter string that rounds to d.
 | |
|       With IEEE arithmetic and compilation with
 | |
|       -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
 | |
|       as modes 2 and 3 when FLT_ROUNDS != 1.
 | |
|     6-9 ==> Debugging modes similar to mode - 4:  don't try
 | |
|       fast floating-point estimate (if applicable).
 | |
| 
 | |
|     Values of mode other than 0-9 are treated as mode 0.
 | |
| 
 | |
|     Sufficient space is allocated to the return value
 | |
|     to hold the suppressed trailing zeros.
 | |
|   */
 | |
| 
 | |
|   int bbits, b2, b5, be, dig, i, ieps, ilim0,
 | |
|     j, jj1, k, k0, k_check, leftright, m2, m5, s2, s5,
 | |
|     spec_case, try_quick;
 | |
|   int ilim = 0, ilim1 = 0; /* pacify gcc */
 | |
|   Long L;
 | |
| #ifndef Sudden_Underflow
 | |
|   int denorm;
 | |
|   ULong x;
 | |
| #endif
 | |
|   Bigint *b, *b1, *delta, *mhi, *S;
 | |
|   Bigint *mlo = NULL; /* pacify gcc */
 | |
|   double d2, ds, eps;
 | |
|   char *s, *s0;
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|   int rounding;
 | |
| #endif
 | |
| #ifdef SET_INEXACT
 | |
|   int inexact, oldinexact;
 | |
| #endif
 | |
| 
 | |
| #ifndef MULTIPLE_THREADS
 | |
|   if (dtoa_result) {
 | |
|     freedtoa(dtoa_result);
 | |
|     dtoa_result = 0;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|   if (word0(d) & Sign_bit) {
 | |
|     /* set sign for everything, including 0's and NaNs */
 | |
|     *sign = 1;
 | |
|     word0(d) &= ~Sign_bit;  /* clear sign bit */
 | |
|     }
 | |
|   else
 | |
|     *sign = 0;
 | |
| 
 | |
| #if defined(IEEE_Arith) + defined(VAX)
 | |
| #ifdef IEEE_Arith
 | |
|   if ((word0(d) & Exp_mask) == Exp_mask)
 | |
| #else
 | |
|   if (word0(d)  == 0x8000)
 | |
| #endif
 | |
|     {
 | |
|     /* Infinity or NaN */
 | |
|     *decpt = 9999;
 | |
| #ifdef IEEE_Arith
 | |
|     if (!word1(d) && !(word0(d) & 0xfffff))
 | |
|       return nrv_alloc("Infinity", rve, 8);
 | |
| #endif
 | |
|     return nrv_alloc("NaN", rve, 3);
 | |
|     }
 | |
| #endif
 | |
| #ifdef IBM
 | |
|   dval(d) += 0; /* normalize */
 | |
| #endif
 | |
|   if (!dval(d)) {
 | |
|     *decpt = 1;
 | |
|     return nrv_alloc("0", rve, 1);
 | |
|     }
 | |
| 
 | |
| #ifdef SET_INEXACT
 | |
|   try_quick = oldinexact = get_inexact();
 | |
|   inexact = 1;
 | |
| #endif
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|   if ((rounding = Flt_Rounds) >= 2) {
 | |
|     if (*sign)
 | |
|       rounding = rounding == 2 ? 0 : 2;
 | |
|     else
 | |
|       if (rounding != 2)
 | |
|         rounding = 0;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|   b = d2b(dval(d), &be, &bbits);
 | |
|   if (b == NULL)
 | |
|     return NULL;
 | |
| #ifdef Sudden_Underflow
 | |
|   i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
 | |
| #else
 | |
|   if (( i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)) )!=0) {
 | |
| #endif
 | |
|     dval(d2) = dval(d);
 | |
|     word0(d2) &= Frac_mask1;
 | |
|     word0(d2) |= Exp_11;
 | |
| #ifdef IBM
 | |
|     if (( j = 11 - hi0bits(word0(d2) & Frac_mask) )!=0)
 | |
|       dval(d2) /= 1 << j;
 | |
| #endif
 | |
| 
 | |
|     /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
 | |
|      * log10(x)  =  log(x) / log(10)
 | |
|      *    ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
 | |
|      * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
 | |
|      *
 | |
|      * This suggests computing an approximation k to log10(d) by
 | |
|      *
 | |
|      * k = (i - Bias)*0.301029995663981
 | |
|      *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
 | |
|      *
 | |
|      * We want k to be too large rather than too small.
