mirror_corosync/exec/gmi.c
Steven Dake 7e1a275900 single node AMF would fail because of a recursion bug. Removed
the recursion by queueing single node message delivery as a timer
with 0 timeout.  This was happening before, but the logic was
wrong.

(Logical change 1.7)


git-svn-id: http://svn.fedorahosted.org/svn/corosync/trunk@13 fd59a12c-fef9-0310-b244-a6a79926bd2f
2004-06-17 23:50:26 +00:00

2886 lines
76 KiB
C

/*
* Copyright (c) 2003-2004 MontaVista Software, Inc.
*
* All rights reserved.
*
* Author: Steven Dake (sdake@mvista.com)
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This code implements the ring protocol specified in Yair Amir's PhD thesis:
* http://www.cs.jhu.edu/~yairamir/phd.ps) (ch4,5).
*
* Some changes have been made to the design to support things like fragmentation,
* multiple I/O queues, and other things.
*/
#include <assert.h>
#include <sys/poll.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <sys/un.h>
#include <sys/sysinfo.h>
#include <sys/ioctl.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <linux/if.h>
#include <linux/sockios.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <signal.h>
#include <sched.h>
#include <time.h>
#include <sys/time.h>
#include "poll.h"
#include "gmi.h"
#include "../include/queue.h"
#include "../include/sq.h"
#include "print.h"
extern struct sockaddr_in this_ip;
#define LOCALHOST_IP inet_addr("127.0.0.1")
#define QUEUE_PEND_DELV_SIZE_MAX ((MESSAGE_SIZE_MAX / 1472) + 1) * 2
#define QUEUE_RTR_ITEMS_SIZE_MAX 512
#define QUEUE_PEND_TRANS_SIZE_MAX ((MESSAGE_SIZE_MAX / 1472) + 1) * 500
#define MAXIOVS 8
#define RTR_TOKEN_SIZE_MAX 32
#define MISSING_MCAST_WINDOW 64
#define TIMEOUT_STATE_GATHER 100
#define TIMEOUT_TOKEN 300
#define TIMEOUT_STATE_COMMIT 100
#define MAX_MEMBERS 16
#define HOLE_LIST_MAX MISSING_MCAST_WINDOW
#define PRIORITY_MAX 3
int stats_sent = 0;
int stats_recv = 0;
int stats_delv = 0;
int stats_remcasts = 0;
int stats_orf_token = 0;
int stats_form_token = 0;
struct timeval stats_tv_start = { 0, 0 };
/*
* Flow control mcasts and remcasts on last and current orf_token
*/
int fcc_remcast_last = 0;
int fcc_mcast_last = 0;
int fcc_mcast_current = 0;
int fcc_remcast_current = 0;
enum message_type {
MESSAGE_TYPE_ORF_TOKEN = 0, /* Ordering, Reliability, Flow (ORF) control Token */
MESSAGE_TYPE_MCAST = 1, /* ring ordered multicast message */
MESSAGE_TYPE_MEMB_ATTEMPT_JOIN = 2, /* membership join attempt message */
MESSAGE_TYPE_MEMB_JOIN = 3, /* membership join message */
MESSAGE_TYPE_MEMB_FORM_TOKEN = 4 /* membership FORM token */
};
/*
* In-order pending transmit queue
*/
struct queue queues_pend_trans[PRIORITY_MAX];
/*
* In-order pending delivery queue
*/
struct pend_delv {
struct in_addr ip;
int seqid;
int first_delivery;
struct queue queue;
};
struct pend_delv queues_pend_delv[MAX_MEMBERS];
/*
* Sorted delivery/retransmit queue
*/
struct sq queue_rtr_items;
/*
* Multicast address
*/
struct sockaddr_in sockaddr_in_mcast;
/*
* Multicast file descriptor
*/
int gmi_fd;
/*
* Received up to and including
*/
int gmi_arut = 0;
/*
* Delivered up to and including
*/
int gmi_adut = 0;
int gmi_adut_old = 0;
int gmi_original_arut = 0;
int gmi_highest_seq = 0;
int gmi_highest_seq_old = 0;
int gmi_barrier_seq = 0;
int gmi_last_seqid = 0;
int gmi_fragment = 0;
int gmi_pend_queue_priority = 0;
/*
* Timers
*/
poll_timer_handle timer_orf_token_timeout = 0;
poll_timer_handle timer_form_token_timeout = 0;
poll_timer_handle timer_memb_state_gather_timeout = 0;
poll_timer_handle timer_memb_state_commit_timeout = 0;
poll_timer_handle timer_single_member = 0;
/*
* Function called when new message received
*/
int (*gmi_recv) (char *group, struct iovec *iovec, int iov_len);
struct message_header {
int type;
int seqid;
};
struct memb_conf_id {
struct in_addr rep;
struct timeval tv;
};
struct mcast {
struct message_header header;
char priority;
struct memb_conf_id memb_conf_id;
short packet_number;
short packet_count;
int packet_seq;
struct in_addr source;
struct gmi_groupname groupname;
};
struct rtr_item {
struct memb_conf_id conf_id;
int seqid;
};
struct orf_token {
struct message_header header;
int group_arut;
struct in_addr addr_arut;
short int fcc;
short int brake;
struct in_addr brake_addr;
struct rtr_item rtr_list[RTR_TOKEN_SIZE_MAX];
int rtr_list_entries;
};
struct conf_desc {
struct memb_conf_id conf_id;
int highest_seq;
int arut;
#ifdef COMPLIE_OUT
int hole_list[HOLE_LIST_MAX];
int hole_list_entries;
#endif
};
struct memb_form_token {
struct message_header header;
struct memb_conf_id conf_id;
struct conf_desc conf_desc_list[MAX_MEMBERS]; /* SHOULD BE MAX_MEMBERS */
int conf_desc_list_entries;
struct in_addr member_list[MAX_MEMBERS];
int member_list_entries;
struct in_addr rep_list[MAX_MEMBERS];
int rep_list_entries;
};
struct memb_attempt_join {
struct message_header header;
};
struct memb_join {
struct message_header header;
struct in_addr active_rep_list[MAX_MEMBERS];
int active_rep_list_entries;
struct in_addr failed_rep_list[MAX_MEMBERS];
int failed_rep_list_entries;
};
struct gmi_pend_trans_item {
struct mcast *mcast;
struct iovec iovec[MAXIOVS];
int iov_len;
};
struct gmi_pend_delv_item {
struct iovec iovec[MAXIOVS];
int iov_len;
};
struct gmi_rtr_item {
struct iovec iovec[MAXIOVS+2]; /* +2 is for mcast msg + group name TODO is this right */
int iov_len;
};
enum memb_state {
MEMB_STATE_OPERATIONAL,
MEMB_STATE_GATHER,
MEMB_STATE_COMMIT,
MEMB_STATE_FORM,
MEMB_STATE_EVS
};
static enum memb_state memb_state = MEMB_STATE_GATHER;
static struct sockaddr_in memb_list[MAX_MEMBERS];
static int memb_list_entries = 1;
static int memb_list_entries_confchg = 1;
struct sockaddr_in memb_next;
struct in_addr memb_gather_set[MAX_MEMBERS];
int memb_gather_set_entries = 0;
struct memb_commit_set {
struct sockaddr_in rep;
struct in_addr join_rep_list[MAX_MEMBERS];
int join_rep_list_entries;
struct in_addr member_list[MAX_MEMBERS];
int member_list_entries;
};
static struct memb_commit_set memb_commit_set[MAX_MEMBERS];
static int memb_commit_set_entries = 0;
static struct in_addr memb_failed_list[MAX_MEMBERS];
static int memb_failed_list_entries = 0;
static struct sockaddr_in memb_local_sockaddr_in;
static struct memb_conf_id memb_conf_id;
static struct memb_conf_id memb_form_token_conf_id;
static struct memb_join memb_join;
static struct memb_form_token memb_form_token;
char iov_buffer[MESSAGE_SIZE_MAX];
static struct iovec gmi_iov_recv = {
iov_base: iov_buffer,
iov_len: sizeof (iov_buffer)
};
struct message_handlers {
int count;
int (*handler_functions[5]) (struct sockaddr_in *, struct iovec *, int, int);
};
poll_handle *gmi_poll_handle;
void (*gmi_deliver_fn) (
struct gmi_groupname *groupname,
struct iovec *iovec,
int iov_len) = 0;
void (*gmi_confchg_fn) (
struct sockaddr_in *member_list, int member_list_entries,
struct sockaddr_in *left_list, int left_list_entries,
struct sockaddr_in *joined_list, int joined_list_entries) = 0;
/*
* forward decls
*/
static int message_handler_orf_token (struct sockaddr_in *, struct iovec *, int, int);
static int message_handler_mcast (struct sockaddr_in *, struct iovec *, int, int);
static int message_handler_memb_attempt_join (struct sockaddr_in *, struct iovec *, int, int);
static int message_handler_memb_join (struct sockaddr_in *, struct iovec *, int, int);
static int message_handler_memb_form_token (struct sockaddr_in *, struct iovec *, int, int);
static void memb_conf_id_build (struct memb_conf_id *, struct in_addr);
static int recv_handler (poll_handle handle, int fd, int revents, void *data);
static int local_netif_determine (struct sockaddr_in *bindnet, struct sockaddr_in *bound_to);
static int memb_state_gather_enter (void);
static void pending_queues_deliver (void);
static int orf_token_mcast (struct orf_token *orf_token,
int fcc_mcasts_allowed, struct sockaddr_in *system_from);
static void queues_pend_delv_memb_new (void);
static void calculate_group_arut (struct orf_token *orf_token);
static int messages_free (int group_arut);
struct message_handlers gmi_message_handlers = {
5,
{
message_handler_orf_token,
message_handler_mcast,
message_handler_memb_attempt_join,
message_handler_memb_join,
message_handler_memb_form_token
}
};
/*
* Exported interfaces
*/
int gmi_init (
struct sockaddr_in *sockaddr_mcast,
struct sockaddr_in *sockaddr_bindnet,
poll_handle *poll_handle,
struct sockaddr_in *bound_to)
{
int res;
struct ip_mreqn mreqn;
struct sockaddr_in sockaddr_in;
char flag;
int i;
int index;
memcpy (&sockaddr_in_mcast, sockaddr_mcast, sizeof (struct sockaddr_in));
for (i = 0; i < PRIORITY_MAX; i++) {
