mirror of
				https://git.proxmox.com/git/mirror_edk2
				synced 2025-11-04 11:29:11 +00:00 
			
		
		
		
	gdtoa/gdtoa.c: Several "goto" paths allowed the initialization of a variable to be bypassed. Initialized it at the top of the function in order to eliminate the error. Updated the file header and copyright notices. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Daryl McDaniel <daryl.mcdaniel@intel.com> Reviewed-by: Erik Bjorge <erik.c.bjorge@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16324 6f19259b-4bc3-4df7-8a09-765794883524
		
			
				
	
	
		
			828 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			828 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/** @file
 | 
						|
 | 
						|
  Copyright (c) 2010 - 2014, Intel Corporation. All rights reserved.<BR>
 | 
						|
  This program and the accompanying materials are licensed and made available under
 | 
						|
  the terms and conditions of the BSD License that accompanies this distribution.
 | 
						|
  The full text of the license may be found at
 | 
						|
  http://opensource.org/licenses/bsd-license.php.
 | 
						|
 | 
						|
  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
 | 
						|
  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
 | 
						|
 | 
						|
  ***************************************************************
 | 
						|
 | 
						|
The author of this software is David M. Gay.
 | 
						|
 | 
						|
Copyright (C) 1998, 1999 by Lucent Technologies
 | 
						|
All Rights Reserved
 | 
						|
 | 
						|
Permission to use, copy, modify, and distribute this software and
 | 
						|
its documentation for any purpose and without fee is hereby
 | 
						|
granted, provided that the above copyright notice appear in all
 | 
						|
copies and that both that the copyright notice and this
 | 
						|
permission notice and warranty disclaimer appear in supporting
 | 
						|
documentation, and that the name of Lucent or any of its entities
 | 
						|
not be used in advertising or publicity pertaining to
 | 
						|
distribution of the software without specific, written prior
 | 
						|
permission.
 | 
						|
 | 
						|
LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
 | 
						|
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
 | 
						|
IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
 | 
						|
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | 
						|
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
 | 
						|
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
 | 
						|
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
 | 
						|
THIS SOFTWARE.
 | 
						|
 | 
						|
  Please send bug reports to David M. Gay (dmg at acm dot org,
 | 
						|
  with " at " changed at "@" and " dot " changed to ".").
 | 
						|
 | 
						|
  NetBSD: gdtoa.c,v 1.1.1.1.4.1.4.1 2008/04/08 21:10:55 jdc Exp
 | 
						|
**/
 | 
						|
#include  <LibConfig.h>
 | 
						|
 | 
						|
#include "gdtoaimp.h"
 | 
						|
 | 
						|
#if defined(_MSC_VER)
 | 
						|
  /* Disable warnings about conversions to narrower data types. */
 | 
						|
  #pragma warning ( disable : 4244 )
 | 
						|
  // Squelch bogus warnings about uninitialized variable use.
 | 
						|
  #pragma warning ( disable : 4701 )
 | 
						|
#endif
 | 
						|
 | 
						|
static Bigint *
 | 
						|
bitstob(ULong *bits, int nbits, int *bbits)
 | 
						|
{
 | 
						|
  int i, k;
 | 
						|
  Bigint *b;
 | 
						|
  ULong *be, *x, *x0;
 | 
						|
 | 
						|
  i = ULbits;
 | 
						|
  k = 0;
 | 
						|
  while(i < nbits) {
 | 
						|
    i <<= 1;
 | 
						|
    k++;
 | 
						|
  }
 | 
						|
#ifndef Pack_32
 | 
						|
  if (!k)
 | 
						|
    k = 1;
 | 
						|
#endif
 | 
						|
  b = Balloc(k);
 | 
						|
  if (b == NULL)
 | 
						|
    return NULL;
 | 
						|
  be = bits + (((unsigned int)nbits - 1) >> kshift);
 | 
						|
  x = x0 = b->x;
 | 
						|
  do {
 | 
						|
    *x++ = *bits & ALL_ON;
 | 
						|
#ifdef Pack_16
 | 
						|
    *x++ = (*bits >> 16) & ALL_ON;
 | 
						|
#endif
 | 
						|
  } while(++bits <= be);
 | 
						|
  i = x - x0;
 | 
						|
  while(!x0[--i])
 | 
						|
    if (!i) {
 | 
						|
      b->wds = 0;
 | 
						|
      *bbits = 0;
 | 
						|
      goto ret;
 | 
						|
    }
 | 
						|
  b->wds = i + 1;
 | 
						|
  *bbits = i*ULbits + 32 - hi0bits(b->x[i]);
 | 
						|
ret:
 | 
						|
  return b;
 | 
						|
}
 | 
						|
 | 
						|
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
 | 
						|
 *
 | 
						|
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
 | 
						|
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
 | 
						|
 *
 | 
						|
 * Modifications:
 | 
						|
 *  1. Rather than iterating, we use a simple numeric overestimate
 | 
						|
 *     to determine k = floor(log10(d)).  We scale relevant
 | 
						|
 *     quantities using O(log2(k)) rather than O(k) multiplications.
