mirror of
				https://git.proxmox.com/git/mirror_edk2
				synced 2025-11-04 07:34:13 +00:00 
			
		
		
		
	Resolve mainly 'misleading indentation', but also one 'defined but not used' warning when building with GCC 6 (using GCC5 profile). Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org> Reviewed-by: Jaben Carsey <jaben.carsey@intel.com>
		
			
				
	
	
		
			822 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			822 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* $NetBSD: dtoa.c,v 1.3.4.1.4.1 2008/04/08 21:10:55 jdc Exp $ */
 | 
						|
 | 
						|
/****************************************************************
 | 
						|
 | 
						|
The author of this software is David M. Gay.
 | 
						|
 | 
						|
Copyright (C) 1998, 1999 by Lucent Technologies
 | 
						|
All Rights Reserved
 | 
						|
 | 
						|
Permission to use, copy, modify, and distribute this software and
 | 
						|
its documentation for any purpose and without fee is hereby
 | 
						|
granted, provided that the above copyright notice appear in all
 | 
						|
copies and that both that the copyright notice and this
 | 
						|
permission notice and warranty disclaimer appear in supporting
 | 
						|
documentation, and that the name of Lucent or any of its entities
 | 
						|
not be used in advertising or publicity pertaining to
 | 
						|
distribution of the software without specific, written prior
 | 
						|
permission.
 | 
						|
 | 
						|
LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
 | 
						|
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
 | 
						|
IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
 | 
						|
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | 
						|
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
 | 
						|
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
 | 
						|
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
 | 
						|
THIS SOFTWARE.
 | 
						|
 | 
						|
****************************************************************/
 | 
						|
 | 
						|
/* Please send bug reports to David M. Gay (dmg at acm dot org,
 | 
						|
 * with " at " changed at "@" and " dot " changed to ".").  */
 | 
						|
#include  <LibConfig.h>
 | 
						|
 | 
						|
#include "gdtoaimp.h"
 | 
						|
 | 
						|
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
 | 
						|
 *
 | 
						|
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
 | 
						|
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
 | 
						|
 *
 | 
						|
 * Modifications:
 | 
						|
 *  1. Rather than iterating, we use a simple numeric overestimate
 | 
						|
 *     to determine k = floor(log10(d)).  We scale relevant
 | 
						|
 *     quantities using O(log2(k)) rather than O(k) multiplications.
 | 
						|
 *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
 | 
						|
 *     try to generate digits strictly left to right.  Instead, we
 | 
						|
 *     compute with fewer bits and propagate the carry if necessary
 | 
						|
 *     when rounding the final digit up.  This is often faster.
 | 
						|
 *  3. Under the assumption that input will be rounded nearest,
 | 
						|
 *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
 | 
						|
 *     That is, we allow equality in stopping tests when the
 | 
						|
 *     round-nearest rule will give the same floating-point value
 | 
						|
 *     as would satisfaction of the stopping test with strict
 | 
						|
 *     inequality.
 | 
						|
 *  4. We remove common factors of powers of 2 from relevant
 | 
						|
 *     quantities.
 | 
						|
 *  5. When converting floating-point integers less than 1e16,
 | 
						|
 *     we use floating-point arithmetic rather than resorting
 | 
						|
 *     to multiple-precision integers.
 | 
						|
 *  6. When asked to produce fewer than 15 digits, we first try
 | 
						|
 *     to get by with floating-point arithmetic; we resort to
 | 
						|
 *     multiple-precision integer arithmetic only if we cannot
 | 
						|
 *     guarantee that the floating-point calculation has given
 | 
						|
 *     the correctly rounded result.  For k requested digits and
 | 
						|
 *     "uniformly" distributed input, the probability is
 | 
						|
 *     something like 10^(k-15) that we must resort to the Long
 | 
						|
 *     calculation.