queue_init (&queues_pend_trans[i], QUEUE_PEND_TRANS_SIZE_MAX,
sizeof (struct gmi_pend_trans_item));
}
sq_init (&queue_rtr_items, QUEUE_RTR_ITEMS_SIZE_MAX, sizeof (struct gmi_rtr_item), 0);
index = local_netif_determine (sockaddr_bindnet, bound_to);
if (index == -1) {
return (-1);
}
memcpy (&memb_list[0], &memb_local_sockaddr_in, sizeof (struct sockaddr_in));
memb_conf_id_build (&memb_conf_id, memb_local_sockaddr_in.sin_addr);
memcpy (&memb_form_token_conf_id, &memb_conf_id, sizeof (struct memb_conf_id));
/*
* Set local sock addr for new socket
*/
sockaddr_in.sin_family = AF_INET;
sockaddr_in.sin_addr.s_addr = htonl (INADDR_ANY);
sockaddr_in.sin_port = sockaddr_in_mcast.sin_port;
/*
* Join group membership on socket
*/
mreqn.imr_multiaddr.s_addr = sockaddr_mcast->sin_addr.s_addr;
mreqn.imr_ifindex = index + 1;
gmi_fd = socket (AF_INET, SOCK_DGRAM, 0);
if (gmi_fd == -1) {
perror ("socket");
return (-1);
}
res = bind (gmi_fd, (struct sockaddr *)&sockaddr_in,
sizeof (struct sockaddr_in));
if (res == -1) {
perror ("bind failed");
return (-1);
}
#ifdef BROADCAST_CODE_TAKEN_OUT
this code is the broadcast socket option vs multicast socket option
setsockopt (gmi_fd, SOL_SOCKET, SO_BROADCAST, (char *)&on, sizeof (on));
#endif
res = setsockopt (gmi_fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
&mreqn, sizeof (mreqn));
if (res == -1) {
perror ("join multicast group failed");
return (-1);
}
flag = 0;
res = setsockopt (gmi_fd, IPPROTO_IP, IP_MULTICAST_LOOP,
&flag, sizeof (flag));
if (res == -1) {
perror ("turn off loopback");
return (-1);
}
gmi_poll_handle = poll_handle;
poll_dispatch_add (*gmi_poll_handle, gmi_fd, POLLIN, 0, recv_handler);
memb_state_gather_enter ();
memset (&memb_next, 0, sizeof (struct sockaddr_in));
queues_pend_delv_memb_new ();
return (0);
}
int gmi_join (
struct gmi_groupname *groupname,
void (*deliver_fn) (
struct gmi_groupname *groupname,
struct iovec *iovec,
int iov_len),
void (*confchg_fn) (
struct sockaddr_in *member_list, int member_list_entries,
struct sockaddr_in *left_list, int left_list_entries,
struct sockaddr_in *joined_list, int joined_list_entries),
gmi_join_handle *handle_out) {
gmi_deliver_fn = deliver_fn;
gmi_confchg_fn = confchg_fn;
*handle_out = 0;
return (0);
}
int local_host_seq_count = 0;
int gmi_leave (
gmi_join_handle handle_join);
static int gmi_pend_trans_item_store (
struct gmi_groupname *groupname,
struct iovec *iovec,
int iov_len,
int priority,
short packet_number, short packet_count)
{
int i, j;
struct gmi_pend_trans_item gmi_pend_trans_item;
/*
* Store pending item
*/
gmi_pend_trans_item.mcast = malloc (sizeof (struct mcast));
if (gmi_pend_trans_item.mcast == 0) {
goto error_mcast;
}
/*
* Set mcast header
*/
gmi_pend_trans_item.mcast->header.type = MESSAGE_TYPE_MCAST;
gmi_pend_trans_item.mcast->priority = priority;
gmi_pend_trans_item.mcast->packet_number = packet_number;
gmi_pend_trans_item.mcast->packet_count = packet_count;
gmi_pend_trans_item.mcast->packet_seq = local_host_seq_count++;
gmi_pend_trans_item.mcast->source.s_addr = this_ip.sin_addr.s_addr;
memcpy (&gmi_pend_trans_item.mcast->groupname, groupname,
sizeof (struct gmi_groupname));
for (i = 0; i < iov_len; i++) {
gmi_pend_trans_item.iovec[i].iov_base = malloc (iovec[i].iov_len);
if (gmi_pend_trans_item.iovec[i].iov_base == 0) {
goto error_iovec;
}
memcpy (gmi_pend_trans_item.iovec[i].iov_base, iovec[i].iov_base,
iovec[i].iov_len);
gmi_pend_trans_item.iovec[i].iov_len = iovec[i].iov_len;
}
gmi_pend_trans_item.iov_len = iov_len;
log_printf (LOG_LEVEL_DEBUG, "mcasted message added to pending queue\n");
queue_item_add (&queues_pend_trans[priority], &gmi_pend_trans_item);
return (0);
error_iovec:
for (j = 0; j < i; j++) {
free (gmi_pend_trans_item.iovec[j].iov_base);
}
return (-1);
error_mcast:
return (0);
}
/*
* MTU - multicast message header - IP header - UDP header
*
* On lossy switches, making use of the DF UDP flag can lead to loss of
* forward progress. So the packets must be fragmented by the algorithm
* and reassembled at the receiver.
*/
#define FRAGMENT_SIZE (1500 - sizeof (struct mcast) - 20 - 8)
static void timer_function_single_member (void *data);
/*
* With only a single member, multicast messages as if an orf token was
* delivered. This is done as part of the main event loop by specifying
* a timer with an immediate expiration. This is a little suboptimal
* since poll starts afresh. If more messages are waiting to be
* self-delivered, queue the timer function again until there are no
* more waiting messages.
*/
static void single_member_deliver (void)
{
poll_timer_delete (*gmi_poll_handle, timer_single_member);
timer_single_member = 0;
poll_timer_add (*gmi_poll_handle, 0, 0,
timer_function_single_member, &timer_single_member);
}
static void timer_function_single_member (void *data)
{
struct orf_token orf_token;
int more_messages;
memset (&orf_token, 0, sizeof (struct orf_token));
orf_token.header.seqid = gmi_arut;
orf_token.header.type = MESSAGE_TYPE_ORF_TOKEN;
orf_token.group_arut = gmi_arut;
orf_token.rtr_list_entries = 0;
more_messages = orf_token_mcast (&orf_token, 99, &memb_local_sockaddr_in);
calculate_group_arut (&orf_token);
messages_free (gmi_arut);
/*
* Queue delivery again if more messages are available
*/
if (more_messages) {
single_member_deliver ();
}
}
int gmi_mcast (
struct gmi_groupname *groupname,
struct iovec *iovec,
int iov_len,
int priority)
{
int res;
struct iovec copied_iovec;
struct iovec pending_iovecs[MAXIOVS];
int pending_iovec_entries = 0;
int iovec_entry = 0;
int total_size;
int packet_size;
int i;
int packet_number = 0;
int packet_count = 0;
packet_size = FRAGMENT_SIZE;
log_printf (LOG_LEVEL_DEBUG, "MCASTING MESSAGE\n");
/*
* Determine size of total message
*/
total_size = 0;
for (i = 0; i < iov_len; i++) {
total_size += iovec[i].iov_len;
assert (iovec[i].iov_len < MESSAGE_SIZE_MAX);
}
packet_count = (total_size / packet_size);
log_printf (LOG_LEVEL_DEBUG, "Message size is %d\n", total_size);
/*
* Break message up into individual packets and publish them
*/
copied_iovec.iov_base = iovec[0].iov_base;
copied_iovec.iov_len = iovec[0].iov_len;
packet_size = 0;
pending_iovec_entries = 0;
iovec_entry = 0;
do {
if (copied_iovec.iov_len + packet_size > FRAGMENT_SIZE) {
pending_iovecs[pending_iovec_entries].iov_base = copied_iovec.iov_base;
pending_iovecs[pending_iovec_entries].iov_len = FRAGMENT_SIZE - packet_size;
copied_iovec.iov_base += FRAGMENT_SIZE - packet_size;
copied_iovec.iov_len -= FRAGMENT_SIZE - packet_size;
packet_size += pending_iovecs[pending_iovec_entries].iov_len;
} else {
pending_iovecs[pending_iovec_entries].iov_base = copied_iovec.iov_base;
pending_iovecs[pending_iovec_entries].iov_len = copied_iovec.iov_len;
packet_size += copied_iovec.iov_len;
iovec_entry += 1; /* this must be before copied_iovec */
copied_iovec.iov_base = iovec[iovec_entry].iov_base;
copied_iovec.iov_len = iovec[iovec_entry].iov_len;
}
pending_iovec_entries += 1;
if (packet_size >= FRAGMENT_SIZE || packet_size == total_size) {
#ifdef DEBUG
for (i = 0; i < pending_iovec_entries; i++) {
assert (pending_iovecs[i].iov_len < MESSAGE_SIZE_MAX);
assert (pending_iovecs[i].iov_len >= 0);
printf ("iovecs[%d] %x %d\n", i, pending_iovecs[i].iov_base, pending_iovecs[i].iov_len);
calced_total += pending_iovecs[i].iov_len;
}
printf ("CALCULATED TOTAL is %d\n", calced_total);
#endif
total_size -= packet_size;
assert (total_size >= 0);
res = gmi_pend_trans_item_store (groupname, pending_iovecs,
pending_iovec_entries, priority, packet_number, packet_count);
pending_iovec_entries = 0;
iovec_entry = 0;
packet_size = 0;
packet_number += 1;
}
} while (total_size > 0);
/*
* The queued messages are sent in orf_token_mcast, not this function
* But if this processor is the only node, it must deliver the messages
* for self-delivery requirements because orf_token_mcast is only called
* on reception of a token
*/
if (memb_list_entries == 1) {
single_member_deliver ();
}
return (0);
}
static int local_netif_determine (struct sockaddr_in *bindnet, struct sockaddr_in *bound_to)
{
struct sockaddr_in *sockaddr_in;
int id_fd;
struct ifconf ifc;
int numreqs = 0;
int res;
int i;
/*
* Generate list of local interfaces in ifc.ifc_req structure
*/
id_fd = socket (AF_INET, SOCK_DGRAM, 0);
ifc.ifc_buf = 0;
do {
numreqs += 8;
ifc.ifc_len = sizeof (struct ifreq) * numreqs;
ifc.ifc_buf = (void *)realloc(ifc.ifc_buf, ifc.ifc_len);
res = ioctl (id_fd, SIOCGIFCONF, &ifc);
if (res < 0) {
close (id_fd);
return -1;
}
} while (ifc.ifc_len == sizeof (struct ifreq) * numreqs);
res = -1;
/*
* Find interface to bind to
*/
for (i = 0; i < ifc.ifc_len / sizeof (struct ifreq); i++) {