 | 
						|
 *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
 | 
						|
 *     try to generate digits strictly left to right.  Instead, we
 | 
						|
 *     compute with fewer bits and propagate the carry if necessary
 | 
						|
 *     when rounding the final digit up.  This is often faster.
 | 
						|
 *  3. Under the assumption that input will be rounded nearest,
 | 
						|
 *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
 | 
						|
 *     That is, we allow equality in stopping tests when the
 | 
						|
 *     round-nearest rule will give the same floating-point value
 | 
						|
 *     as would satisfaction of the stopping test with strict
 | 
						|
 *     inequality.
 | 
						|
 *  4. We remove common factors of powers of 2 from relevant
 | 
						|
 *     quantities.
 | 
						|
 *  5. When converting floating-point integers less than 1e16,
 | 
						|
 *     we use floating-point arithmetic rather than resorting
 | 
						|
 *     to multiple-precision integers.
 | 
						|
 *  6. When asked to produce fewer than 15 digits, we first try
 | 
						|
 *     to get by with floating-point arithmetic; we resort to
 | 
						|
 *     multiple-precision integer arithmetic only if we cannot
 | 
						|
 *     guarantee that the floating-point calculation has given
 | 
						|
 *     the correctly rounded result.  For k requested digits and
 | 
						|
 *     "uniformly" distributed input, the probability is
 | 
						|
 *     something like 10^(k-15) that we must resort to the Long
 | 
						|
 *     calculation.
 | 
						|
 */
 | 
						|
 | 
						|
 char *
 | 
						|
gdtoa
 | 
						|
  (FPI *fpi, int be, ULong *bits, int *kindp, int mode, int ndigits, int *decpt, char **rve)
 | 
						|
{
 | 
						|
 /* Arguments ndigits and decpt are similar to the second and third
 | 
						|
  arguments of ecvt and fcvt; trailing zeros are suppressed from
 | 
						|
  the returned string.  If not null, *rve is set to point
 | 
						|
  to the end of the return value.  If d is +-Infinity or NaN,
 | 
						|
  then *decpt is set to 9999.
 | 
						|
 | 
						|
  mode:
 | 
						|
    0 ==> shortest string that yields d when read in
 | 
						|
      and rounded to nearest.
 | 
						|
    1 ==> like 0, but with Steele & White stopping rule;
 | 
						|
      e.g. with IEEE P754 arithmetic , mode 0 gives
 | 
						|
      1e23 whereas mode 1 gives 9.999999999999999e22.
 | 
						|
    2 ==> max(1,ndigits) significant digits.  This gives a
 | 
						|
      return value similar to that of ecvt, except
 | 
						|
      that trailing zeros are suppressed.
 | 
						|
    3 ==> through ndigits past the decimal point.  This
 | 
						|
      gives a return value similar to that from fcvt,
 | 
						|
      except that trailing zeros are suppressed, and
 | 
						|
      ndigits can be negative.
 | 
						|
    4-9 should give the same return values as 2-3, i.e.,
 | 
						|
      4 <= mode <= 9 ==> same return as mode
 | 
						|
      2 + (mode & 1).  These modes are mainly for
 | 
						|
      debugging; often they run slower but sometimes
 | 
						|
      faster than modes 2-3.
 | 
						|
    4,5,8,9 ==> left-to-right digit generation.
 | 
						|
    6-9 ==> don't try fast floating-point estimate
 | 
						|
      (if applicable).
 | 
						|
 | 
						|
    Values of mode other than 0-9 are treated as mode 0.
 | 
						|
 | 
						|
    Sufficient space is allocated to the return value
 | 
						|
    to hold the suppressed trailing zeros.