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
#define Rounding rounding
 | 
						|
#undef Check_FLT_ROUNDS
 | 
						|
#define Check_FLT_ROUNDS
 | 
						|
#else
 | 
						|
#define Rounding Flt_Rounds
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_MSC_VER)           /* Handle Microsoft VC++ compiler specifics. */
 | 
						|
// Disable: warning C4700: uninitialized local variable 'xx' used
 | 
						|
#pragma warning ( disable : 4700 )
 | 
						|
#endif  /* defined(_MSC_VER) */
 | 
						|
 | 
						|
 char *
 | 
						|
dtoa
 | 
						|
#ifdef KR_headers
 | 
						|
  (d, mode, ndigits, decpt, sign, rve)
 | 
						|
  double d; int mode, ndigits, *decpt, *sign; char **rve;
 | 
						|
#else
 | 
						|
  (double d, int mode, int ndigits, int *decpt, int *sign, char **rve)
 | 
						|
#endif
 | 
						|
{
 | 
						|
 /* Arguments ndigits, decpt, sign are similar to those
 | 
						|
  of ecvt and fcvt; trailing zeros are suppressed from
 | 
						|
  the returned string.  If not null, *rve is set to point
 | 
						|
  to the end of the return value.  If d is +-Infinity or NaN,
 | 
						|
  then *decpt is set to 9999.
 | 
						|
 | 
						|
  mode:
 | 
						|
    0 ==> shortest string that yields d when read in
 | 
						|
      and rounded to nearest.
 | 
						|
    1 ==> like 0, but with Steele & White stopping rule;
 | 
						|
      e.g. with IEEE P754 arithmetic , mode 0 gives
 | 
						|
      1e23 whereas mode 1 gives 9.999999999999999e22.
 | 
						|
    2 ==> max(1,ndigits) significant digits.  This gives a
 | 
						|
      return value similar to that of ecvt, except
 | 
						|
      that trailing zeros are suppressed.
 | 
						|
    3 ==> through ndigits past the decimal point.  This
 | 
						|
      gives a return value similar to that from fcvt,
 | 
						|
      except that trailing zeros are suppressed, and
 | 
						|
      ndigits can be negative.
 | 
						|
    4,5 ==> similar to 2 and 3, respectively, but (in
 | 
						|
      round-nearest mode) with the tests of mode 0 to
 | 
						|
      possibly return a shorter string that rounds to d.
 | 
						|
      With IEEE arithmetic and compilation with
 | 
						|
      -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
 | 
						|
      as modes 2 and 3 when FLT_ROUNDS != 1.
 | 
						|
    6-9 ==> Debugging modes similar to mode - 4:  don't try
 | 
						|
      fast floating-point estimate (if applicable).
 | 
						|
 | 
						|
    Values of mode other than 0-9 are treated as mode 0.
 | 
						|
 | 
						|
    Sufficient space is allocated to the return value
 | 
						|
    to hold the suppressed trailing zeros.
 | 
						|
  */
 | 
						|
 | 
						|
  int bbits, b2, b5, be, dig, i, ieps, ilim0,
 | 
						|
    j, jj1, k, k0, k_check, leftright, m2, m5, s2, s5,
 | 
						|
    spec_case, try_quick;
 | 
						|
  int ilim = 0, ilim1 = 0; /* pacify gcc */
 | 
						|
  Long L;
 | 
						|
#ifndef Sudden_Underflow
 | 
						|
  int denorm;
 | 
						|
  ULong x;
 | 
						|
#endif
 | 
						|
  Bigint *b, *b1, *delta, *mhi, *S;
 | 
						|
  Bigint *mlo = NULL; /* pacify gcc */
 | 
						|
  double d2, ds, eps;
 | 
						|
  char *s, *s0;
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
  int rounding;
 | 
						|
#endif
 | 
						|
#ifdef SET_INEXACT
 | 
						|
  int inexact, oldinexact;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef MULTIPLE_THREADS
 | 
						|
  if (dtoa_result) {
 | 
						|
    freedtoa(dtoa_result);
 | 
						|
    dtoa_result = 0;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
  if (word0(d) & Sign_bit) {
 | 
						|
    /* set sign for everything, including 0's and NaNs */
 | 
						|
    *sign = 1;
 | 
						|
    word0(d) &= ~Sign_bit;  /* clear sign bit */
 | 
						|
    }
 | 
						|
  else
 | 
						|
    *sign = 0;
 | 
						|
 | 
						|
#if defined(IEEE_Arith) + defined(VAX)
 | 
						|