sockaddr_in = (struct sockaddr_in *)&ifc.ifc_ifcu.ifcu_req[i].ifr_ifru.ifru_addr;
if ((sockaddr_in->sin_addr.s_addr & 0x00ffffff) == (bindnet->sin_addr.s_addr & 0x00ffffff)) {
memb_local_sockaddr_in.sin_addr.s_addr = sockaddr_in->sin_addr.s_addr;
memb_local_sockaddr_in.sin_family = AF_INET;
memb_local_sockaddr_in.sin_port = sockaddr_in_mcast.sin_port;
memcpy (bound_to, &memb_local_sockaddr_in, sizeof (struct sockaddr_in));
res = i;
break; /* for */
}
}
free (ifc.ifc_buf);
close (id_fd);
return (res);
}
/*
* Misc Management
*/
int in_addr_compare (const void *a, const void *b) {
struct in_addr *in_addr_a = (struct in_addr *)a;
struct in_addr *in_addr_b = (struct in_addr *)b;
return (in_addr_a->s_addr > in_addr_b->s_addr);
}
/*
* ORF Token Management
*/
/*
* Recast message to mcast group if it is available
*/
int orf_token_remcast (int seqid) {
struct msghdr msg_mcast;
struct gmi_rtr_item *gmi_rtr_item;
int res;
struct mcast *mcast;
//printf ("remulticasting %d\n", seqid);
/*
* Get RTR item at seqid, if not available, return
*/
res = sq_item_get (&queue_rtr_items, seqid, (void **)&gmi_rtr_item);
if (res != 0) {
return -1;
}
mcast = gmi_rtr_item->iovec[0].iov_base;
/*
* Build multicast message
*/
msg_mcast.msg_name = &sockaddr_in_mcast;
msg_mcast.msg_namelen = sizeof (struct sockaddr_in);
msg_mcast.msg_iov = gmi_rtr_item->iovec;
msg_mcast.msg_iovlen = gmi_rtr_item->iov_len;
msg_mcast.msg_control = 0;
msg_mcast.msg_controllen = 0;
msg_mcast.msg_flags = 0;
/*
* Multicast message
*/
res = sendmsg (gmi_fd, &msg_mcast, MSG_NOSIGNAL | MSG_DONTWAIT);
if (res == -1) {
printf ("error during remulticast %d %d %d\n", seqid, errno, gmi_rtr_item->iov_len);
return (-1);
}
stats_sent += res;
return (0);
}
int last_group_arut = 0;
int last_released = 0;
int set_arut = -1;
/*
* Brake output multicasts if the missing window is too large
*/
int gmi_brake;
static int messages_free (int group_arut)
{
struct gmi_rtr_item *gmi_rtr_item_p;
int i, j;
int res;
int lesser;
// TODO printf ("group arut %d last_group-arut %d gmi_dut %d barrier %d\n", group_arut, last_group_arut, gmi_dut, gmi_barrier_seq);
/*
* Determine braking value (when messages + MISSING_MCAST_WINDOW, stop sending messages)
*/
gmi_brake = group_arut;
if (gmi_brake > last_group_arut) {
gmi_brake = last_group_arut;
}
/*
* Determine low water mark for messages to be freed
*/
lesser = gmi_brake;
if (lesser > gmi_adut) {
lesser = gmi_adut;
}
//printf ("Freeing lesser %d %d %d\n", lesser, group_arut, last_group_arut);
//printf ("lesser %d gropu arut %d last group arut %d\n", lesser, group_arut, last_group_arut);
/*
* return early if no messages can be freed
*/
/*
if (last_released + 1 == lesser) {
return (0);
}
*/
/*
* Release retransmit list items if group arut indicates they are transmitted
*/
for (i = last_released; i <= lesser; i++) {
res = sq_item_get (&queue_rtr_items, i, (void **)&gmi_rtr_item_p);
if (res == 0) {
for (j = 0; j < gmi_rtr_item_p->iov_len; j++) {
free (gmi_rtr_item_p->iovec[j].iov_base);
gmi_rtr_item_p->iovec[j].iov_base = (void *)0xdeadbeef;
gmi_rtr_item_p->iovec[j].iov_len = i;
}
}
last_released = i + 1;
}
sq_items_release (&queue_rtr_items, lesser);
log_printf (LOG_LEVEL_DEBUG, "releasing messages up to and including %d\n", lesser);
return (0);
}
/*
* Multicasts pending messages onto the ring (requires orf_token possession)
*/
static int orf_token_mcast (
struct orf_token *orf_token,
int fcc_mcasts_allowed,
struct sockaddr_in *system_from)
{
struct msghdr msg_mcast;
struct gmi_rtr_item gmi_rtr_item;
struct gmi_pend_trans_item *gmi_pend_trans_item = 0;
int res = 0;
int orf_token_seqid;
struct mcast *mcast;
int last_packet = 1;
struct queue *queue_pend_trans;
/*
* Disallow multicasts unless state is operational
*/
if (memb_state != MEMB_STATE_OPERATIONAL) {
return (0);
}
/*
* If received a token with a higher sequence number,
* set highest seq so retransmits can happen at end of
* message stream
*/
if (orf_token->header.seqid > gmi_highest_seq) {
gmi_highest_seq = orf_token->header.seqid;
}
orf_token_seqid = orf_token->header.seqid;
queue_pend_trans = &queues_pend_trans[gmi_pend_queue_priority];
for (fcc_mcast_current = 0; fcc_mcast_current < fcc_mcasts_allowed; fcc_mcast_current++) {
/*
* determine which pending queue to take message
* from if this is not a message fragment
*/
if (gmi_fragment == 0) {
gmi_pend_queue_priority = 0;
do {
queue_pend_trans = &queues_pend_trans[gmi_pend_queue_priority];
if (queue_is_empty (queue_pend_trans)) {
gmi_pend_queue_priority++;
} else {
break; /* from do - found first queue with data */
}
} while (gmi_pend_queue_priority < PRIORITY_MAX);
}
if (gmi_pend_queue_priority == PRIORITY_MAX) {
break; /* all queues are empty, break from for */
}
// printf ("selecting pending queue %d\n", gmi_pend_queue_priority);
gmi_pend_trans_item = (struct gmi_pend_trans_item *)queue_item_get (queue_pend_trans);
/* preincrement required by algo */
gmi_pend_trans_item->mcast->header.seqid = ++orf_token->header.seqid;
// UNDO printf ("multicasting seqid %d\n", gmi_pend_trans_item->mcast->header.seqid);
last_packet = (gmi_pend_trans_item->mcast->packet_number ==
gmi_pend_trans_item->mcast->packet_count);
//printf ("last packet is %d current mcast %d\n", last_packet, fcc_mcast_current);
/*
* Build IO vector
*/
gmi_rtr_item.iovec[0].iov_base = gmi_pend_trans_item->mcast;
gmi_rtr_item.iovec[0].iov_len = sizeof (struct mcast);
mcast = gmi_rtr_item.iovec[0].iov_base;
/*
* Is this a fragment of a message
*/
if (mcast->packet_number == mcast->packet_count) {
gmi_fragment = 0;
} else {
gmi_fragment = 1;
}
memcpy (&mcast->memb_conf_id, &memb_form_token_conf_id,
sizeof (struct memb_conf_id));
memcpy (&gmi_rtr_item.iovec[1], gmi_pend_trans_item->iovec,
gmi_pend_trans_item->iov_len * sizeof (struct iovec));
gmi_rtr_item.iov_len = gmi_pend_trans_item->iov_len + 1;
assert (gmi_rtr_item.iov_len < 16);
/*
* Add message to retransmit queue
*/
sq_item_add (&queue_rtr_items,
&gmi_rtr_item, gmi_pend_trans_item->mcast->header.seqid);
/*
* Delete item from pending queue
*/
queue_item_remove (queue_pend_trans);
/*
* Build multicast message
*/
msg_mcast.msg_name = &sockaddr_in_mcast;
msg_mcast.msg_namelen = sizeof (struct sockaddr_in);
msg_mcast.msg_iov = gmi_rtr_item.iovec;
msg_mcast.msg_iovlen = gmi_rtr_item.iov_len;
msg_mcast.msg_control = 0;
msg_mcast.msg_controllen = 0;
msg_mcast.msg_flags = 0;
/*
* Multicast message
*/
res = sendmsg (gmi_fd, &msg_mcast, MSG_NOSIGNAL | MSG_DONTWAIT);
/*
* An error here is recovered by the multicast algorithm
*/
// TODO stats_sent isn't right below
stats_sent += res;
}
assert (fcc_mcast_current < 100);
#ifdef OUTA
if (fcc_mcast_current > fcc_mcasts_allowed) {
fcc_mcast_current = fcc_mcasts_allowed;
}
#endif
/*
* If messages mcasted, deliver any new messages to pending queues
*/
if (fcc_mcast_current) {
if (gmi_pend_trans_item->mcast->header.seqid > gmi_highest_seq) {
gmi_highest_seq = gmi_pend_trans_item->mcast->header.seqid;
}
pending_queues_deliver ();
//printf ("orf Token seqid is %d group %d\n", orf_token_seqid, orf_token->group_arut);
#ifdef COMPILE_OUT
if (orf_token_seqid == orf_token->group_arut) {
//printf ("previous group arut #1 %d\n", orf_token->group_arut);
orf_token->group_arut = orf_token_seqid + fcc_mcast_current;
orf_token->addr_arut.s_addr = 0;
}
//printf ("reasing group arut to %d\n", orf_token->group_arut);
#endif
}
/*
* Return 1 if more messages are available for single node clusters
*/
return (fcc_mcast_current == fcc_mcasts_allowed);
}
/*
* Remulticasts messages in orf_token's retransmit list (requires orf_token)
* Modify's orf_token's rtr to include retransmits required by this process
*/
static void orf_token_rtr (
struct orf_token *orf_token,
int *fcc_allowed)
{
int res;
int i, j;
int found;
#ifdef COMPLE_OUT
printf ("Retransmit List %d\n", orf_token->rtr_list_entries);
for (i = 0; i < orf_token->rtr_list_entries; i++) {
printf ("%d ", orf_token->rtr_list[i].seqid);
}
printf ("\n");
#endif
/*
* Retransmit messages on orf_token's RTR list from RTR queue
*/
for (fcc_remcast_current = 0, i = 0;
fcc_remcast_current <= *fcc_allowed && i < orf_token->rtr_list_entries;) {
#ifdef COMPILE_OUT
printf ("%d.%d.%d vs %d.%d.%d\n",
orf_token->rtr_list[i].conf_id.rep.s_addr,
orf_token->rtr_list[i].conf_id.tv.tv_sec,
orf_token->rtr_list[i].conf_id.tv.tv_usec,
memb_form_token_conf_id.rep.s_addr,
memb_form_token_conf_id.tv.tv_sec,
memb_form_token_conf_id.tv.tv_usec);
#endif
/*
* If this retransmit request isn't from this configuration,
* try next rtr entry
*/
if (memcmp (&orf_token->rtr_list[i].conf_id, &memb_form_token_conf_id,