 | 
						|
  */
 | 
						|
 | 
						|
  int bbits, b2, b5, be0, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0, inex;
 | 
						|
  int j, jj1, k, k0, k_check, kind, leftright, m2, m5, nbits;
 | 
						|
  int rdir, s2, s5, spec_case, try_quick;
 | 
						|
  Long L;
 | 
						|
  Bigint *b, *b1, *delta, *mlo, *mhi, *mhi1, *S;
 | 
						|
  double d, d2, ds, eps;
 | 
						|
  char *s, *s0;
 | 
						|
 | 
						|
  mlo = NULL;
 | 
						|
 | 
						|
#ifndef MULTIPLE_THREADS
 | 
						|
  if (dtoa_result) {
 | 
						|
    freedtoa(dtoa_result);
 | 
						|
    dtoa_result = 0;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  inex = 0;
 | 
						|
  if (*kindp & STRTOG_NoMemory)
 | 
						|
    return NULL;
 | 
						|
  kind = *kindp &= ~STRTOG_Inexact;
 | 
						|
  switch(kind & STRTOG_Retmask) {
 | 
						|
    case STRTOG_Zero:
 | 
						|
      goto ret_zero;
 | 
						|
    case STRTOG_Normal:
 | 
						|
    case STRTOG_Denormal:
 | 
						|
      break;
 | 
						|
    case STRTOG_Infinite:
 | 
						|
      *decpt = -32768;
 | 
						|
      return nrv_alloc("Infinity", rve, 8);
 | 
						|
    case STRTOG_NaN:
 | 
						|
      *decpt = -32768;
 | 
						|
      return nrv_alloc("NaN", rve, 3);
 | 
						|
    default:
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
  b = bitstob(bits, nbits = fpi->nbits, &bbits);
 | 
						|
  if (b == NULL)
 | 
						|
    return NULL;
 | 
						|
  be0 = be;
 | 
						|
  if ( (i = trailz(b)) !=0) {
 | 
						|
    rshift(b, i);
 | 
						|
    be += i;
 | 
						|
    bbits -= i;
 | 
						|
  }
 | 
						|
  if (!b->wds) {
 | 
						|
    Bfree(b);
 | 
						|
ret_zero:
 | 
						|
    *decpt = 1;
 | 
						|
    return nrv_alloc("0", rve, 1);
 | 
						|
  }
 | 
						|
 | 
						|
  dval(d) = b2d(b, &i);
 | 
						|
  i = be + bbits - 1;
 | 
						|
  word0(d) &= Frac_mask1;
 | 
						|
  word0(d) |= Exp_11;
 | 
						|
#ifdef IBM
 | 
						|
  if ( (j = 11 - hi0bits(word0(d) & Frac_mask)) !=0)
 | 
						|
    dval(d) /= 1 << j;
 | 
						|
#endif
 | 
						|
 | 
						|
  /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
 | 
						|
   * log10(x)  =  log(x) / log(10)
 | 
						|
   *    ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
 | 
						|
   * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
 | 
						|
   *
 | 
						|
   * This suggests computing an approximation k to log10(d) by
 | 
						|
   *
 | 
						|
   * k = (i - Bias)*0.301029995663981
 | 
						|
   *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
 | 
						|
   *
 | 
						|
   * We want k to be too large rather than too small.
 | 
						|
   * The error in the first-order Taylor series approximation
 | 
						|
   * is in our favor, so we just round up the constant enough
 | 
						|
   * to compensate for any error in the multiplication of
 | 
						|
   * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
 | 
						|
   * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
 | 
						|
   * adding 1e-13 to the constant term more than suffices.
 | 
						|
   * Hence we adjust the constant term to 0.1760912590558.
 | 
						|
   * (We could get a more accurate k by invoking log10,
 | 
						|
   *  but this is probably not worthwhile.)