#ifdef IEEE_Arith
 | 
						|
  if ((word0(d) & Exp_mask) == Exp_mask)
 | 
						|
#else
 | 
						|
  if (word0(d)  == 0x8000)
 | 
						|
#endif
 | 
						|
    {
 | 
						|
    /* Infinity or NaN */
 | 
						|
    *decpt = 9999;
 | 
						|
#ifdef IEEE_Arith
 | 
						|
    if (!word1(d) && !(word0(d) & 0xfffff))
 | 
						|
      return nrv_alloc("Infinity", rve, 8);
 | 
						|
#endif
 | 
						|
    return nrv_alloc("NaN", rve, 3);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#ifdef IBM
 | 
						|
  dval(d) += 0; /* normalize */
 | 
						|
#endif
 | 
						|
  if (!dval(d)) {
 | 
						|
    *decpt = 1;
 | 
						|
    return nrv_alloc("0", rve, 1);
 | 
						|
    }
 | 
						|
 | 
						|
#ifdef SET_INEXACT
 | 
						|
  try_quick = oldinexact = get_inexact();
 | 
						|
  inexact = 1;
 | 
						|
#endif
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
  if ((rounding = Flt_Rounds) >= 2) {
 | 
						|
    if (*sign)
 | 
						|
      rounding = rounding == 2 ? 0 : 2;
 | 
						|
    else
 | 
						|
      if (rounding != 2)
 | 
						|
        rounding = 0;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
  b = d2b(dval(d), &be, &bbits);
 | 
						|
  if (b == NULL)
 | 
						|
    return NULL;
 | 
						|
#ifdef Sudden_Underflow
 | 
						|
  i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
 | 
						|
#else
 | 
						|
  if (( i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)) )!=0) {
 | 
						|
#endif
 | 
						|
    dval(d2) = dval(d);
 | 
						|
    word0(d2) &= Frac_mask1;
 | 
						|
    word0(d2) |= Exp_11;
 | 
						|
#ifdef IBM
 | 
						|
    if (( j = 11 - hi0bits(word0(d2) & Frac_mask) )!=0)
 | 
						|
      dval(d2) /= 1 << j;
 | 
						|
#endif
 | 
						|
 | 
						|
    /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
 | 
						|
     * log10(x)  =  log(x) / log(10)
 | 
						|
     *    ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
 | 
						|
     * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
 | 
						|
     *
 | 
						|
     * This suggests computing an approximation k to log10(d) by
 | 
						|
     *
 | 
						|
     * k = (i - Bias)*0.301029995663981
 | 
						|
     *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
 | 
						|
     *
 | 
						|
     * We want k to be too large rather than too small.
 | 
						|
     * The error in the first-order Taylor series approximation
 | 
						|
     * is in our favor, so we just round up the constant enough
 | 
						|
     * to compensate for any error in the multiplication of
 | 
						|
     * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
 | 
						|
     * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
 | 
						|
     * adding 1e-13 to the constant term more than suffices.
 | 
						|
     * Hence we adjust the constant term to 0.1760912590558.
 | 
						|
     * (We could get a more accurate k by invoking log10,
 | 
						|
     *  but this is probably not worthwhile.)
 | 
						|
     */
 | 
						|
 | 
						|
    i -= Bias;
 | 
						|
#ifdef IBM
 | 
						|
    i <<= 2;
 | 
						|
    i += j;
 | 
						|
#endif
 | 
						|
#ifndef Sudden_Underflow
 | 
						|
    denorm = 0;
 | 
						|
    }
 | 
						|
  else {
 | 
						|
    /* d is denormalized */
 | 
						|
 | 
						|
    i = bbits + be + (Bias + (P-1) - 1);
 | 
						|
    x = i > 32  ? word0(d) << (64 - i) | word1(d) >> (i - 32)
 | 
						|
          : word1(d) << (32 - i);
 | 
						|
    dval(d2) = (double)x;
 | 
						|
    word0(d2) -= 31*Exp_msk1; /* adjust exponent */
 | 
						|
    i -= (Bias + (P-1) - 1) + 1;
 | 
						|
    denorm = 1;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
 | 
						|
  k = (int)ds;
 | 
						|
  if (ds < 0. && ds != k)
 | 
						|
    k--;  /* want k = floor(ds) */
 | 
						|
  k_check = 1;
 | 
						|
  if (k >= 0 && k <= Ten_pmax) {
 | 
						|
    if (dval(d) < tens[k])
 | 
						|
      k--;