sizeof (struct memb_conf_id)) != 0) {
i++;
continue;
}
assert (orf_token->rtr_list[i].seqid > 0);
res = orf_token_remcast (orf_token->rtr_list[i].seqid);
if (res == 0) {
orf_token->rtr_list_entries -= 1;
assert (orf_token->rtr_list_entries >= 0);
memmove (&orf_token->rtr_list[i],
&orf_token->rtr_list[i + 1],
sizeof (struct rtr_item) * (orf_token->rtr_list_entries));
fcc_remcast_current++;
stats_remcasts++;
} else {
i++;
//printf ("couldn't remcast %d\n", i);
}
}
*fcc_allowed = *fcc_allowed - fcc_remcast_current - 1;
#ifdef COMPILE_OUT
for (i = 0; i < orf_token->rtr_list_entries; i++) {
assert (orf_token->rtr_list[i].seqid != -1);
}
#endif
/*
* Add messages to retransmit to RTR list
* but only retry if there is room in the retransmit list
*/
for (i = gmi_arut + 1;
orf_token->rtr_list_entries < RTR_TOKEN_SIZE_MAX &&
// i <= orf_token->header.seqid; /* TODO this worked previously but not correct for EVS */
i <= gmi_highest_seq;
i++) {
res = sq_item_inuse (&queue_rtr_items, i);
if (res == 0) {
found = 0;
for (j = 0; j < orf_token->rtr_list_entries; j++) {
if (i == orf_token->rtr_list[j].seqid) {
found = 1;
}
}
if (found == 0) {
memcpy (&orf_token->rtr_list[orf_token->rtr_list_entries].conf_id,
&memb_form_token_conf_id, sizeof (struct memb_conf_id));
orf_token->rtr_list[orf_token->rtr_list_entries].seqid = i;
orf_token->rtr_list_entries++;
//printf ("adding to retransmit list %d\n", i);
}
}
}
}
/*
* Calculate flow control count
*/
static void orf_token_fcc (
struct orf_token *orf_token)
{
orf_token->fcc = orf_token->fcc - fcc_mcast_last - fcc_remcast_last
+ fcc_mcast_current + fcc_remcast_current;
fcc_mcast_last = fcc_mcast_current;
fcc_remcast_last = fcc_remcast_current;
}
static void queues_pend_delv_memb_new (void)
{
struct pend_delv pend_delv_new[MAX_MEMBERS];
int item_index = 0;
int i, j;
int found;
memset (pend_delv_new, 0, sizeof (struct pend_delv) * MAX_MEMBERS);
/*
* Build new pending list
*/
for (i = 0; i < memb_list_entries_confchg; i++) {
found = 0;
for (j = 0; j < MAX_MEMBERS; j++) {
/*
* If membership item in queues pending delivery list, copy it
*/
if (memb_list[i].sin_addr.s_addr == queues_pend_delv[j].ip.s_addr) {
memcpy (&pend_delv_new[item_index], &queues_pend_delv[j],
sizeof (struct pend_delv));
item_index += 1;
found = 1;
break; /* for j = */
}
}
/*
* If membership item not found in pending delivery list, make new entry
*/
if (found == 0) {
queue_init (&pend_delv_new[item_index].queue, QUEUE_PEND_DELV_SIZE_MAX,
sizeof (struct gmi_pend_delv_item));
pend_delv_new[item_index].seqid = 0;
pend_delv_new[item_index].ip.s_addr = memb_list[i].sin_addr.s_addr;
item_index += 1;
}
}
/*
* Copy new list into system list
*/
memcpy (queues_pend_delv, pend_delv_new,
sizeof (struct pend_delv) * MAX_MEMBERS);
for (i = 0; i < memb_list_entries_confchg; i++) {
/*
* If queue not empty, mark it for first delivery
* otherwise reset seqno
*/
if (queue_is_empty (&queues_pend_delv[i].queue) == 0) {
queues_pend_delv[i].first_delivery = 1;
} else {
queues_pend_delv[i].seqid = 0;
}
}
}
static int orf_token_evs (
struct orf_token *orf_token,
int starting_group_arut)
{
int i, j;
struct sockaddr_in trans_memb_list[MAX_MEMBERS];
struct sockaddr_in left_list[MAX_MEMBERS];
struct sockaddr_in joined_list[MAX_MEMBERS];
int trans_memb_list_entries = 0;
int left_list_entries = 0;
int joined_list_entries = 0;
int found;
//printf ("group arut is %d %d %d %d\n", orf_token->header.seqid, orf_token->group_arut, gmi_arut, gmi_highest_seq);
/*
* We should only execute this function if we are in EVS membership state
*/
if (memb_state != MEMB_STATE_EVS) {
return (0);
}
/*
* Delete form token timer since the token has been swallowed
*/
poll_timer_delete (*gmi_poll_handle, timer_form_token_timeout);
timer_form_token_timeout = 0;
printf ("EVS STATE group arut %d gmi arut %d highest %d barrier %d starting group arut %d\n", orf_token->group_arut, gmi_arut, gmi_highest_seq, gmi_barrier_seq, starting_group_arut);
/*
* This node has reached highest seq, set local arut to barrier
*/
if (gmi_arut == gmi_highest_seq) {
//printf ("setting arut to barrier %d\n", gmi_barrier_seq);
gmi_arut = gmi_barrier_seq;
}
/*
* Determine when EVS recovery has completed
*/
//printf ("group arut is %d %d %d\n", orf_token->group_arut, gmi_arut, gmi_highest_seq);
// TODO
if (memb_state == MEMB_STATE_EVS && gmi_arut == gmi_barrier_seq && orf_token->group_arut == gmi_barrier_seq) {
log_printf (LOG_LEVEL_NOTICE, "EVS recovery of messages complete, transitioning to operational.\n");
/*
* EVS recovery complete, reset local variables
*/
gmi_arut = 0;
gmi_adut_old = gmi_adut;
gmi_adut = 0;
gmi_highest_seq_old = gmi_highest_seq;
gmi_highest_seq = 0;
last_group_arut = 0;
sq_reinit (&queue_rtr_items, 0);
memb_failed_list_entries = 0;
memb_state = MEMB_STATE_OPERATIONAL;
qsort (memb_form_token.member_list, memb_form_token.member_list_entries,
sizeof (struct in_addr), in_addr_compare);
/*
* Determine transitional configuration
*/
for (i = 0; i < memb_list_entries_confchg; i++) {
for (found = 0, j = 0; j < memb_form_token.member_list_entries; j++) {
if (memb_list[i].sin_addr.s_addr == memb_form_token.member_list[j].s_addr) {
found = 1;
break;
}
}
if (found == 1) {
trans_memb_list[trans_memb_list_entries].sin_addr.s_addr = memb_list[i].sin_addr.s_addr;
trans_memb_list[trans_memb_list_entries].sin_family = AF_INET;
trans_memb_list[trans_memb_list_entries].sin_port = sockaddr_in_mcast.sin_port;
trans_memb_list_entries += 1;
}
}
/*
* Determine nodes that left the configuration
*/
for (i = 0; i < memb_list_entries_confchg; i++) {
for (found = 0, j = 0; j < memb_form_token.member_list_entries; j++) {
if (memb_list[i].sin_addr.s_addr == memb_form_token.member_list[j].s_addr) {
found = 1;
break; /* for j = 0 */
}
}
/*
* Node left membership, add it to list
*/
if (found == 0) {
left_list[left_list_entries].sin_addr.s_addr = memb_list[i].sin_addr.s_addr;
left_list[left_list_entries].sin_family = AF_INET;
left_list[left_list_entries].sin_port = sockaddr_in_mcast.sin_port;
left_list_entries += 1;
}
}
/*
* MAIN STEP:
* Deliver transitional configuration
*/
if (gmi_confchg_fn &&
(trans_memb_list_entries != memb_list_entries ||
(memcmp (trans_memb_list, memb_list, sizeof (struct sockaddr_in) * memb_list_entries) != 0))) {
gmi_confchg_fn (trans_memb_list, trans_memb_list_entries,
left_list, left_list_entries,
0, 0);
}
/*
* Determine nodes that joined the configuration
*/
for (i = 0; i < memb_form_token.member_list_entries; i++) {
for (found = 0, j = 0; j < memb_list_entries_confchg; j++) {
if (memb_form_token.member_list[i].s_addr == memb_list[j].sin_addr.s_addr) {
found = 1;
break; /* for j = 0 */
}
}
/*
* Node joined membership, add it to list
*/
if (found == 0) {
joined_list[joined_list_entries].sin_addr.s_addr = memb_form_token.member_list[i].s_addr;
joined_list[joined_list_entries].sin_family = AF_INET;
joined_list[joined_list_entries].sin_port = sockaddr_in_mcast.sin_port;
joined_list_entries += 1;
}
}
/*
* Install the form token's configuration into the local membership
*/
for (i = 0; i < memb_form_token.member_list_entries; i++) {
memb_list[i].sin_addr.s_addr = memb_form_token.member_list[i].s_addr;
memb_list[i].sin_family = AF_INET;
memb_list[i].sin_port = sockaddr_in_mcast.sin_port;
}
/*
* Install pending delivery queues
*/
memb_list_entries = memb_form_token.member_list_entries;
memb_list_entries_confchg = memb_list_entries;
queues_pend_delv_memb_new ();
/*
* Install new conf id
*/
memcpy (&memb_conf_id, &memb_form_token.conf_id,
sizeof (struct memb_conf_id));
memcpy (&memb_form_token_conf_id, &memb_form_token.conf_id,
sizeof (struct memb_conf_id));
/*
* Deliver regular configuration
*/
if (gmi_confchg_fn) {
gmi_confchg_fn (memb_list, memb_list_entries,
left_list, 0,
joined_list, joined_list_entries);
}
}
return (0);
}
int gwin = 90;
int pwin = 45;
static int orf_fcc_allowed (struct orf_token *token)
{
int allowed;
if (memb_state != MEMB_STATE_OPERATIONAL) {
return (0);
}
allowed = gwin + pwin - token->fcc;
if (allowed < 0) {
allowed = 0;
}
if (allowed > gwin) {
allowed = gwin;
}
if (allowed > pwin) {
allowed = pwin;
}
return (allowed);
}
void timer_function_form_token_timeout (void *data)
{
log_printf (LOG_LEVEL_WARNING, "Token loss in FORM state\n");
memb_list_entries = 1;
/*
* Add highest rep to failed list to ensure termination
*/
memb_failed_list[memb_failed_list_entries++].s_addr =
memb_form_token.rep_list[memb_form_token.rep_list_entries].s_addr;
memb_state_gather_enter ();
}
void orf_timer_function_token_timeout (void *data)
{
switch (memb_state) {
case MEMB_STATE_OPERATIONAL:
log_printf (LOG_LEVEL_WARNING, "Token loss in OPERATIONAL.\n");
memb_conf_id.rep.s_addr = memb_local_sockaddr_in.sin_addr.s_addr;
memb_list_entries = 1;
memb_state_gather_enter ();
break;
case MEMB_STATE_GATHER:
case MEMB_STATE_COMMIT:
log_printf (LOG_LEVEL_WARNING, "Token loss in GATHER or COMMIT.\n");
memb_list_entries = 1;
break;
case MEMB_STATE_EVS:
log_printf (LOG_LEVEL_WARNING, "Token loss in EVS state\n");
memb_list_entries = 1;
memb_state_gather_enter ();
break;
default:
printf ("token loss in form state doesn't make sense here\n");
break;
}
}
/*
* Send orf_token to next member (requires orf_token)
*/
static int orf_token_send (
struct orf_token *orf_token)
{
struct msghdr msg_orf_token;
struct iovec iovec_orf_token;
int res;
poll_timer_delete (*gmi_poll_handle, timer_orf_token_timeout);
poll_timer_add (*gmi_poll_handle, TIMEOUT_TOKEN, 0,
orf_timer_function_token_timeout, &timer_orf_token_timeout);
iovec_orf_token.iov_base = orf_token;
iovec_orf_token.iov_len = sizeof (struct orf_token);
msg_orf_token.msg_name = &memb_next;
msg_orf_token.msg_namelen = sizeof (struct sockaddr_in);
msg_orf_token.msg_iov = &iovec_orf_token;
msg_orf_token.msg_iovlen = 1;
msg_orf_token.msg_control = 0;
msg_orf_token.msg_controllen = 0;
msg_orf_token.msg_flags = 0;
// THIS IS FOR TESTING ERRORS IN THE EVS STATE
//if ((memb_state == MEMB_STATE_EVS) && ((random () % 3) == 0)) {
//log_printf (LOG_LEVEL_DEBUG, "CAUSING TOKEN LOSS AT EVS STATE\n");
// return (1);
//}
res = sendmsg (gmi_fd, &msg_orf_token, MSG_NOSIGNAL);
assert (res != -1);
/*
* res not used here errors are handled by algorithm
*/
gmi_last_seqid = orf_token->header.seqid;
stats_sent += res;
return (res);
}
int orf_token_send_initial (void)
{
struct orf_token orf_token;
int res;
orf_token.header.seqid = 0;
orf_token.header.type = MESSAGE_TYPE_ORF_TOKEN;
orf_token.group_arut = gmi_highest_seq;
orf_token.addr_arut.s_addr = this_ip.sin_addr.s_addr;
orf_token.fcc = 0;
orf_token.rtr_list_entries = 0;
memset (orf_token.rtr_list, 0, sizeof (struct rtr_item) * RTR_TOKEN_SIZE_MAX);
res = orf_token_send (&orf_token);
return (res);
}
/*
* Membership Management
*/
static int memb_join_send (void)
{
struct msghdr msghdr_join;
struct iovec iovec_join;
int res;
memb_join.header.seqid = 0;
memb_join.header.type = MESSAGE_TYPE_MEMB_JOIN;
/*
* copy current gather list to representatives list
*/
if ((memb_gather_set_entries == memb_join.active_rep_list_entries) &&
(memcmp (memb_join.active_rep_list, memb_gather_set,
sizeof (struct in_addr) * memb_gather_set_entries) == 0) &&
(memb_failed_list_entries == memb_join.failed_rep_list_entries) &&
(memcmp (memb_join.failed_rep_list, memb_failed_list,
sizeof (struct in_addr) * memb_failed_list_entries) == 0)) {
return (0);
}
/*
* Copy active reps
*/
memcpy (memb_join.active_rep_list, memb_gather_set,
sizeof (struct in_addr) * memb_gather_set_entries);
memb_join.active_rep_list_entries = memb_gather_set_entries;
/*
* Copy failed reps
*/
memcpy (memb_join.failed_rep_list, memb_failed_list,
sizeof (struct in_addr) * memb_failed_list_entries);
memb_join.failed_rep_list_entries = memb_failed_list_entries;
iovec_join.iov_base = &memb_join;
iovec_join.iov_len = sizeof (struct memb_join);
msghdr_join.msg_name = &sockaddr_in_mcast;
msghdr_join.msg_namelen = sizeof (struct sockaddr_in);
msghdr_join.msg_iov = &iovec_join;
msghdr_join.msg_iovlen = 1;
msghdr_join.msg_control = 0;
msghdr_join.msg_controllen = 0;
msghdr_join.msg_flags = 0;
res = sendmsg (gmi_fd, &msghdr_join, MSG_NOSIGNAL | MSG_DONTWAIT);
return (res);
}
static int memb_state_commit_enter (void);
/*
* Update gather_set[0].join_reps with list of failed members
*/
void memb_gather_set_update_failed (struct in_addr *list, int list_entries)
{
int i;
int j;
/*
* Remove failed members from gather set
*/
for (i = 0; i < list_entries; i++) {
for (j = 0; j < memb_gather_set_entries; j++) {
if (list[i].s_addr == memb_gather_set[j].s_addr) {
memb_gather_set_entries -= 1;
memcpy (&memb_gather_set[j],
&memb_gather_set[j + 1],
memb_gather_set_entries * sizeof (struct in_addr));
break; /* for j = 0 */
}
}
}
}
static void memb_timer_function_state_commit_timeout (void *data)
{
int i;
int j;
int k;
int found;
int add_to_failed = 1;
struct sockaddr_in left_list[MAX_MEMBERS];
int left_list_entries = 0;
memb_failed_list_entries = 0;
/*
* No entries responded in commit timeout period
*/
if (memb_commit_set_entries == 0) {
/*
* memb_list_entries only set to 0 when token times out, in which case
* send a configuration change because no messages can be recovered in EVS
*/
if (memb_list_entries == 0) {
log_printf (LOG_LEVEL_NOTICE, "I am the only member.\n");
if (gmi_confchg_fn) {
/*
* Determine nodes that left the configuration
*/
for (i = 0; i < memb_list_entries_confchg; i++) {
if (memb_local_sockaddr_in.sin_addr.s_addr != memb_list[i].sin_addr.s_addr) {
left_list[left_list_entries].sin_addr.s_addr = memb_list[i].sin_addr.s_addr;
left_list[left_list_entries].sin_family = AF_INET;
left_list[left_list_entries].sin_port = sockaddr_in_mcast.sin_port;
left_list_entries += 1;
}
}
gmi_confchg_fn (&memb_local_sockaddr_in, 1,
left_list, left_list_entries,
0, 0);
}
} else {
log_printf (LOG_LEVEL_NOTICE, "No members sent join, keeping old ring and transitioning to operational.\n");
}
memb_state = MEMB_STATE_OPERATIONAL;
return;
}
/*
* Find all failed members
*/
for (i = 0; i < memb_gather_set_entries; i++) {
add_to_failed = 1;
for (j = 0; j < memb_commit_set_entries; j++) {
/*
* If gather entry not in commit rep list, add to failed
*/
if (memb_gather_set[i].s_addr == memb_commit_set[j].rep.sin_addr.s_addr) {
add_to_failed = 0;
break; /* for found = 0 */
}
}
/*
* If gather entry not in commit set, add to failed set
*/
for (found = 0, j = 0; j < memb_commit_set_entries; j++) {
for (k = 0; k < memb_commit_set[j].join_rep_list_entries; k++) {
if (memb_gather_set[i].s_addr == memb_commit_set[j].join_rep_list[k].s_addr) {
found = 1;
break;
}
}
if (found == 0) {
add_to_failed = 1;
break;
}
}
/*
* If local address, item found
*/
if (memb_gather_set[i].s_addr == memb_local_sockaddr_in.sin_addr.s_addr) {
add_to_failed = 0;
}
if (add_to_failed == 1) {
memb_failed_list[memb_failed_list_entries++].s_addr =
memb_gather_set[i].s_addr;
}
}
memb_gather_set_update_failed (memb_failed_list, memb_failed_list_entries);
memb_state_commit_enter ();
}
static int memb_state_commit_enter (void)
{
int res;
memb_state = MEMB_STATE_COMMIT;
memb_commit_set_entries = 0;
res = memb_join_send();
poll_timer_delete (*gmi_poll_handle, timer_memb_state_gather_timeout);
timer_memb_state_gather_timeout = 0;
poll_timer_add (*gmi_poll_handle, TIMEOUT_STATE_COMMIT, 0,
memb_timer_function_state_commit_timeout, &timer_memb_state_commit_timeout);
return (res);
}
static void memb_timer_function_state_gather (void *data)
{
int i;
/*
* GATHER period expired, sort gather sets and send JOIN
*/
memb_state_commit_enter ();
log_printf (LOG_LEVEL_DEBUG, "GATHER timeout:\n");
for (i = 0; i < memb_gather_set_entries; i++) {
log_printf (LOG_LEVEL_DEBUG, "host %d attempted to join %s\n", i, inet_ntoa (memb_gather_set[i]));
}
}
static void memb_print_commit_set (void)
{
int i, j;
log_printf (LOG_LEVEL_DEBUG, "Gather list\n");
for (i = 0; i < memb_gather_set_entries; i++) {
log_printf (LOG_LEVEL_DEBUG, "\tmember %d %s\n", i, inet_ntoa (memb_gather_set[i]));
}
for (i = 0; i < memb_commit_set_entries; i++) {
log_printf (LOG_LEVEL_DEBUG, "Join from rep %d %s\n", i, inet_ntoa (memb_commit_set[i].rep.sin_addr));
for (j = 0; j < memb_commit_set[i].join_rep_list_entries; j++) {
log_printf (LOG_LEVEL_DEBUG, "\tmember %d %s\n", j, inet_ntoa (memb_commit_set[i].join_rep_list[j]));
}
}
}
/*
* Determine if the commit phase has reached consensus
*/
static int memb_state_consensus_commit (void)
{
int found;
int res;
int i, j;
/*
* Determine consensus
*/
/*
* If all commit sets don't match gather set, no consensus
*/
for (i = 0; i < memb_commit_set_entries; i++) {
/*
* If not same number of entries, no consensus
*/
res = memb_gather_set_entries - memb_commit_set[i].join_rep_list_entries;
if (res != 0) {
return (0); /* no consensus */
}
/*
* If entries dont match, no consensus
*/
res = memcmp (memb_gather_set, memb_commit_set[i].join_rep_list,
memb_gather_set_entries * sizeof (struct in_addr));
if (res != 0) {
return (0); /* no consensus */
}
}
/*
* If all reps from gather set represented in commit set, consensus
*/
for (i = 0; i < memb_gather_set_entries; i++) {
found = 0;
for (j = 0; j < memb_commit_set_entries; j++) {
if (memb_gather_set[i].s_addr == memb_local_sockaddr_in.sin_addr.s_addr) {
found = 1;