 | 
						|
   */
 | 
						|
#ifdef IBM
 | 
						|
  i <<= 2;
 | 
						|
  i += j;
 | 
						|
#endif
 | 
						|
  ds = (dval(d)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
 | 
						|
 | 
						|
  /* correct assumption about exponent range */
 | 
						|
  if ((j = i) < 0)
 | 
						|
    j = -j;
 | 
						|
  if ((j -= 1077) > 0)
 | 
						|
    ds += j * 7e-17;
 | 
						|
 | 
						|
  k = (int)ds;
 | 
						|
  if (ds < 0. && ds != k)
 | 
						|
    k--;  /* want k = floor(ds) */
 | 
						|
  k_check = 1;
 | 
						|
#ifdef IBM
 | 
						|
  j = be + bbits - 1;
 | 
						|
  if ( (jj1 = j & 3) !=0)
 | 
						|
    dval(d) *= 1 << jj1;
 | 
						|
  word0(d) += j << Exp_shift - 2 & Exp_mask;
 | 
						|
#else
 | 
						|
  word0(d) += (be + bbits - 1) << Exp_shift;
 | 
						|
#endif
 | 
						|
  if (k >= 0 && k <= Ten_pmax) {
 | 
						|
    if (dval(d) < tens[k])
 | 
						|
      k--;
 | 
						|
    k_check = 0;
 | 
						|
  }
 | 
						|
  j = bbits - i - 1;
 | 
						|
  if (j >= 0) {
 | 
						|
    b2 = 0;
 | 
						|
    s2 = j;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    b2 = -j;
 | 
						|
    s2 = 0;
 | 
						|
  }
 | 
						|
  if (k >= 0) {
 | 
						|
    b5 = 0;
 | 
						|
    s5 = k;
 | 
						|
    s2 += k;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    b2 -= k;
 | 
						|
    b5 = -k;
 | 
						|
    s5 = 0;
 | 
						|
  }
 | 
						|
  if (mode < 0 || mode > 9)
 | 
						|
    mode = 0;
 | 
						|
  try_quick = 1;
 | 
						|
  if (mode > 5) {
 | 
						|
    mode -= 4;
 | 
						|
    try_quick = 0;
 | 
						|
  }
 | 
						|
  leftright = 1;
 | 
						|
  switch(mode) {
 | 
						|
    case 0:
 | 
						|
    case 1:
 | 
						|
      ilim = ilim1 = -1;
 | 
						|
      i = (int)(nbits * .30103) + 3;
 | 
						|
      ndigits = 0;
 | 
						|
      break;
 | 
						|
    case 2:
 | 
						|
      leftright = 0;
 | 
						|
      /*FALLTHROUGH*/
 | 
						|
    case 4:
 | 
						|
      if (ndigits <= 0)
 | 
						|
        ndigits = 1;
 | 
						|
      ilim = ilim1 = i = ndigits;
 | 
						|
      break;
 | 
						|
    case 3:
 | 
						|
      leftright = 0;
 | 
						|
      /*FALLTHROUGH*/
 | 
						|
    case 5:
 | 
						|
      i = ndigits + k + 1;
 | 
						|
      ilim = i;
 | 
						|
      ilim1 = i - 1;
 | 
						|
      if (i <= 0)
 | 
						|
        i = 1;
 | 
						|
  }
 | 
						|
  s = s0 = rv_alloc((size_t)i);
 | 
						|
  if (s == NULL)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  if ( (rdir = fpi->rounding - 1) !=0) {
 | 
						|
    if (rdir < 0)
 | 
						|
      rdir = 2;
 | 
						|
    if (kind & STRTOG_Neg)
 | 
						|
      rdir = 3 - rdir;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Now rdir = 0 ==> round near, 1 ==> round up, 2 ==> round down. */
 | 
						|
 | 
						|
  if (ilim >= 0 && ilim <= Quick_max && try_quick && !rdir
 | 
						|
#ifndef IMPRECISE_INEXACT
 | 
						|
    && k == 0
 | 
						|
#endif
 | 
						|
                ) {
 | 
						|
 | 
						|
    /* Try to get by with floating-point arithmetic. */
 | 
						|
 | 
						|
    i = 0;
 | 
						|
    d2 = dval(d);
 | 
						|
#ifdef IBM
 | 
						|
    if ( (j = 11 - hi0bits(word0(d) & Frac_mask)) !=0)
 | 
						|
      dval(d) /= 1 << j;
 | 
						|
#endif
 | 
						|
    k0 = k;
 | 
						|
    ilim0 = ilim;
 | 
						|
    ieps = 2; /* conservative */
 | 
						|
    if (k > 0) {
 | 
						|
      ds = tens[k&0xf];
 | 
						|
      j = (unsigned int)k >> 4;
 | 
						|
      if (j & Bletch) {
 | 
						|
        /* prevent overflows */
 | 
						|
        j &= Bletch - 1;
 | 
						|
        dval(d) /= bigtens[n_bigtens-1];
 | 
						|
        ieps++;
 | 
						|
      }
 | 
						|
      for(; j; j /= 2, i++)
 | 
						|
        if (j & 1) {
 | 
						|