 | 
						|
    k_check = 0;
 | 
						|
    }
 | 
						|
  j = bbits - i - 1;
 | 
						|
  if (j >= 0) {
 | 
						|
    b2 = 0;
 | 
						|
    s2 = j;
 | 
						|
    }
 | 
						|
  else {
 | 
						|
    b2 = -j;
 | 
						|
    s2 = 0;
 | 
						|
    }
 | 
						|
  if (k >= 0) {
 | 
						|
    b5 = 0;
 | 
						|
    s5 = k;
 | 
						|
    s2 += k;
 | 
						|
    }
 | 
						|
  else {
 | 
						|
    b2 -= k;
 | 
						|
    b5 = -k;
 | 
						|
    s5 = 0;
 | 
						|
    }
 | 
						|
  if (mode < 0 || mode > 9)
 | 
						|
    mode = 0;
 | 
						|
 | 
						|
#ifndef SET_INEXACT
 | 
						|
#ifdef Check_FLT_ROUNDS
 | 
						|
  try_quick = Rounding == 1;
 | 
						|
#else
 | 
						|
  try_quick = 1;
 | 
						|
#endif
 | 
						|
#endif /*SET_INEXACT*/
 | 
						|
 | 
						|
  if (mode > 5) {
 | 
						|
    mode -= 4;
 | 
						|
    try_quick = 0;
 | 
						|
    }
 | 
						|
  leftright = 1;
 | 
						|
  switch(mode) {
 | 
						|
    case 0:
 | 
						|
    case 1:
 | 
						|
      ilim = ilim1 = -1;
 | 
						|
      i = 18;
 | 
						|
      ndigits = 0;
 | 
						|
      break;
 | 
						|
    case 2:
 | 
						|
      leftright = 0;
 | 
						|
      /* FALLTHROUGH */
 | 
						|
    case 4:
 | 
						|
      if (ndigits <= 0)
 | 
						|
        ndigits = 1;
 | 
						|
      ilim = ilim1 = i = ndigits;
 | 
						|
      break;
 | 
						|
    case 3:
 | 
						|
      leftright = 0;
 | 
						|
      /* FALLTHROUGH */
 | 
						|
    case 5:
 | 
						|
      i = ndigits + k + 1;
 | 
						|
      ilim = i;
 | 
						|
      ilim1 = i - 1;
 | 
						|
      if (i <= 0)
 | 
						|
        i = 1;
 | 
						|
    }
 | 
						|
  s = s0 = rv_alloc((size_t)i);
 | 
						|
  if (s == NULL)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
  if (mode > 1 && rounding != 1)
 | 
						|
    leftright = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
  if (ilim >= 0 && ilim <= Quick_max && try_quick) {
 | 
						|
 | 
						|
    /* Try to get by with floating-point arithmetic. */
 | 
						|
 | 
						|
    i = 0;
 | 
						|
    dval(d2) = dval(d);
 | 
						|
    k0 = k;
 | 
						|
    ilim0 = ilim;
 | 
						|
    ieps = 2; /* conservative */
 | 
						|
    if (k > 0) {
 | 
						|
      ds = tens[k&0xf];
 | 
						|
      j = (unsigned int)k >> 4;
 | 
						|
      if (j & Bletch) {
 | 
						|
        /* prevent overflows */
 | 
						|
        j &= Bletch - 1;
 | 
						|
        dval(d) /= bigtens[n_bigtens-1];
 | 
						|
        ieps++;
 | 
						|
        }
 | 
						|
      for(; j; j = (unsigned int)j >> 1, i++)
 | 
						|
        if (j & 1) {
 | 
						|
          ieps++;
 | 
						|
          ds *= bigtens[i];
 | 
						|
          }
 | 
						|
      dval(d) /= ds;
 | 
						|
      }
 | 
						|
    else if (( jj1 = -k )!=0) {
 | 
						|
      dval(d) *= tens[jj1 & 0xf];
 | 
						|
      for(j = jj1 >> 4; j; j >>= 1, i++)
 | 
						|
        if (j & 1) {
 | 
						|
          ieps++;
 | 
						|
          dval(d) *= bigtens[i];
 | 
						|
          }
 | 
						|
      }
 | 
						|
    if (k_check && dval(d) < 1. && ilim > 0) {
 | 
						|
      if (ilim1 <= 0)
 | 
						|
        goto fast_failed;
 | 
						|
      ilim = ilim1;
 | 
						|
      k--;
 | 
						|
      dval(d) *= 10.;
 | 
						|
      ieps++;
 | 
						|
      }
 | 
						|
    dval(eps) = ieps*dval(d) + 7.;
 | 
						|
    word0(eps) -= (P-1)*Exp_msk1;
 | 
						|
    if (ilim == 0) {
 | 
						|
      S = mhi = 0;
 | 
						|
      dval(d) -= 5.;
 | 
						|
      if (dval(d) > dval(eps))
 | 
						|
        goto one_digit;
 | 
						|
      if (dval(d) < -dval(eps))
 | 
						|
        goto no_digits;
 | 
						|
      goto fast_failed;
 | 
						|
      }
 | 
						|
#ifndef No_leftright
 | 
						|
    if (leftright) {
 | 
						|
      /* Use Steele & White method of only
 | 
						|
       * generating digits needed.