 | |
|      * The error in the first-order Taylor series approximation
 | |
|      * is in our favor, so we just round up the constant enough
 | |
|      * to compensate for any error in the multiplication of
 | |
|      * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
 | |
|      * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
 | |
|      * adding 1e-13 to the constant term more than suffices.
 | |
|      * Hence we adjust the constant term to 0.1760912590558.
 | |
|      * (We could get a more accurate k by invoking log10,
 | |
|      *  but this is probably not worthwhile.)
 | |
|      */
 | |
| 
 | |
|     i -= Bias;
 | |
| #ifdef IBM
 | |
|     i <<= 2;
 | |
|     i += j;
 | |
| #endif
 | |
| #ifndef Sudden_Underflow
 | |
|     denorm = 0;
 | |
|     }
 | |
|   else {
 | |
|     /* d is denormalized */
 | |
| 
 | |
|     i = bbits + be + (Bias + (P-1) - 1);
 | |
|     x = i > 32  ? word0(d) << (64 - i) | word1(d) >> (i - 32)
 | |
|           : word1(d) << (32 - i);
 | |
|     dval(d2) = (double)x;
 | |
|     word0(d2) -= 31*Exp_msk1; /* adjust exponent */
 | |
|     i -= (Bias + (P-1) - 1) + 1;
 | |
|     denorm = 1;
 | |
|     }
 | |
| #endif
 | |
|   ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
 | |
|   k = (int)ds;
 | |
|   if (ds < 0. && ds != k)
 | |
|     k--;  /* want k = floor(ds) */
 | |
|   k_check = 1;
 | |
|   if (k >= 0 && k <= Ten_pmax) {
 | |
|     if (dval(d) < tens[k])
 | |
|       k--;
 | |
|     k_check = 0;
 | |
|     }
 | |
|   j = bbits - i - 1;
 | |
|   if (j >= 0) {
 | |
|     b2 = 0;
 | |
|     s2 = j;
 | |
|     }
 | |
|   else {
 | |
|     b2 = -j;
 | |
|     s2 = 0;
 | |
|     }
 | |
|   if (k >= 0) {
 | |
|     b5 = 0;
 | |
|     s5 = k;
 | |
|     s2 += k;
 | |
|     }
 | |
|   else {
 | |
|     b2 -= k;
 | |
|     b5 = -k;
 | |
|     s5 = 0;
 | |
|     }
 | |
|   if (mode < 0 || mode > 9)
 | |
|     mode = 0;
 | |
| 
 | |
| #ifndef SET_INEXACT
 | |
| #ifdef Check_FLT_ROUNDS
 | |
|   try_quick = Rounding == 1;
 | |
| #else
 | |
|   try_quick = 1;
 | |
| #endif
 | |
| #endif /*SET_INEXACT*/
 | |
| 
 | |
|   if (mode > 5) {
 | |
|     mode -= 4;
 | |
|     try_quick = 0;
 | |
|     }
 | |
|   leftright = 1;
 | |
|   switch(mode) {
 | |
|     case 0:
 | |
|     case 1:
 | |
|       ilim = ilim1 = -1;
 | |
|       i = 18;
 | |
|       ndigits = 0;
 | |
|       break;
 | |
|     case 2:
 | |
|       leftright = 0;
 | |
|       /* FALLTHROUGH */
 | |
|     case 4:
 | |
|       if (ndigits <= 0)
 | |
|         ndigits = 1;
 | |
|       ilim = ilim1 = i = ndigits;
 | |
|       break;
 | |
|     case 3:
 | |
|       leftright = 0;
 | |
|       /* FALLTHROUGH */
 | |
|     case 5:
 | |
|       i = ndigits + k + 1;
 | |
|       ilim = i;
 | |
|       ilim1 = i - 1;
 | |
|       if (i <= 0)
 | |
|         i = 1;
 | |
|     }
 | |
|   s = s0 = rv_alloc((size_t)i);
 | |
|   if (s == NULL)
 | |
|     return NULL;
 | |
| 
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|   if (mode > 1 && rounding != 1)
 | |
|     leftright = 0;
 | |
| #endif
 | |
| 
 | |
|   if (ilim >= 0 && ilim <= Quick_max && try_quick) {
 | |
| 
 | |
|     /* Try to get by with floating-point arithmetic. */
 | |
| 
 | |
|     i = 0;
 | |
|     dval(d2) = dval(d);
 | |
|     k0 = k;
 | |