          ieps++;
 | 
						|
          ds *= bigtens[i];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else  {
 | 
						|
      ds = 1.;
 | 
						|
      if ( (jj1 = -k) !=0) {
 | 
						|
        dval(d) *= tens[jj1 & 0xf];
 | 
						|
        for(j = jj1 >> 4; j; j >>= 1, i++)
 | 
						|
          if (j & 1) {
 | 
						|
            ieps++;
 | 
						|
            dval(d) *= bigtens[i];
 | 
						|
          }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (k_check && dval(d) < 1. && ilim > 0) {
 | 
						|
      if (ilim1 <= 0)
 | 
						|
        goto fast_failed;
 | 
						|
      ilim = ilim1;
 | 
						|
      k--;
 | 
						|
      dval(d) *= 10.;
 | 
						|
      ieps++;
 | 
						|
    }
 | 
						|
    dval(eps) = ieps*dval(d) + 7.;
 | 
						|
    word0(eps) -= (P-1)*Exp_msk1;
 | 
						|
    if (ilim == 0) {
 | 
						|
      S = mhi = 0;
 | 
						|
      dval(d) -= 5.;
 | 
						|
      if (dval(d) > dval(eps))
 | 
						|
        goto one_digit;
 | 
						|
      if (dval(d) < -dval(eps))
 | 
						|
        goto no_digits;
 | 
						|
      goto fast_failed;
 | 
						|
    }
 | 
						|
#ifndef No_leftright
 | 
						|
    if (leftright) {
 | 
						|
      /* Use Steele & White method of only
 | 
						|
       * generating digits needed.
 | 
						|
       */
 | 
						|
      dval(eps) = ds*0.5/tens[ilim-1] - dval(eps);
 | 
						|
      for(i = 0;;) {
 | 
						|
        L = (Long)(dval(d)/ds);
 | 
						|
        dval(d) -= L*ds;
 | 
						|
        *s++ = '0' + (int)L;
 | 
						|
        if (dval(d) < dval(eps)) {
 | 
						|
          if (dval(d))
 | 
						|
            inex = STRTOG_Inexlo;
 | 
						|
          goto ret1;
 | 
						|
        }
 | 
						|
        if (ds - dval(d) < dval(eps))
 | 
						|
          goto bump_up;
 | 
						|
        if (++i >= ilim)
 | 
						|
          break;
 | 
						|
        dval(eps) *= 10.;
 | 
						|
        dval(d) *= 10.;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
#endif
 | 
						|
      /* Generate ilim digits, then fix them up. */
 | 
						|
      dval(eps) *= tens[ilim-1];
 | 
						|
      for(i = 1;; i++, dval(d) *= 10.) {
 | 
						|
        if ( (L = (Long)(dval(d)/ds)) !=0)
 | 
						|
          dval(d) -= L*ds;
 | 
						|
        *s++ = '0' + (int)L;
 | 
						|
        if (i == ilim) {
 | 
						|
          ds *= 0.5;
 | 
						|
          if (dval(d) > ds + dval(eps))
 | 
						|
            goto bump_up;
 | 
						|
          else if (dval(d) < ds - dval(eps)) {
 | 
						|
            while(*--s == '0'){}
 | 
						|
            s++;
 | 
						|
            if (dval(d))
 | 
						|
              inex = STRTOG_Inexlo;
 | 
						|
            goto ret1;
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
#ifndef No_leftright
 | 
						|
    }
 | 
						|
#endif
 | 
						|
fast_failed:
 | 
						|
    s = s0;
 | 
						|
    dval(d) = d2;
 | 
						|
    k = k0;
 | 
						|
    ilim = ilim0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Do we have a "small" integer? */
 | 
						|
 | 
						|
  if (be >= 0 && k <= Int_max) {
 | 
						|
    /* Yes. */
 | 
						|
    ds = tens[k];
 | 
						|
    if (ndigits < 0 && ilim <= 0) {
 | 
						|
      S = mhi = 0;
 | 
						|
      if (ilim < 0 || dval(d) <= 5*ds)
 | 
						|
        goto no_digits;
 | 
						|
      goto one_digit;
 | 
						|
    }
 | 
						|
    for(i = 1;; i++, dval(d) *= 10.) {
 | 
						|
      L = dval(d) / ds;
 | 
						|
      dval(d) -= L*ds;
 | 
						|
#ifdef Check_FLT_ROUNDS
 | 
						|
      /* If FLT_ROUNDS == 2, L will usually be high by 1 */
 | 
						|
      if (dval(d) < 0) {
 | 
						|
        L--;
 | 
						|
        dval(d) += ds;
 | 
						|
      }
 | 
						|
#endif
 | 
						|
      *s++ = '0' + (int)L;
 | 
						|
      if (dval(d) == 0.)