 | 
						|
       */
 | 
						|
      dval(eps) = 0.5/tens[ilim-1] - dval(eps);
 | 
						|
      for(i = 0;;) {
 | 
						|
        L = (INT32)dval(d);
 | 
						|
        dval(d) -= L;
 | 
						|
        *s++ = (char)('0' + (int)L);
 | 
						|
        if (dval(d) < dval(eps))
 | 
						|
          goto ret1;
 | 
						|
        if (1. - dval(d) < dval(eps))
 | 
						|
          goto bump_up;
 | 
						|
        if (++i >= ilim)
 | 
						|
          break;
 | 
						|
        dval(eps) *= 10.;
 | 
						|
        dval(d) *= 10.;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    else {
 | 
						|
#endif
 | 
						|
      /* Generate ilim digits, then fix them up. */
 | 
						|
      dval(eps) *= tens[ilim-1];
 | 
						|
      for(i = 1;; i++, dval(d) *= 10.) {
 | 
						|
        L = (Long)(dval(d));
 | 
						|
        if (!(dval(d) -= L))
 | 
						|
          ilim = i;
 | 
						|
        *s++ = (char)('0' + (int)L);
 | 
						|
        if (i == ilim) {
 | 
						|
          if (dval(d) > 0.5 + dval(eps))
 | 
						|
            goto bump_up;
 | 
						|
          else if (dval(d) < 0.5 - dval(eps)) {
 | 
						|
            while(*--s == '0');
 | 
						|
            s++;
 | 
						|
            goto ret1;
 | 
						|
            }
 | 
						|
          break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
#ifndef No_leftright
 | 
						|
      }
 | 
						|
#endif
 | 
						|
 fast_failed:
 | 
						|
    s = s0;
 | 
						|
    dval(d) = dval(d2);
 | 
						|
    k = k0;
 | 
						|
    ilim = ilim0;
 | 
						|
    }
 | 
						|
 | 
						|
  /* Do we have a "small" integer? */
 | 
						|
 | 
						|
  if (be >= 0 && k <= Int_max) {
 | 
						|
    /* Yes. */
 | 
						|
    ds = tens[k];
 | 
						|
    if (ndigits < 0 && ilim <= 0) {
 | 
						|
      S = mhi = 0;
 | 
						|
      if (ilim < 0 || dval(d) <= 5*ds)
 | 
						|
        goto no_digits;
 | 
						|
      goto one_digit;
 | 
						|
      }
 | 
						|
    for(i = 1;; i++, dval(d) *= 10.) {
 | 
						|
      L = (Long)(dval(d) / ds);
 | 
						|
      dval(d) -= L*ds;
 | 
						|
#ifdef Check_FLT_ROUNDS
 | 
						|
      /* If FLT_ROUNDS == 2, L will usually be high by 1 */
 | 
						|
      if (dval(d) < 0) {
 | 
						|
        L--;
 | 
						|
        dval(d) += ds;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
      *s++ = (char)('0' + (int)L);
 | 
						|
      if (!dval(d)) {
 | 
						|
#ifdef SET_INEXACT
 | 
						|
        inexact = 0;
 | 
						|
#endif
 | 
						|
        break;
 | 
						|
        }
 | 
						|
      if (i == ilim) {
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
        if (mode > 1)
 | 
						|
        switch(rounding) {
 | 
						|
          case 0: goto ret1;
 | 
						|
          case 2: goto bump_up;
 | 
						|
          }
 | 
						|
#endif
 | 
						|
        dval(d) += dval(d);
 | 
						|
        if (dval(d) > ds || (dval(d) == ds && L & 1)) {
 | 
						|
 bump_up:
 | 
						|
          while(*--s == '9')
 | 
						|