break;
}
if (memb_gather_set[i].s_addr == memb_commit_set[j].rep.sin_addr.s_addr) {
found = 1;
break;
}
}
if (found == 0) {
return (0); /* no consensus, rep not found from gather set */
}
}
return (1); /* got consensus! */
}
/*
* Union commit_set_entry into gather set
*/
static void memb_state_commit_union (int commit_set_entry)
{
int found;
int i, j;
for (i = 0; i < memb_commit_set[commit_set_entry].join_rep_list_entries; i++) {
for (found = 0, j = 0; j < memb_gather_set_entries; j++) {
if (memb_commit_set[commit_set_entry].join_rep_list[i].s_addr ==
memb_gather_set[j].s_addr) {
found = 1;
break;
}
}
if (found == 0) {
memb_gather_set[memb_gather_set_entries++].s_addr =
memb_commit_set[commit_set_entry].join_rep_list[i].s_addr;
/*
* Sort gather set
*/
qsort (memb_gather_set, memb_gather_set_entries,
sizeof (struct in_addr), in_addr_compare);
}
}
}
static void memb_conf_id_build (
struct memb_conf_id *memb_conf_id,
struct in_addr memb_local_rep)
{
gettimeofday (&memb_conf_id->tv, NULL);
memb_conf_id->rep.s_addr = memb_local_rep.s_addr;
}
static void memb_form_token_update_highest_seq (
struct memb_form_token *form_token)
{
struct conf_desc *conf_desc;
int entry;
int found = 0;
for (entry = 0; entry < form_token->conf_desc_list_entries; entry++) {
if (memcmp (&form_token->conf_desc_list[entry].conf_id,
&memb_form_token_conf_id, sizeof (struct memb_conf_id)) == 0) {
found = 1;
break;
}
}
conf_desc = &form_token->conf_desc_list[entry];
if (found && gmi_highest_seq < conf_desc->highest_seq) {
gmi_highest_seq = conf_desc->highest_seq;
}
}
static void memb_form_token_conf_desc_build (
struct memb_form_token *form_token)
{
struct conf_desc *conf_desc;
int found = 0;
int entry = 0;
/*
* Determine if local configuration id is already present in form token
*/
for (entry = 0; entry < form_token->conf_desc_list_entries; entry++) {
if (memcmp (&form_token->conf_desc_list[entry].conf_id,
&memb_form_token_conf_id, sizeof (struct memb_conf_id)) == 0) {
found = 1;
break;
}
}
conf_desc = &form_token->conf_desc_list[entry];
if (found == 0) {
/*
* Item not present, add item
*/
conf_desc->highest_seq = gmi_highest_seq;
conf_desc->arut = gmi_arut;
// TODO holes not currently implemented conf_desc->hole_list_entries = 0;
memcpy (&conf_desc->conf_id,
&memb_form_token_conf_id, sizeof (struct memb_conf_id));
form_token->conf_desc_list_entries += 1;
} else {
/*
* Item already present, update arut, highest seq
*/
if (conf_desc->arut > gmi_arut) {
conf_desc->arut = gmi_arut;
}
if (gmi_highest_seq > conf_desc->highest_seq) {
conf_desc->highest_seq = gmi_highest_seq;
}
}
#ifdef COMPILE_OUT
/*
* Build conf_desc->hole_list
*/
printf ("conf desc build %d %d\n", gmi_arut, gmi_highest_seq);
conf_desc->hole_list_entries = 0;
for (i = gmi_arut; i < gmi_highest_seq; i++) {
assert (conf_desc->hole_list_entries < HOLE_LIST_MAX);
res = sq_item_get (&queue_rtr_items, i, (void **)&gmi_rtr_item_p);
if (res == 0) {
/*
* If item present, delete from hole list if it exists
*/
for (j = 0; j < conf_desc->hole_list_entries; j++) {
if (conf_desc->hole_list[j] == i) {
memmove (&conf_desc->hole_list[j], &conf_desc->hole_list[j + 1],
sizeof (int) * (conf_desc->hole_list_entries - j - 1));
conf_desc->hole_list_entries -= 1;
printf ("reducing setting desc entries to %d\n", conf_desc->hole_list_entries);
break; /* from for (j = ... ) */
}
}
} else {
/*
* If item not present, add to hole list
*/
conf_desc->hole_list[conf_desc->hole_list_entries] = i;
conf_desc->hole_list_entries += 1;
printf ("increasing setting desc entries to %d %d\n", conf_desc->hole_list_entries, i);
}
}
printf ("Conf desc build done\n");
#endif
}
static int memb_form_token_send (
struct memb_form_token *form_token)
{
struct msghdr msg_form_token;
struct iovec iovec_form_token;
int res;
/*
* Build message for sendmsg
*/
iovec_form_token.iov_base = form_token;
iovec_form_token.iov_len = sizeof (struct memb_form_token);
msg_form_token.msg_name = &memb_next;
msg_form_token.msg_namelen = sizeof (struct sockaddr_in);
msg_form_token.msg_iov = &iovec_form_token;
msg_form_token.msg_iovlen = 1;
msg_form_token.msg_control = 0;
msg_form_token.msg_controllen = 0;
msg_form_token.msg_flags = 0;
res = sendmsg (gmi_fd, &msg_form_token, MSG_NOSIGNAL | MSG_DONTWAIT);
/*
* res not used here, because orf token errors are handled by algorithm
*/
stats_sent += res;
poll_timer_delete (*gmi_poll_handle, timer_orf_token_timeout);
timer_orf_token_timeout = 0;
poll_timer_delete (*gmi_poll_handle, timer_form_token_timeout);
poll_timer_add (*gmi_poll_handle, TIMEOUT_TOKEN, 0,
timer_function_form_token_timeout, &timer_form_token_timeout);
return (res);
}
int memb_form_token_send_initial (void)
{
struct memb_form_token form_token;
int res;
int i;
memset (&form_token, 0x00, sizeof (struct memb_form_token));
memb_state = MEMB_STATE_FORM;
/*
* Build form token
*/
form_token.header.type = MESSAGE_TYPE_MEMB_FORM_TOKEN;
memcpy (form_token.rep_list,
memb_gather_set,
memb_gather_set_entries * sizeof (struct in_addr));
form_token.rep_list_entries = memb_gather_set_entries;
/*
* Add local member to entry
*/
form_token.member_list[0].s_addr =
memb_local_sockaddr_in.sin_addr.s_addr;
form_token.member_list_entries = 1;
memb_conf_id_build (&form_token.conf_id, memb_local_sockaddr_in.sin_addr);
form_token.conf_desc_list_entries = 0;
memb_form_token_conf_desc_build (&form_token);
/*
* Send FORM to next member, or if no members in this configuration
* to next representative
*/
if (memb_list_entries <= 1) {
memb_next.sin_addr.s_addr = memb_gather_set[1].s_addr;
} else {
for (i = 0; i < memb_list_entries; i++) {
if (memb_list[i].sin_addr.s_addr == memb_local_sockaddr_in.sin_addr.s_addr) {
memb_next.sin_addr.s_addr =
memb_list[i + 1].sin_addr.s_addr;
break;
}
}
}
// TODO assertion here about the 1 value
memb_next.sin_family = AF_INET;
memb_next.sin_port = sockaddr_in_mcast.sin_port;
res = memb_form_token_send (&form_token);
return (res);
}
void print_stats (void)
{
struct timeval tv_end;
gettimeofday (&tv_end, NULL);
log_printf (LOG_LEVEL_NOTICE, "Bytes recv %d\n", stats_recv);
log_printf (LOG_LEVEL_NOTICE, "Bytes sent %d\n", stats_sent);
log_printf (LOG_LEVEL_NOTICE, "Messages delivered %d\n", stats_delv);
log_printf (LOG_LEVEL_NOTICE, "Re-Mcasts %d\n", stats_remcasts);
log_printf (LOG_LEVEL_NOTICE, "Tokens process %d\n", stats_orf_token);
}
/*
* Authenticates message using nonce, mac, and message body
*/
static int gmi_msg_auth (struct iovec *iovec, int iov_len)
{
return (0);
}
int last_lowered = 1;
static void calculate_group_arut (struct orf_token *orf_token)
{
//printf ("group arut %d local arut %d gmi_gmi_highest seq %d\n", orf_token->group_arut, gmi_arut, gmi_highest_seq);
//printf ("last %d group arut %d last arut %d arut %d\n", last_lowered, orf_token->group_arut, last_group_arut, gmi_arut);
/*
* increase the group arut if we got back the same group
* because everyone has these messages
*/
messages_free (orf_token->group_arut);
if (orf_token->addr_arut.s_addr == this_ip.sin_addr.s_addr) {
orf_token->group_arut = gmi_arut;
}
if (gmi_arut < orf_token->group_arut) {
orf_token->group_arut = gmi_arut;
orf_token->addr_arut.s_addr = this_ip.sin_addr.s_addr;
}
last_group_arut = orf_token->group_arut;
}
/*
* Message Handlers
*/
/*
* message handler called when TOKEN message type received
*/
static int message_handler_orf_token (
struct sockaddr_in *system_from,
struct iovec *iovec,
int iov_len,
int bytes_received)
{
struct orf_token *orf_token;
int transmits_allowed;
int starting_group_arut;
orf_token = iovec[0].iov_base;
#ifdef PRINT_STATS
if (orf_token->header.seqid > 10000) {
print_stats ();
}
#endif
if (memb_state == MEMB_STATE_FORM) {
log_printf (LOG_LEVEL_NOTICE, "swallowing ORF token %d.\n", stats_orf_token);
poll_timer_delete (*gmi_poll_handle, timer_orf_token_timeout);
timer_orf_token_timeout = 0;
return (0);
}
//printf ("Got orf token from %s\n", inet_ntoa (system_from->sin_addr));
starting_group_arut = orf_token->group_arut;
stats_orf_token++;
transmits_allowed = orf_fcc_allowed (orf_token);
//printf ("retransmit allowed %d\n", transmits_allowed);
/*
* Retransmit failed messages and request retransmissions
*/
orf_token_rtr (orf_token, &transmits_allowed);
//printf ("multicasts allowed %d\n", transmits_allowed);
/*
* TODO Ok this is ugly and I dont like it.
*
* Flow control to limit number of missing multicast messages
* on lossy switches, this could cause a large window between
* what is delivered locally and what is delivered remotely.
* This window could cause the hole list of the form token to
* be overrun or cause the form token to be large.