 | 
						|
        break;
 | 
						|
      if (i == ilim) {
 | 
						|
        if (rdir) {
 | 
						|
          if (rdir == 1)
 | 
						|
            goto bump_up;
 | 
						|
          inex = STRTOG_Inexlo;
 | 
						|
          goto ret1;
 | 
						|
        }
 | 
						|
        dval(d) += dval(d);
 | 
						|
        if (dval(d) > ds || (dval(d) == ds && L & 1)) {
 | 
						|
bump_up:
 | 
						|
          inex = STRTOG_Inexhi;
 | 
						|
          while(*--s == '9')
 | 
						|
            if (s == s0) {
 | 
						|
              k++;
 | 
						|
              *s = '0';
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          ++*s++;
 | 
						|
        }
 | 
						|
        else
 | 
						|
          inex = STRTOG_Inexlo;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    goto ret1;
 | 
						|
  }
 | 
						|
 | 
						|
  m2 = b2;
 | 
						|
  m5 = b5;
 | 
						|
  mhi = NULL;
 | 
						|
  mlo = NULL;
 | 
						|
  if (leftright) {
 | 
						|
    if (mode < 2) {
 | 
						|
      i = nbits - bbits;
 | 
						|
      if (be - i++ < fpi->emin)
 | 
						|
        /* denormal */
 | 
						|
        i = be - fpi->emin + 1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      j = ilim - 1;
 | 
						|
      if (m5 >= j)
 | 
						|
        m5 -= j;
 | 
						|
      else {
 | 
						|
        s5 += j -= m5;
 | 
						|
        b5 += j;
 | 
						|
        m5 = 0;
 | 
						|
      }
 | 
						|
      if ((i = ilim) < 0) {
 | 
						|
        m2 -= i;
 | 
						|
        i = 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    b2 += i;
 | 
						|
    s2 += i;
 | 
						|
    mhi = i2b(1);
 | 
						|
  }
 | 
						|
  if (m2 > 0 && s2 > 0) {
 | 
						|
    i = m2 < s2 ? m2 : s2;
 | 
						|
    b2 -= i;
 | 
						|
    m2 -= i;
 | 
						|
    s2 -= i;
 | 
						|
  }
 | 
						|
  if (b5 > 0) {
 | 
						|
    if (leftright) {
 | 
						|
      if (m5 > 0) {
 | 
						|
        mhi = pow5mult(mhi, m5);
 | 
						|
        if (mhi == NULL)
 | 
						|
          return NULL;
 | 
						|
        b1 = mult(mhi, b);
 | 
						|
        if (b1 == NULL)
 | 
						|
          return NULL;
 | 
						|
        Bfree(b);
 | 
						|
        b = b1;
 | 
						|
      }
 | 
						|
      if ( (j = b5 - m5) !=0) {
 | 
						|
        b = pow5mult(b, j);
 | 
						|
        if (b == NULL)
 | 
						|
          return NULL;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      b = pow5mult(b, b5);
 | 
						|
      if (b == NULL)
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  S = i2b(1);
 | 
						|
  if (S == NULL)
 | 
						|
    return NULL;
 | 
						|
  if (s5 > 0) {
 | 
						|
    S = pow5mult(S, s5);
 | 
						|
    if (S == NULL)
 | 
						|
      return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Check for special case that d is a normalized power of 2. */
 | 
						|
 | 
						|
  spec_case = 0;
 | 
						|
  if (mode < 2) {
 | 
						|
    if (bbits == 1 && be0 > fpi->emin + 1) {
 | 
						|
      /* The special case */
 | 
						|
      b2++;
 | 
						|
      s2++;
 | 
						|
      spec_case = 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Arrange for convenient computation of quotients:
 | 
						|
   * shift left if necessary so divisor has 4 leading 0 bits.
 | 
						|
   *
 | 
						|
   * Perhaps we should just compute leading 28 bits of S once
 | 
						|
   * and for all and pass them and a shift to quorem, so it
 | 
						|
   * can do shifts and ors to compute the numerator for q.