|     ilim0 = ilim;
 | |
|     ieps = 2; /* conservative */
 | |
|     if (k > 0) {
 | |
|       ds = tens[k&0xf];
 | |
|       j = (unsigned int)k >> 4;
 | |
|       if (j & Bletch) {
 | |
|         /* prevent overflows */
 | |
|         j &= Bletch - 1;
 | |
|         dval(d) /= bigtens[n_bigtens-1];
 | |
|         ieps++;
 | |
|         }
 | |
|       for(; j; j = (unsigned int)j >> 1, i++)
 | |
|         if (j & 1) {
 | |
|           ieps++;
 | |
|           ds *= bigtens[i];
 | |
|           }
 | |
|       dval(d) /= ds;
 | |
|       }
 | |
|     else if (( jj1 = -k )!=0) {
 | |
|       dval(d) *= tens[jj1 & 0xf];
 | |
|       for(j = jj1 >> 4; j; j >>= 1, i++)
 | |
|         if (j & 1) {
 | |
|           ieps++;
 | |
|           dval(d) *= bigtens[i];
 | |
|           }
 | |
|       }
 | |
|     if (k_check && dval(d) < 1. && ilim > 0) {
 | |
|       if (ilim1 <= 0)
 | |
|         goto fast_failed;
 | |
|       ilim = ilim1;
 | |
|       k--;
 | |
|       dval(d) *= 10.;
 | |
|       ieps++;
 | |
|       }
 | |
|     dval(eps) = ieps*dval(d) + 7.;
 | |
|     word0(eps) -= (P-1)*Exp_msk1;
 | |
|     if (ilim == 0) {
 | |
|       S = mhi = 0;
 | |
|       dval(d) -= 5.;
 | |
|       if (dval(d) > dval(eps))
 | |
|         goto one_digit;
 | |
|       if (dval(d) < -dval(eps))
 | |
|         goto no_digits;
 | |
|       goto fast_failed;
 | |
|       }
 | |
| #ifndef No_leftright
 | |
|     if (leftright) {
 | |
|       /* Use Steele & White method of only
 | |
|        * generating digits needed.
 | |
|        */
 | |
|       dval(eps) = 0.5/tens[ilim-1] - dval(eps);
 | |
|       for(i = 0;;) {
 | |
|         L = (INT32)dval(d);
 | |
|         dval(d) -= L;
 | |
|         *s++ = (char)('0' + (int)L);
 | |
|         if (dval(d) < dval(eps))
 | |
|           goto ret1;
 | |
|         if (1. - dval(d) < dval(eps))
 | |
|           goto bump_up;
 | |
|         if (++i >= ilim)
 | |
|           break;
 | |
|         dval(eps) *= 10.;
 | |
|         dval(d) *= 10.;
 | |
|         }
 | |
|       }
 | |
|     else {
 | |
| #endif
 | |
|       /* Generate ilim digits, then fix them up. */
 | |
|       dval(eps) *= tens[ilim-1];
 | |
|       for(i = 1;; i++, dval(d) *= 10.) {
 | |
|         L = (Long)(dval(d));
 | |
|         if (!(dval(d) -= L))
 | |
|           ilim = i;
 | |
|         *s++ = (char)('0' + (int)L);
 | |
|         if (i == ilim) {
 | |
|           if (dval(d) > 0.5 + dval(eps))
 | |
|             goto bump_up;
 | |
|           else if (dval(d) < 0.5 - dval(eps)) {
 | |
|             while(*--s == '0');
 | |
|             s++;
 | |
|             goto ret1;
 | |
|             }
 | |
|           break;
 | |
|           }
 | |
|         }
 | |
| #ifndef No_leftright
 | |
|       }
 | |
| #endif
 | |
|  fast_failed:
 | |
|     s = s0;
 | |
|     dval(d) = dval(d2);
 | |
|     k = k0;
 | |
|     ilim = ilim0;
 | |
|     }
 | |
| 
 | |
|   /* Do we have a "small" integer? */
 | |
| 
 | |
|   if (be >= 0 && k <= Int_max) {
 | |
|     /* Yes. */
 | |
|     ds = tens[k];
 | |
|     if (ndigits < 0 && ilim <= 0) {
 | |
|       S = mhi = 0;
 | |
|       if (ilim < 0 || dval(d) <= 5*ds)
 | |
|         goto no_digits;
 | |
|       goto one_digit;
 | |
|       }
 | |
|     for(i = 1;; i++, dval(d) *= 10.) {