            if (s == s0) {
 | 
						|
              k++;
 | 
						|
              *s = '0';
 | 
						|
              break;
 | 
						|
              }
 | 
						|
          ++*s++;
 | 
						|
          }
 | 
						|
        break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    goto ret1;
 | 
						|
    }
 | 
						|
 | 
						|
  m2 = b2;
 | 
						|
  m5 = b5;
 | 
						|
  mhi = mlo = 0;
 | 
						|
  if (leftright) {
 | 
						|
    i =
 | 
						|
#ifndef Sudden_Underflow
 | 
						|
      denorm ? be + (Bias + (P-1) - 1 + 1) :
 | 
						|
#endif
 | 
						|
#ifdef IBM
 | 
						|
      1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
 | 
						|
#else
 | 
						|
      1 + P - bbits;
 | 
						|
#endif
 | 
						|
    b2 += i;
 | 
						|
    s2 += i;
 | 
						|
    mhi = i2b(1);
 | 
						|
    if (mhi == NULL)
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
  if (m2 > 0 && s2 > 0) {
 | 
						|
    i = m2 < s2 ? m2 : s2;
 | 
						|
    b2 -= i;
 | 
						|
    m2 -= i;
 | 
						|
    s2 -= i;
 | 
						|
    }
 | 
						|
  if (b5 > 0) {
 | 
						|
    if (leftright) {
 | 
						|
      if (m5 > 0) {
 | 
						|
        mhi = pow5mult(mhi, m5);
 | 
						|
        if (mhi == NULL)
 | 
						|
          return NULL;
 | 
						|
        b1 = mult(mhi, b);
 | 
						|
        if (b1 == NULL)
 | 
						|
          return NULL;
 | 
						|
        Bfree(b);
 | 
						|
        b = b1;
 | 
						|
        }
 | 
						|
        if (( j = b5 - m5 )!=0)
 | 
						|
          b = pow5mult(b, j);
 | 
						|
        if (b == NULL)
 | 
						|
          return NULL;
 | 
						|
      }
 | 
						|
    else
 | 
						|
      b = pow5mult(b, b5);
 | 
						|
    if (b == NULL)
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
  S = i2b(1);
 | 
						|
  if (S == NULL)
 | 
						|
    return NULL;
 | 
						|
  if (s5 > 0) {
 | 
						|
    S = pow5mult(S, s5);
 | 
						|
    if (S == NULL)
 | 
						|
      return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Check for special case that d is a normalized power of 2. */
 | 
						|
 | 
						|
  spec_case = 0;
 | 
						|
  if ((mode < 2 || leftright)
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
      && rounding == 1
 | 
						|
#endif
 | 
						|
        ) {
 | 
						|
    if (!word1(d) && !(word0(d) & Bndry_mask)
 | 
						|
#ifndef Sudden_Underflow
 | 
						|
     && word0(d) & (Exp_mask & ~Exp_msk1)
 | 
						|
#endif
 | 
						|
        ) {
 | 
						|
      /* The special case */
 | 
						|
      b2 += Log2P;
 | 
						|
      s2 += Log2P;
 | 
						|
      spec_case = 1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  /* Arrange for convenient computation of quotients:
 | 
						|
   * shift left if necessary so divisor has 4 leading 0 bits.
 | 
						|
   *
 | 
						|
   * Perhaps we should just compute leading 28 bits of S once
 | 
						|
   * and for all and pass them and a shift to quorem, so it
 | 
						|
   * can do shifts and ors to compute the numerator for q.