 | 
						|
   */
 | 
						|
#ifdef Pack_32
 | 
						|
  if ( (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) !=0)
 | 
						|
    i = 32 - i;
 | 
						|
#else
 | 
						|
  if ( (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) !=0)
 | 
						|
    i = 16 - i;
 | 
						|
#endif
 | 
						|
  if (i > 4) {
 | 
						|
    i -= 4;
 | 
						|
    b2 += i;
 | 
						|
    m2 += i;
 | 
						|
    s2 += i;
 | 
						|
  }
 | 
						|
  else if (i < 4) {
 | 
						|
    i += 28;
 | 
						|
    b2 += i;
 | 
						|
    m2 += i;
 | 
						|
    s2 += i;
 | 
						|
  }
 | 
						|
  if (b2 > 0)
 | 
						|
    b = lshift(b, b2);
 | 
						|
  if (s2 > 0)
 | 
						|
    S = lshift(S, s2);
 | 
						|
  if (k_check) {
 | 
						|
    if (cmp(b,S) < 0) {
 | 
						|
      k--;
 | 
						|
      b = multadd(b, 10, 0);  /* we botched the k estimate */
 | 
						|
      if (b == NULL)
 | 
						|
        return NULL;
 | 
						|
      if (leftright) {
 | 
						|
        mhi = multadd(mhi, 10, 0);
 | 
						|
        if (mhi == NULL)
 | 
						|
          return NULL;
 | 
						|
      }
 | 
						|
      ilim = ilim1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (ilim <= 0 && mode > 2) {
 | 
						|
    if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
 | 
						|
      /* no digits, fcvt style */
 | 
						|
no_digits:
 | 
						|
      k = -1 - ndigits;
 | 
						|
      inex = STRTOG_Inexlo;
 | 
						|
      goto ret;
 | 
						|
    }
 | 
						|
one_digit:
 | 
						|
    inex = STRTOG_Inexhi;
 | 
						|
    *s++ = '1';
 | 
						|
    k++;
 | 
						|
    goto ret;
 | 
						|
  }
 | 
						|
  if (leftright) {
 | 
						|
    if (m2 > 0) {
 | 
						|
      mhi = lshift(mhi, m2);
 | 
						|
      if (mhi == NULL)
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Compute mlo -- check for special case
 | 
						|
     * that d is a normalized power of 2.
 | 
						|
     */
 | 
						|
 | 
						|
    mlo = mhi;
 | 
						|
    if (spec_case) {
 | 
						|
      mhi = Balloc(mhi->k);
 | 
						|
      if (mhi == NULL)
 | 
						|
        return NULL;
 | 
						|
      Bcopy(mhi, mlo);
 | 
						|
      mhi = lshift(mhi, 1);
 | 
						|
      if (mhi == NULL)
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    for(i = 1;;i++) {
 | 
						|
      dig = quorem(b,S) + '0';
 | 
						|
      /* Do we yet have the shortest decimal string
 | 
						|
       * that will round to d?
 | 
						|
       */
 | 
						|
      j = cmp(b, mlo);
 | 
						|
      delta = diff(S, mhi);
 | 
						|
      if (delta == NULL)
 | 
						|
        return NULL;
 | 
						|
      jj1 = delta->sign ? 1 : cmp(b, delta);
 | 
						|
      Bfree(delta);
 | 
						|
#ifndef ROUND_BIASED
 | 
						|
      if (jj1 == 0 && !mode && !(bits[0] & 1) && !rdir) {
 | 
						|
        if (dig == '9')
 | 
						|
          goto round_9_up;
 | 
						|
        if (j <= 0) {
 | 
						|
          if (b->wds > 1 || b->x[0])
 | 
						|
            inex = STRTOG_Inexlo;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
          dig++;
 | 
						|
          inex = STRTOG_Inexhi;
 | 
						|
        }
 | 
						|
        *s++ = dig;
 | 
						|
        goto ret;
 | 
						|
      }
 | 
						|
#endif
 | 
						|
      if (j < 0 || (j == 0 && !mode
 | 
						|
#ifndef ROUND_BIASED
 | 
						|
              && !(bits[0] & 1)
 | 
						|
#endif
 | 
						|
          )) {
 | 
						|
        if (rdir && (b->wds > 1 || b->x[0])) {
 | 
						|
          if (rdir == 2) {
 | 
						|
            inex = STRTOG_Inexlo;
 | 
						|
            goto accept;
 | 
						|
          }
 | 
						|
          while (cmp(S,mhi) > 0) {
 | 
						|
            *s++ = dig;
 | 
						|
            mhi1 = multadd(mhi, 10, 0);
 | 