*/
if ((gmi_brake + MISSING_MCAST_WINDOW) < orf_token->header.seqid) {
transmits_allowed = 0;
}
/*
* Set the group arut and free any messages that can be freed
*/
if (memb_state != MEMB_STATE_EVS) {
calculate_group_arut (orf_token);
}
/*
* Multicast queued messages
*/
orf_token_mcast (orf_token, transmits_allowed, system_from);
/*
* Calculate flow control count
*/
orf_token_fcc (orf_token);
/*
* Deliver membership and messages required by EVS
*/
orf_token_evs (orf_token, starting_group_arut);
if (memb_state == MEMB_STATE_EVS) {
calculate_group_arut (orf_token);
}
/*
* Transmit orf_token to next member
*/
orf_token_send (orf_token);
return (0);
}
static int memb_state_gather_enter (void) {
struct msghdr msghdr_attempt_join;
struct iovec iovec_attempt_join;
struct memb_attempt_join memb_attempt_join;
int res = 0;
log_printf (LOG_LEVEL_NOTICE, "entering GATHER state.\n");
memb_state = MEMB_STATE_GATHER;
/*
* Join message starts with no entries
*/
memb_join.active_rep_list_entries = 0;
memb_join.failed_rep_list_entries = 0;
/*
* Copy local host info
*/
memb_gather_set[0].s_addr = memb_local_sockaddr_in.sin_addr.s_addr;
memb_gather_set_entries = 1;
/*
* If this node is the representative, send attempt join
*/
if (memb_local_sockaddr_in.sin_addr.s_addr == memb_conf_id.rep.s_addr) {
log_printf (LOG_LEVEL_NOTICE, "SENDING attempt join because this node is ring rep.\n");
memb_attempt_join.header.seqid = 0;
memb_attempt_join.header.type = MESSAGE_TYPE_MEMB_ATTEMPT_JOIN;
iovec_attempt_join.iov_base = &memb_attempt_join;
iovec_attempt_join.iov_len = sizeof (struct memb_attempt_join);
msghdr_attempt_join.msg_name = &sockaddr_in_mcast;
msghdr_attempt_join.msg_namelen = sizeof (struct sockaddr_in);
msghdr_attempt_join.msg_iov = &iovec_attempt_join;
msghdr_attempt_join.msg_iovlen = 1;
msghdr_attempt_join.msg_control = 0;
msghdr_attempt_join.msg_controllen = 0;
msghdr_attempt_join.msg_flags = 0;
res = sendmsg (gmi_fd, &msghdr_attempt_join, MSG_NOSIGNAL | MSG_DONTWAIT);
/*
* res not checked here, there is nothing that can be done
* instead rely on the algorithm to recover from faults
*/
}
poll_timer_delete (*gmi_poll_handle, timer_memb_state_gather_timeout);
poll_timer_add (*gmi_poll_handle, TIMEOUT_STATE_GATHER, 0,
memb_timer_function_state_gather, &timer_memb_state_gather_timeout);
return (res);
}
struct pend_delv *pend_delv_next_delivery_find (void)
{
struct pend_delv *pend_delv = 0;
int i;
/*
* Find first_delivery queue that is not mepty
* this sets the first pend_delv
*/
for (i = 0; i < memb_list_entries_confchg; i++) {
if (queues_pend_delv[i].first_delivery &&
queue_is_empty (&queues_pend_delv[i].queue) == 0) {
pend_delv = &queues_pend_delv[i];
// printf ("Selecting first queue %s\n", inet_ntoa (pend_delv->ip));
break;
}
}
/*
* Search remaining pend_delv for first deliveries with
* smaller sequence numbers
*/
for (++i; i < memb_list_entries_confchg; i++) {
assert (pend_delv);
if (queues_pend_delv[i].first_delivery &&
(queue_is_empty (&queues_pend_delv[i].queue) == 0) &&
(queues_pend_delv[i].seqid < pend_delv->seqid)) {
pend_delv = &queues_pend_delv[i];
// printf ("Selecting first queue %s\n", inet_ntoa (pend_delv->ip));
}
}
/*
* Found first_delivery queue that wasn't empty, return it
*/
if (pend_delv) {
return (pend_delv);
}
/*
* No first delivery queues, repeat same
* process looking for any queue
*/
for (i = 0; i < memb_list_entries_confchg; i++) {
if (queue_is_empty (&queues_pend_delv[i].queue) == 0) {
pend_delv = &queues_pend_delv[i];
break;
}
}
/*
* Find lowest sequence number queue
*/
for (++i; i < memb_list_entries_confchg; i++) {
assert (pend_delv);
if ((queue_is_empty (&queues_pend_delv[i].queue) == 0) &&
(queues_pend_delv[i].seqid < pend_delv->seqid)) {
pend_delv = &queues_pend_delv[i];
}
}
return (pend_delv);
}
static int user_deliver ()
{
struct gmi_pend_delv_item *pend_delv_item;
int i = 0;
int res = 0;
struct iovec iovec_delv[256];
int iov_len_delv = 0;
struct mcast *mcast = 0;
int messages_delivered = 0;
struct pend_delv *pend_delv;
int retval = 0;
/*
* Find pend_delv with lowest sequence number. This pend_delv is
* the queue that should be delivered from next
*/
pend_delv = pend_delv_next_delivery_find ();
//printf ("Delivering from queue %s\n", inet_ntoa (pend_delv->ip));
/*
* If a message was not assembled on the queue with the lowest
* sequence number, return since there is no reason to attempt assembly.
*/
memset (iovec_delv, 0, sizeof (iovec_delv));
queue_item_iterator_init (&pend_delv->queue);
assert (queue_is_empty (&pend_delv->queue) == 0);
//printf ("Starting a packet assembly\n");
do {
pend_delv_item = queue_item_iterator_get (&pend_delv->queue);
mcast = pend_delv_item->iovec[0].iov_base;
assert (pend_delv_item);
assert (pend_delv_item->iovec[0].iov_len < MESSAGE_SIZE_MAX);
assert (pend_delv_item->iovec[0].iov_len != 0);
assert (pend_delv_item->iovec[0].iov_base != 0);
assert (mcast != (struct mcast *)0xdeadbeef);
assert (pend_delv->ip.s_addr == mcast->source.s_addr);
messages_delivered += 1;
/*
* Assemble io vector
*/
if (pend_delv_item->iovec[0].iov_len == sizeof (struct mcast)) {
/*
* Copy iovec from second iovec if this is self-delivered
*/
memcpy (&iovec_delv[iov_len_delv],
&pend_delv_item->iovec[1],
sizeof (struct iovec) * pend_delv_item->iov_len - 1);
iov_len_delv += pend_delv_item->iov_len - 1;
} else {
/*
* Copy iovec from first iovec if this is an external message
*/
iovec_delv[iov_len_delv].iov_base =
pend_delv_item->iovec[0].iov_base + sizeof (struct mcast);
iovec_delv[iov_len_delv].iov_len =
pend_delv_item->iovec[0].iov_len - sizeof (struct mcast);
assert (iovec_delv[iov_len_delv].iov_len < MESSAGE_SIZE_MAX);
iov_len_delv += 1;
if (pend_delv_item->iov_len > 1) {
memcpy (&iovec_delv[iov_len_delv],
&pend_delv_item->iovec[1],
sizeof (struct iovec) * pend_delv_item->iov_len - 1);
iov_len_delv += pend_delv_item->iov_len - 1;
}
}
assert (iov_len_delv < 256);
assert (iov_len_delv > 0);
//printf ("Assembling from packet %d of %d of total %d\n",
// mcast->packet_number, mcast->packet_count, mcast->packet_seq);
/*
* Deliver message if this is the last packet
*/
if (mcast->packet_number == mcast->packet_count) {
log_printf (LOG_LEVEL_DEBUG, "Last packet, delivering iovec %d entries seq %d\n",
iov_len_delv, i);
gmi_deliver_fn (
&mcast->groupname,
iovec_delv,
iov_len_delv);
/*
* On the first message delivery:
* Free items in the pending queue up to the barrier message
* set gmi_adut to rut so that message_free may free any messages.
*/
if (pend_delv->first_delivery) {
// printf ("releasing all messages up to %d\n", gmi_adut);
// TODO actually release the messages from the previous configuration
// TODO without a fix here, those messages are leaked
}
/*
* Because of the ordering guarantees, we are guaranteed that
* pend_delv->seqid on every invocation of user_deliver shall
* increase (or reset to zero). This allows us to set the
* low water mark (gmi_adut) for freeing of messages to atleast
* the beginning of this message.
*/
gmi_adut = pend_delv->seqid;
/*
* Determine if there are more messages on this queue
*/
res = queue_item_iterator_next (&pend_delv->queue);
if (res == 0) {
/*
* More items to deliver set queues seqid head so
* correct pending queue can be selected next time
*/
pend_delv_item = queue_item_iterator_get (&pend_delv->queue);
mcast = pend_delv_item->iovec[0].iov_base;
pend_delv->seqid = mcast->header.seqid;
for (i = 0; i < messages_delivered; i++) {
queue_item_remove (&pend_delv->queue);
}
} else {
/*
* No more items to deliver
*/
pend_delv->seqid = 0;
queue_reinit (&pend_delv->queue);
}
retval = 1;
break; /* From do loop */
}
res = queue_item_iterator_next (&pend_delv->queue);
} while (res == 0);
return (retval);
}
struct pend_delv *pend_delv_find (struct in_addr source)
{
struct pend_delv *pend_delv = 0;
int i;
for (i = 0; i < memb_list_entries_confchg; i++) {
if (source.s_addr == queues_pend_delv[i].ip.s_addr) {
pend_delv = &queues_pend_delv[i];
break;
}
}
return (pend_delv);
}
static int delivery_outstanding = 0;
static void pending_queues_deliver (void)
{
struct gmi_rtr_item *gmi_rtr_item_p;
int i;
int res;
struct mcast *mcast;
struct gmi_pend_delv_item pend_delv_item;
struct pend_delv *pend_delv;
int delivered;
//printf ("Delivering messages to pending queues\n");
/*
* Deliver messages in order from rtr queue to pending delivery queue
*/
for (i = gmi_arut + 1; i <= gmi_highest_seq; i++) {
res = sq_item_get (&queue_rtr_items, i, (void **)&gmi_rtr_item_p);
/*
* If hole, stop assembly
*/
if (res != 0) {
break;
}
assert (gmi_rtr_item_p->iovec[0].iov_len < MESSAGE_SIZE_MAX);
mcast = gmi_rtr_item_p->iovec[0].iov_base;
if (mcast == (struct mcast *)0xdeadbeef) {
printf ("seqid %d\n", gmi_rtr_item_p->iovec[0].iov_len);
}
assert (mcast != (struct mcast *)0xdeadbeef);
/*
* Message found
*/
log_printf (LOG_LEVEL_DEBUG,
"Delivering MCAST message with seqid %d to pending delivery queue\n",
mcast->header.seqid);
//printf ("Delivering MCAST from packet %d of %d of total %d seqid %d\n", mcast->packet_number, mcast->packet_count, mcast->packet_seq, mcast->header.seqid);
gmi_arut = i;
/*
* Create pending delivery item
*/
pend_delv_item.iov_len = gmi_rtr_item_p->iov_len;
memcpy (&pend_delv_item.iovec, gmi_rtr_item_p->iovec,
sizeof (struct iovec) * gmi_rtr_item_p->iov_len);
assert (gmi_rtr_item_p->iov_len < MAXIOVS);
assert (mcast->source.s_addr != 0);
pend_delv = pend_delv_find (mcast->source);
assert (pend_delv != 0);
assert (pend_delv->ip.s_addr != 0);
if (mcast->packet_number == 0) {
pend_delv->seqid = mcast->header.seqid;
}
/*
* Add pending delivery item to pending delivery queue
*/
queue_item_add (&pend_delv->queue, &pend_delv_item);
/*
* If message is complete, attempt delivery of all messages
* that are currently outstanding
*/
if (mcast->packet_number == mcast->packet_count) {
//printf ("Starting delivery\n");
delivery_outstanding += 1;
do {
delivered = user_deliver ();
if (delivered) {
delivery_outstanding -= 1;
}
} while (delivery_outstanding && delivered);
}
}
//printf ("Done delivering messages to pending queues\n");
}
/*
* recv message handler called when MCAST message type received
*/
static int message_handler_mcast (
struct sockaddr_in *system_from,
struct iovec *iovec,
int iov_len,
int bytes_received)
{
struct gmi_rtr_item gmi_rtr_item;
struct mcast *mcast;
mcast = iovec[0].iov_base;
/*
* Ignore multicasts for other configurations
* TODO shouldn't we enter gather here?