 | 
						|
   */
 | 
						|
#ifdef Pack_32
 | 
						|
  if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f )!=0)
 | 
						|
    i = 32 - i;
 | 
						|
#else
 | 
						|
  if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf )!=0)
 | 
						|
    i = 16 - i;
 | 
						|
#endif
 | 
						|
  if (i > 4) {
 | 
						|
    i -= 4;
 | 
						|
    b2 += i;
 | 
						|
    m2 += i;
 | 
						|
    s2 += i;
 | 
						|
    }
 | 
						|
  else if (i < 4) {
 | 
						|
    i += 28;
 | 
						|
    b2 += i;
 | 
						|
    m2 += i;
 | 
						|
    s2 += i;
 | 
						|
    }
 | 
						|
  if (b2 > 0) {
 | 
						|
    b = lshift(b, b2);
 | 
						|
    if (b == NULL)
 | 
						|
      return NULL;
 | 
						|
  }
 | 
						|
  if (s2 > 0) {
 | 
						|
    S = lshift(S, s2);
 | 
						|
    if (S == NULL)
 | 
						|
      return NULL;
 | 
						|
  }
 | 
						|
  if (k_check) {
 | 
						|
    if (cmp(b,S) < 0) {
 | 
						|
      k--;
 | 
						|
      b = multadd(b, 10, 0);  /* we botched the k estimate */
 | 
						|
      if (b == NULL)
 | 
						|
        return NULL;
 | 
						|
      if (leftright) {
 | 
						|
        mhi = multadd(mhi, 10, 0);
 | 
						|
        if (mhi == NULL)
 | 
						|
          return NULL;
 | 
						|
      }
 | 
						|
      ilim = ilim1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  if (ilim <= 0 && (mode == 3 || mode == 5)) {
 | 
						|
    if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
 | 
						|
      /* no digits, fcvt style */
 | 
						|
 no_digits:
 | 
						|
      k = -1 - ndigits;
 | 
						|
      goto ret;
 | 
						|
      }
 | 
						|
 one_digit:
 | 
						|
    *s++ = '1';
 | 
						|
    k++;
 | 
						|
    goto ret;
 | 
						|
    }
 | 
						|
  if (leftright) {
 | 
						|
    if (m2 > 0) {
 | 
						|
      mhi = lshift(mhi, m2);
 | 
						|
      if (mhi == NULL)
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Compute mlo -- check for special case
 | 
						|
     * that d is a normalized power of 2.
 | 
						|
     */
 | 
						|
 | 
						|
    mlo = mhi;
 | 
						|
    if (spec_case) {
 | 
						|
      mhi = Balloc(mhi->k);
 | 
						|
      if (mhi == NULL)
 | 
						|
        return NULL;
 | 
						|
      Bcopy(mhi, mlo);
 | 
						|
      mhi = lshift(mhi, Log2P);
 | 
						|
      if (mhi == NULL)
 | 
						|
        return NULL;
 | 
						|
      }
 | 
						|
 | 
						|
    for(i = 1;;i++) {
 | 
						|
      dig = quorem(b,S) + '0';
 | 
						|
      /* Do we yet have the shortest decimal string
 | 
						|
       * that will round to d?
 | 
						|
       */
 | 
						|
      j = cmp(b, mlo);
 | 
						|
      delta = diff(S, mhi);
 | 
						|
      if (delta == NULL)
 | 
						|
        return NULL;
 | 
						|
      jj1 = delta->sign ? 1 : cmp(b, delta);
 | 
						|
      Bfree(delta);
 | 
						|
#ifndef ROUND_BIASED
 | 
						|
      if (jj1 == 0 && mode != 1 && !(word1(d) & 1)
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
        && rounding >= 1
 | 
						|
#endif
 | 
						|
                   ) {
 | 
						|
        if (dig == '9')
 | 
						|
          goto round_9_up;
 | 
						|
        if (j > 0)
 | 
						|
          dig++;
 | 
						|
#ifdef SET_INEXACT
 | 
						|
        else if (!b->x[0] && b->wds <= 1)
 | 
						|
          inexact = 0;
 | 
						|
#endif
 | 
						|
        *s++ = (char)dig;
 | 
						|
        goto ret;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
      if (j < 0 || (j == 0 && mode != 1
 | 
						|
#ifndef ROUND_BIASED
 | 
						|
              && !(word1(d) & 1)
 | 
						|
#endif
 | 
						|
          )) {
 | 
						|
        if (!b->x[0] && b->wds <= 1) {
 | 
						|
#ifdef SET_INEXACT
 | 
						|
          inexact = 0;
 | 
						|
#endif
 | 
						|
          goto accept_dig;
 | 
						|
          }
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
        if (mode > 1)
 | 
						|
         switch(rounding) {
 | 
						|