						|
            if (mhi1 == NULL)
 | 
						|
              return NULL;
 | 
						|
            if (mlo == mhi)
 | 
						|
              mlo = mhi1;
 | 
						|
            mhi = mhi1;
 | 
						|
            b = multadd(b, 10, 0);
 | 
						|
            if (b == NULL)
 | 
						|
              return NULL;
 | 
						|
            dig = quorem(b,S) + '0';
 | 
						|
          }
 | 
						|
          if (dig++ == '9')
 | 
						|
            goto round_9_up;
 | 
						|
          inex = STRTOG_Inexhi;
 | 
						|
          goto accept;
 | 
						|
        }
 | 
						|
        if (jj1 > 0) {
 | 
						|
          b = lshift(b, 1);
 | 
						|
          if (b == NULL)
 | 
						|
            return NULL;
 | 
						|
          jj1 = cmp(b, S);
 | 
						|
          if ((jj1 > 0 || (jj1 == 0 && dig & 1))
 | 
						|
          && dig++ == '9')
 | 
						|
            goto round_9_up;
 | 
						|
          inex = STRTOG_Inexhi;
 | 
						|
        }
 | 
						|
        if (b->wds > 1 || b->x[0])
 | 
						|
          inex = STRTOG_Inexlo;
 | 
						|
accept:
 | 
						|
        *s++ = dig;
 | 
						|
        goto ret;
 | 
						|
      }
 | 
						|
      if (jj1 > 0 && rdir != 2) {
 | 
						|
        if (dig == '9') { /* possible if i == 1 */
 | 
						|
round_9_up:
 | 
						|
          *s++ = '9';
 | 
						|
          inex = STRTOG_Inexhi;
 | 
						|
          goto roundoff;
 | 
						|
        }
 | 
						|
        inex = STRTOG_Inexhi;
 | 
						|
        *s++ = dig + 1;
 | 
						|
        goto ret;
 | 
						|
      }
 | 
						|
      *s++ = dig;
 | 
						|
      if (i == ilim)
 | 
						|
        break;
 | 
						|
      b = multadd(b, 10, 0);
 | 
						|
      if (b == NULL)
 | 
						|
        return NULL;
 | 
						|
      if (mlo == mhi) {
 | 
						|
        mlo = mhi = multadd(mhi, 10, 0);
 | 
						|
        if (mlo == NULL)
 | 
						|
          return NULL;
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        mlo = multadd(mlo, 10, 0);
 | 
						|
        if (mlo == NULL)
 | 
						|
          return NULL;
 | 
						|
        mhi = multadd(mhi, 10, 0);
 | 
						|
        if (mhi == NULL)
 | 
						|
          return NULL;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else
 | 
						|
    for(i = 1;; i++) {
 | 
						|
      *s++ = dig = quorem(b,S) + '0';
 | 
						|
      if (i >= ilim)
 | 
						|
        break;
 | 
						|
      b = multadd(b, 10, 0);
 | 
						|
      if (b == NULL)
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
  /* Round off last digit */
 | 
						|
 | 
						|
  if (rdir) {
 | 
						|
    if (rdir == 2 || (b->wds <= 1 && !b->x[0]))
 | 
						|
      goto chopzeros;
 | 
						|
    goto roundoff;
 | 
						|
  }
 | 
						|
  b = lshift(b, 1);
 | 
						|
  if (b == NULL)
 | 
						|
    return NULL;
 | 
						|
  j = cmp(b, S);
 | 
						|
  if (j > 0 || (j == 0 && dig & 1)) {
 | 
						|
roundoff:
 | 
						|
    inex = STRTOG_Inexhi;
 | 
						|
    while(*--s == '9')
 | 
						|
      if (s == s0) {
 | 
						|
        k++;
 | 
						|
        *s++ = '1';
 | 
						|
        goto ret;
 | 
						|
      }
 | 
						|
    ++*s++;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
chopzeros:
 | 
						|
    if (b->wds > 1 || b->x[0])
 | 
						|
      inex = STRTOG_Inexlo;
 | 
						|
    while(*--s == '0'){}
 | 
						|
    s++;
 | 
						|
  }
 | 
						|
ret:
 | 
						|
  Bfree(S);
 | 
						|
  if (mhi) {
 | 
						|
    if (mlo && mlo != mhi)
 | 
						|
      Bfree(mlo);
 | 
						|
    Bfree(mhi);
 | 
						|
  }
 | 
						|
ret1:
 | 
						|
  Bfree(b);
 | 
						|
  *s = 0;
 | 
						|
  *decpt = k + 1;
 | 
						|
  if (rve)
 | 
						|
    *rve = s;
 | 
						|
  *kindp |= inex;
 | 
						|
  return s0;
 | 
						|
}
 |