 | |
|       L = (Long)(dval(d) / ds);
 | |
|       dval(d) -= L*ds;
 | |
| #ifdef Check_FLT_ROUNDS
 | |
|       /* If FLT_ROUNDS == 2, L will usually be high by 1 */
 | |
|       if (dval(d) < 0) {
 | |
|         L--;
 | |
|         dval(d) += ds;
 | |
|         }
 | |
| #endif
 | |
|       *s++ = (char)('0' + (int)L);
 | |
|       if (!dval(d)) {
 | |
| #ifdef SET_INEXACT
 | |
|         inexact = 0;
 | |
| #endif
 | |
|         break;
 | |
|         }
 | |
|       if (i == ilim) {
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|         if (mode > 1)
 | |
|         switch(rounding) {
 | |
|           case 0: goto ret1;
 | |
|           case 2: goto bump_up;
 | |
|           }
 | |
| #endif
 | |
|         dval(d) += dval(d);
 | |
|         if (dval(d) > ds || (dval(d) == ds && L & 1)) {
 | |
|  bump_up:
 | |
|           while(*--s == '9')
 | |
|             if (s == s0) {
 | |
|               k++;
 | |
|               *s = '0';
 | |
|               break;
 | |
|               }
 | |
|           ++*s++;
 | |
|           }
 | |
|         break;
 | |
|         }
 | |
|       }
 | |
|     goto ret1;
 | |
|     }
 | |
| 
 | |
|   m2 = b2;
 | |
|   m5 = b5;
 | |
|   mhi = mlo = 0;
 | |
|   if (leftright) {
 | |
|     i =
 | |
| #ifndef Sudden_Underflow
 | |
|       denorm ? be + (Bias + (P-1) - 1 + 1) :
 | |
| #endif
 | |
| #ifdef IBM
 | |
|       1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
 | |
| #else
 | |
|       1 + P - bbits;
 | |
| #endif
 | |
|     b2 += i;
 | |
|     s2 += i;
 | |
|     mhi = i2b(1);
 | |
|     if (mhi == NULL)
 | |
|       return NULL;
 | |
|     }
 | |
|   if (m2 > 0 && s2 > 0) {
 | |
|     i = m2 < s2 ? m2 : s2;
 | |
|     b2 -= i;
 | |
|     m2 -= i;
 | |
|     s2 -= i;
 | |
|     }
 | |
|   if (b5 > 0) {
 | |
|     if (leftright) {
 | |
|       if (m5 > 0) {
 | |
|         mhi = pow5mult(mhi, m5);
 | |
|         if (mhi == NULL)
 | |
|           return NULL;
 | |
|         b1 = mult(mhi, b);
 | |
|         if (b1 == NULL)
 | |
|           return NULL;
 | |
|         Bfree(b);
 | |
|         b = b1;
 | |
|         }
 | |
|         if (( j = b5 - m5 )!=0)
 | |
|           b = pow5mult(b, j);
 | |
|         if (b == NULL)
 | |
|           return NULL;
 | |
|       }
 | |
|     else
 | |
|       b = pow5mult(b, b5);
 | |
|     if (b == NULL)
 | |
|       return NULL;
 | |
|     }
 | |
|   S = i2b(1);
 | |
|   if (S == NULL)
 | |
|     return NULL;
 | |
|   if (s5 > 0) {
 | |
|     S = pow5mult(S, s5);
 | |
|     if (S == NULL)
 | |
|       return NULL;
 | |
|   }
 | |
| 
 | |
|   /* Check for special case that d is a normalized power of 2. */
 | |
| 
 | |
|   spec_case = 0;
 | |
|   if ((mode < 2 || leftright)
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|       && rounding == 1
 | |
| #endif
 | |
|         ) {
 | |
|     if (!word1(d) && !(word0(d) & Bndry_mask)
 | |
| #ifndef Sudden_Underflow
 | |
|      && word0(d) & (Exp_mask & ~Exp_msk1)
 | |
| #endif
 | |
|         ) {
 | |
|       /* The special case */
 | |
|       b2 += Log2P;
 | |
|       s2 += Log2P;
 | |
|       spec_case = 1;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   /* Arrange for convenient computation of quotients:
 | |
|    * shift left if necessary so divisor has 4 leading 0 bits.