          case 0: goto accept_dig;
 | 
						|
          case 2: goto keep_dig;
 | 
						|
          }
 | 
						|
#endif /*Honor_FLT_ROUNDS*/
 | 
						|
        if (jj1 > 0) {
 | 
						|
          b = lshift(b, 1);
 | 
						|
          if (b == NULL)
 | 
						|
            return NULL;
 | 
						|
          jj1 = cmp(b, S);
 | 
						|
          if ((jj1 > 0 || (jj1 == 0 && dig & 1))
 | 
						|
          && dig++ == '9')
 | 
						|
            goto round_9_up;
 | 
						|
          }
 | 
						|
 accept_dig:
 | 
						|
        *s++ = (char)dig;
 | 
						|
        goto ret;
 | 
						|
        }
 | 
						|
      if (jj1 > 0) {
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
        if (!rounding)
 | 
						|
          goto accept_dig;
 | 
						|
#endif
 | 
						|
        if (dig == '9') { /* possible if i == 1 */
 | 
						|
 round_9_up:
 | 
						|
          *s++ = '9';
 | 
						|
          goto roundoff;
 | 
						|
          }
 | 
						|
        *s++ = (char)(dig + 1);
 | 
						|
        goto ret;
 | 
						|
        }
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
 keep_dig:
 | 
						|
#endif
 | 
						|
      *s++ = (char)dig;
 | 
						|
      if (i == ilim)
 | 
						|
        break;
 | 
						|
      b = multadd(b, 10, 0);
 | 
						|
      if (b == NULL)
 | 
						|
        return NULL;
 | 
						|
      if (mlo == mhi) {
 | 
						|
        mlo = mhi = multadd(mhi, 10, 0);
 | 
						|
        if (mlo == NULL)
 | 
						|
          return NULL;
 | 
						|
        }
 | 
						|
      else {
 | 
						|
        mlo = multadd(mlo, 10, 0);
 | 
						|
        if (mlo == NULL)
 | 
						|
          return NULL;
 | 
						|
        mhi = multadd(mhi, 10, 0);
 | 
						|
        if (mhi == NULL)
 | 
						|
          return NULL;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  else
 | 
						|
    for(i = 1;; i++) {
 | 
						|
      *s++ = (char)(dig = (int)(quorem(b,S) + '0'));
 | 
						|
      if (!b->x[0] && b->wds <= 1) {
 | 
						|
#ifdef SET_INEXACT
 | 
						|
        inexact = 0;
 | 
						|
#endif
 | 
						|
        goto ret;
 | 
						|
        }
 | 
						|
      if (i >= ilim)
 | 
						|
        break;
 | 
						|
      b = multadd(b, 10, 0);
 | 
						|
      if (b == NULL)
 | 
						|
        return NULL;
 | 
						|
      }
 | 
						|
 | 
						|
  /* Round off last digit */
 | 
						|
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
  switch(rounding) {
 | 
						|
    case 0: goto trimzeros;
 | 
						|
    case 2: goto roundoff;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  b = lshift(b, 1);
 | 
						|
  j = cmp(b, S);
 | 
						|
  if (j > 0 || (j == 0 && dig & 1)) {
 | 
						|
 roundoff:
 | 
						|
    while(*--s == '9')
 | 
						|
      if (s == s0) {
 | 
						|
        k++;
 | 
						|
        *s++ = '1';
 | 
						|
        goto ret;
 | 
						|
        }
 | 
						|
    ++*s++;
 | 
						|
    }
 | 
						|
  else {
 | 
						|
#ifdef Honor_FLT_ROUNDS
 | 
						|
 trimzeros:
 | 
						|
#endif
 | 
						|
    while(*--s == '0');
 | 
						|
    s++;
 | 
						|
    }
 | 
						|
 ret:
 | 
						|
  Bfree(S);
 | 
						|
  if (mhi) {
 | 
						|
    if (mlo && mlo != mhi)
 | 
						|
      Bfree(mlo);
 | 
						|
    Bfree(mhi);
 | 
						|
    }
 | 
						|
 ret1:
 | 
						|
#ifdef SET_INEXACT
 | 
						|
  if (inexact) {
 | 
						|
    if (!oldinexact) {
 | 
						|
      word0(d) = Exp_1 + (70 << Exp_shift);
 | 
						|
      word1(d) = 0;
 | 
						|
      dval(d) += 1.;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  else if (!oldinexact)
 | 
						|
    clear_inexact();
 | 
						|
#endif
 | 
						|
  Bfree(b);
 | 
						|
  if (s == s0) {      /* don't return empty string */
 | 
						|
    *s++ = '0';
 | 
						|
    k = 0;
 | 
						|
  }
 | 
						|
  *s = 0;
 | 
						|
  *decpt = k + 1;
 | 
						|
  if (rve)
 | 
						|
    *rve = s;
 | 
						|
  return s0;
 | 
						|
  }
 |