*/
if (memcmp (&mcast->memb_conf_id,
&memb_form_token_conf_id, sizeof (struct memb_conf_id)) != 0) {
return (0);
}
/*
* Add mcast message to rtr queue if not already in rtr queue
* otherwise free io vectors
*/
if (bytes_received > 0 && bytes_received < MESSAGE_SIZE_MAX &&
sq_item_inuse (&queue_rtr_items, mcast->header.seqid) == 0) {
/*
* Allocate new multicast memory block
* TODO we need to free this somewhere
*/
gmi_rtr_item.iovec[0].iov_base = malloc (bytes_received);
if (gmi_rtr_item.iovec[0].iov_base == 0) {
return (-1); /* error here is corrected by the algorithm */
}
memcpy (gmi_rtr_item.iovec[0].iov_base, mcast, bytes_received);
gmi_rtr_item.iovec[0].iov_len = bytes_received;
assert (gmi_rtr_item.iovec[0].iov_len > 0);
assert (gmi_rtr_item.iovec[0].iov_len < MESSAGE_SIZE_MAX);
gmi_rtr_item.iov_len = 1;
if (mcast->header.seqid > gmi_highest_seq) {
gmi_highest_seq = mcast->header.seqid;
}
sq_item_add (&queue_rtr_items, &gmi_rtr_item, mcast->header.seqid);
}
pending_queues_deliver ();
return (0);
}
static int message_handler_memb_attempt_join (
struct sockaddr_in *system_from,
struct iovec *iov,
int iov_len,
int bytes_received)
{
int token_lost;
int found;
int i;
log_printf (LOG_LEVEL_NOTICE, "Got attempt join from %s\n", inet_ntoa (system_from->sin_addr));
for (token_lost = 0, i = 0; i < memb_list_entries; i++) {
if (memb_list[i].sin_addr.s_addr == system_from->sin_addr.s_addr &&
memb_conf_id.rep.s_addr != system_from->sin_addr.s_addr) {
log_printf (LOG_LEVEL_DEBUG, "ATTEMPT JOIN, token lost, taking attempt join msg.\n");
poll_timer_delete (*gmi_poll_handle, timer_orf_token_timeout);
timer_orf_token_timeout = 0;
memb_conf_id.rep.s_addr = memb_local_sockaddr_in.sin_addr.s_addr;
token_lost = 1;
break;
}
}
/*
* Not representative
*/
if (token_lost == 0 &&
memb_conf_id.rep.s_addr != memb_local_sockaddr_in.sin_addr.s_addr) {
log_printf (LOG_LEVEL_NOTICE, "not the rep for this ring, not handling attempt join.\n");
return (0);
}
switch (memb_state) {
case MEMB_STATE_OPERATIONAL:
case MEMB_STATE_COMMIT:
memb_state_gather_enter ();
/*
* Do NOT place break here, immediately execute gather attempt join
*/
case MEMB_STATE_GATHER:
log_printf (LOG_LEVEL_DEBUG, "ATTEMPT JOIN: state gather\n");
for (found = 0, i = 0; i < memb_gather_set_entries; i++) {
if (memb_gather_set[i].s_addr == system_from->sin_addr.s_addr) {
found = 1;
}
}
if (found == 0) {
memb_gather_set[memb_gather_set_entries++].s_addr = system_from->sin_addr.s_addr;
/*
* Sort gather set
*/
qsort (memb_gather_set, memb_gather_set_entries,
sizeof (struct in_addr), in_addr_compare);
}
break;
default:
// TODO what about other states
log_printf (LOG_LEVEL_ERROR, "memb_attempt_join: EVS or FORM state attempt join occured %d\n", memb_state);
}
return (0);
}
static int message_handler_memb_join (
struct sockaddr_in *system_from,
struct iovec *iovec,
int iov_len,
int bytes_received)
{
struct memb_join *memb_join;
int commit_entry;
int found;
int consensus;
/*
* Not representative
*/
if (memb_conf_id.rep.s_addr != memb_local_sockaddr_in.sin_addr.s_addr) {
log_printf (LOG_LEVEL_DEBUG, "not the rep for this ring, not handling join.\n");
return (0);
}
switch (memb_state) {
case MEMB_STATE_OPERATIONAL:
case MEMB_STATE_GATHER:
memb_state_commit_enter ();
/*
* do not place break in this case, immediately enter COMMIT state
*/
case MEMB_STATE_COMMIT:
log_printf (LOG_LEVEL_DEBUG, "JOIN in commit\n");
memb_join = (struct memb_join *)iovec[0].iov_base;
/*
* Find gather set that matches the system message was from
*/
for (found = 0, commit_entry = 0; commit_entry < memb_commit_set_entries; commit_entry++) {
if (system_from->sin_addr.s_addr == memb_commit_set[commit_entry].rep.sin_addr.s_addr) {
found = 1;
break;
}
}
/*
* Add system from to commit sets if not currently in commit set
*/
if (found == 0) {
memcpy (&memb_commit_set[commit_entry].rep, system_from, sizeof (struct sockaddr_in));
memb_commit_set_entries++;
}
/*
* Set gather join data
*/
memcpy (memb_commit_set[commit_entry].join_rep_list, memb_join->active_rep_list,
sizeof (struct in_addr) * memb_join->active_rep_list_entries);
memb_commit_set[commit_entry].join_rep_list_entries = memb_join->active_rep_list_entries;
/*
* Union all entries into the gather set (join_rep_list[0])
*/
memb_state_commit_union (commit_entry);
/*
* Send JOIN message, but only if gather set has changed
*/
memb_join_send ();
/*
* If consensus, transition to FORM
*/
memb_print_commit_set ();
consensus = memb_state_consensus_commit ();
if (consensus) {
log_printf (LOG_LEVEL_NOTICE, "CONSENSUS reached!\n");
if (memb_local_sockaddr_in.sin_addr.s_addr == memb_gather_set[0].s_addr) {
log_printf (LOG_LEVEL_DEBUG, "This node responsible for sending the FORM token.\n");
poll_timer_delete (*gmi_poll_handle, timer_memb_state_commit_timeout);
timer_memb_state_commit_timeout = 0;
memb_form_token_send_initial ();
}
}
break;
/*
* All other cases are ignored on JOINs
*/
case MEMB_STATE_FORM:
log_printf (LOG_LEVEL_WARNING, "JOIN in form, ignoring since consensus reached in state machine.\n");
break;
default:
// TODO HANDLE THIS CASE
log_printf (LOG_LEVEL_DEBUG, "memb_join: DEFAULT case %d, shouldn't happen!!\n", memb_state);
break;
}
return (0);
}
static int message_handler_memb_form_token (
struct sockaddr_in *system_from,
struct iovec *iovec,
int iov_len,
int bytes_received)
{
int i;
int local = 0;
int res = 0;
printf ("Got membership form token\n");
memcpy (&memb_form_token, iovec->iov_base, sizeof (struct memb_form_token));
poll_timer_delete (*gmi_poll_handle, timer_form_token_timeout);
timer_form_token_timeout = 0;
switch (memb_state) {
case MEMB_STATE_OPERATIONAL:
case MEMB_STATE_COMMIT:
memb_state = MEMB_STATE_FORM;
poll_timer_delete (*gmi_poll_handle, timer_memb_state_commit_timeout);
timer_memb_state_commit_timeout = 0;
/*
* Add member to entry
*/
memb_form_token.member_list[memb_form_token.member_list_entries].s_addr =
memb_local_sockaddr_in.sin_addr.s_addr;
memb_form_token.member_list_entries++;
/*
* Modify the conf_id as necessary
*/
memb_form_token_conf_desc_build (&memb_form_token);
/*
* Stop token timeout timer from firing
* If we are in FORM state, a previous FORM state member
* may have captured the ORF token and swallowed it
*/
poll_timer_delete (*gmi_poll_handle, timer_orf_token_timeout);
timer_orf_token_timeout = 0;
/*
* Find next member
*/
for (i = 0; i < memb_list_entries; i++) {
if (memb_list[i].sin_addr.s_addr == memb_local_sockaddr_in.sin_addr.s_addr) {
local = 1;
break;
}
}
if (memb_list_entries == 0) { /* 0 or 1 members and we are local */
local = 1;
}
if (local && (i + 1 < memb_list_entries)) {
memb_next.sin_addr.s_addr = memb_list[i + 1].sin_addr.s_addr;
} else {
/*
* Find next representative
*/
for (i = 0; i < memb_form_token.rep_list_entries; i++) {
if (memb_conf_id.rep.s_addr ==
memb_form_token.rep_list[i].s_addr) {
break;
}
}
memb_next.sin_addr.s_addr =
memb_form_token.rep_list[(i + 1) % memb_form_token.rep_list_entries].s_addr;
}
memb_next.sin_family = AF_INET;
memb_next.sin_port = sockaddr_in_mcast.sin_port;
break;
case MEMB_STATE_FORM:
memb_state = MEMB_STATE_EVS;
memb_form_token_update_highest_seq (&memb_form_token);
/*
* FORM token has rotated once, now install local variables
*
* Set barrier sequence number
* Set original arut
*/
gmi_barrier_seq = 0;
printf ("conf_desc_list %d\n", memb_form_token.conf_desc_list_entries);
for (i = 0; i < memb_form_token.conf_desc_list_entries; i++) {
printf ("highest seq %d %d\n", i, memb_form_token.conf_desc_list[i].highest_seq);
if (gmi_barrier_seq < memb_form_token.conf_desc_list[i].highest_seq) {
gmi_barrier_seq = memb_form_token.conf_desc_list[i].highest_seq;
printf ("setting barrier seq to %d\n", gmi_barrier_seq);
}
}
gmi_barrier_seq += 1;
printf ("setting barrier seq to %d\n", gmi_barrier_seq);
gmi_original_arut = gmi_arut;
/*
* Determine next ORF target
*/
for (i = 0; i < memb_form_token.member_list_entries; i++) {
if (memb_local_sockaddr_in.sin_addr.s_addr == memb_form_token.member_list[i].s_addr) {
memb_next.sin_addr.s_addr =
memb_form_token.member_list[(i + 1) % memb_form_token.member_list_entries].s_addr;
memb_next.sin_family = AF_INET;
memb_next.sin_port = sockaddr_in_mcast.sin_port;
}
//ABRA
}
break;
case MEMB_STATE_EVS:
log_printf (LOG_LEVEL_DEBUG, "Swallowing FORM token in EVS state.\n");
printf ("FORM CONF ENTRIES %d\n", memb_form_token.conf_desc_list_entries);
orf_token_send_initial();
return (0);
default:
// TODO
log_printf (LOG_LEVEL_ERROR, "memb_form_token: default case, shouldn't happen.\n");
return (0);
}
res = memb_form_token_send (&memb_form_token);
return (res);
}
int recv_handler (poll_handle handle, int fd, int revents, void *data)
{
struct msghdr msg_recv;
struct message_header *message_header;
struct sockaddr_in system_from;
int res = 0;
int bytes_received;
/*
* Receive datagram
*/
msg_recv.msg_name = &system_from;
msg_recv.msg_namelen = sizeof (struct sockaddr_in);
msg_recv.msg_iov = &gmi_iov_recv;
msg_recv.msg_iovlen = 1;
msg_recv.msg_control = 0;
msg_recv.msg_controllen = 0;
msg_recv.msg_flags = 0;
bytes_received = recvmsg (gmi_fd, &msg_recv, MSG_NOSIGNAL | MSG_DONTWAIT);
if (bytes_received == -1) {
return (0);
} else {
stats_recv += bytes_received;
}
/*
* Authenticate datagram
*/
res = gmi_msg_auth (msg_recv.msg_iov, msg_recv.msg_iovlen);
if (res == -1) {
return 0;
}
if (stats_tv_start.tv_usec == 0) {
gettimeofday (&stats_tv_start, NULL);
}
/*
* Handle incoming message
*/
message_header = (struct message_header *)msg_recv.msg_iov[0].iov_base;
gmi_message_handlers.handler_functions[message_header->type] (
&system_from,
msg_recv.msg_iov,
msg_recv.msg_iovlen,
bytes_received);
return (0);
}