 | |
|    *
 | |
|    * Perhaps we should just compute leading 28 bits of S once
 | |
|    * and for all and pass them and a shift to quorem, so it
 | |
|    * can do shifts and ors to compute the numerator for q.
 | |
|    */
 | |
| #ifdef Pack_32
 | |
|   if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f )!=0)
 | |
|     i = 32 - i;
 | |
| #else
 | |
|   if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf )!=0)
 | |
|     i = 16 - i;
 | |
| #endif
 | |
|   if (i > 4) {
 | |
|     i -= 4;
 | |
|     b2 += i;
 | |
|     m2 += i;
 | |
|     s2 += i;
 | |
|     }
 | |
|   else if (i < 4) {
 | |
|     i += 28;
 | |
|     b2 += i;
 | |
|     m2 += i;
 | |
|     s2 += i;
 | |
|     }
 | |
|   if (b2 > 0) {
 | |
|     b = lshift(b, b2);
 | |
|     if (b == NULL)
 | |
|       return NULL;
 | |
|   }
 | |
|   if (s2 > 0) {
 | |
|     S = lshift(S, s2);
 | |
|     if (S == NULL)
 | |
|       return NULL;
 | |
|   }
 | |
|   if (k_check) {
 | |
|     if (cmp(b,S) < 0) {
 | |
|       k--;
 | |
|       b = multadd(b, 10, 0);  /* we botched the k estimate */
 | |
|       if (b == NULL)
 | |
|         return NULL;
 | |
|       if (leftright) {
 | |
|         mhi = multadd(mhi, 10, 0);
 | |
|         if (mhi == NULL)
 | |
|           return NULL;
 | |
|       }
 | |
|       ilim = ilim1;
 | |
|       }
 | |
|     }
 | |
|   if (ilim <= 0 && (mode == 3 || mode == 5)) {
 | |
|     if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
 | |
|       /* no digits, fcvt style */
 | |
|  no_digits:
 | |
|       k = -1 - ndigits;
 | |
|       goto ret;
 | |
|       }
 | |
|  one_digit:
 | |
|     *s++ = '1';
 | |
|     k++;
 | |
|     goto ret;
 | |
|     }
 | |
|   if (leftright) {
 | |
|     if (m2 > 0) {
 | |
|       mhi = lshift(mhi, m2);
 | |
|       if (mhi == NULL)
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* Compute mlo -- check for special case
 | |
|      * that d is a normalized power of 2.
 | |
|      */
 | |
| 
 | |
|     mlo = mhi;
 | |
|     if (spec_case) {
 | |
|       mhi = Balloc(mhi->k);
 | |
|       if (mhi == NULL)
 | |
|         return NULL;
 | |
|       Bcopy(mhi, mlo);
 | |
|       mhi = lshift(mhi, Log2P);
 | |
|       if (mhi == NULL)
 | |
|         return NULL;
 | |
|       }
 | |
| 
 | |
|     for(i = 1;;i++) {
 | |
|       dig = quorem(b,S) + '0';
 | |
|       /* Do we yet have the shortest decimal string
 | |
|        * that will round to d?
 | |
|        */
 | |
|       j = cmp(b, mlo);
 | |
|       delta = diff(S, mhi);
 | |
|       if (delta == NULL)
 | |
|         return NULL;
 | |
|       jj1 = delta->sign ? 1 : cmp(b, delta);
 | |
|       Bfree(delta);
 | |
| #ifndef ROUND_BIASED
 | |
|       if (jj1 == 0 && mode != 1 && !(word1(d) & 1)
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|         && rounding >= 1
 | |
| #endif
 | |
|                    ) {
 | |
|         if (dig == '9')
 | |
|           goto round_9_up;
 | |
|         if (j > 0)
 | |
|           dig++;
 | |
| #ifdef SET_INEXACT
 | |
|         else if (!b->x[0] && b->wds <= 1)
 | |
|           inexact = 0;
 | |
| #endif
 | |
|         *s++ = (char)dig;
 | |
|         goto ret;
 | |
|         }
 | |
| #endif
 | |
|       if (j < 0 || (j == 0 && mode != 1
 | |
| #ifndef ROUND_BIASED
 | |
|               && !(word1(d) & 1)
 | |
| #endif
 | |
|           )) {
 | |
|         if (!b->x[0] && b->wds <= 1) {
 | |
| #ifdef SET_INEXACT
 | |
|           inexact = 0;
 | |
| #endif
 | |
|           goto accept_dig;
 | |
|           }
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|         if (mode > 1)
 | |
|          switch(rounding) {
 | |
|           case 0: goto accept_dig;
 | |
|           case 2: goto keep_dig;
 | |
|           }
 | |
| #endif /*Honor_FLT_ROUNDS*/
 | |
|         if (jj1 > 0) {
 | |
|           b = lshift(b, 1);
 | |
|           if (b == NULL)
 | |
|             return NULL;
 | |
|           jj1 = cmp(b, S);
 | |
|           if ((jj1 > 0 || (jj1 == 0 && dig & 1))
 | |
|           && dig++ == '9')
 | |
|             goto round_9_up;
 | |
|           }
 | |
|  accept_dig:
 | |
|         *s++ = (char)dig;
 | |
|         goto ret;
 | |
|         }
 | |
|       if (jj1 > 0) {
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|         if (!rounding)
 | |
|           goto accept_dig;
 | |
| #endif
 | |
|         if (dig == '9') { /* possible if i == 1 */
 | |
|  round_9_up:
 | |
|           *s++ = '9';
 | |
|           goto roundoff;
 | |
|           }
 | |
|         *s++ = (char)(dig + 1);
 | |
|         goto ret;
 | |
|         }
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|  keep_dig:
 | |
| #endif
 | |
|       *s++ = (char)dig;
 | |
|       if (i == ilim)
 | |
|         break;
 | |
|       b = multadd(b, 10, 0);
 | |
|       if (b == NULL)
 | |
|         return NULL;
 | |
|       if (mlo == mhi) {
 | |
|         mlo = mhi = multadd(mhi, 10, 0);
 | |
|         if (mlo == NULL)
 | |
|           return NULL;
 | |
|         }
 | |
|       else {
 | |
|         mlo = multadd(mlo, 10, 0);
 | |
|         if (mlo == NULL)
 | |
|           return NULL;
 | |
|         mhi = multadd(mhi, 10, 0);
 | |
|         if (mhi == NULL)
 | |
|           return NULL;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   else
 | |
|     for(i = 1;; i++) {
 | |
|       *s++ = (char)(dig = (int)(quorem(b,S) + '0'));
 | |
|       if (!b->x[0] && b->wds <= 1) {
 | |
| #ifdef SET_INEXACT
 | |
|         inexact = 0;
 | |
| #endif
 | |
|         goto ret;
 | |
|         }
 | |
|       if (i >= ilim)
 | |
|         break;
 | |
|       b = multadd(b, 10, 0);
 | |
|       if (b == NULL)
 | |
|         return NULL;
 | |
|       }
 | |
| 
 | |
|   /* Round off last digit */
 | |
| 
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|   switch(rounding) {
 | |
|     case 0: goto trimzeros;
 | |
|     case 2: goto roundoff;
 | |
|     }
 | |
| #endif
 | |
|   b = lshift(b, 1);
 | |
|   j = cmp(b, S);
 | |
|   if (j > 0 || (j == 0 && dig & 1)) {
 | |
|  roundoff:
 | |
|     while(*--s == '9')
 | |
|       if (s == s0) {
 | |
|         k++;
 | |
|         *s++ = '1';
 | |
|         goto ret;
 | |
|         }
 | |
|     ++*s++;
 | |
|     }
 | |
|   else {
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|  trimzeros:
 | |
| #endif
 | |
|     while(*--s == '0');
 | |
|     s++;
 | |
|     }
 | |
|  ret:
 | |
|   Bfree(S);
 | |
|   if (mhi) {
 | |
|     if (mlo && mlo != mhi)
 | |
|       Bfree(mlo);
 | |
|     Bfree(mhi);
 | |
|     }
 | |
|  ret1:
 | |
| #ifdef SET_INEXACT
 | |
|   if (inexact) {
 | |
|     if (!oldinexact) {
 | |
|       word0(d) = Exp_1 + (70 << Exp_shift);
 | |
|       word1(d) = 0;
 | |
|       dval(d) += 1.;
 | |
|       }
 | |
|     }
 | |
|   else if (!oldinexact)
 | |
|     clear_inexact();
 | |
| #endif
 | |
|   Bfree(b);
 | |
|   if (s == s0) {      /* don't return empty string */
 | |
|     *s++ = '0';
 | |
|     k = 0;
 | |
|   }
 | |
|   *s = 0;
 | |
|   *decpt = k + 1;
 | |
|   if (rve)
 | |
|     *rve = s;
 | |
|   return s0;
 | |
|   }
 |