mirror_corosync/exec/amfsu.c
Hans Feldt 62bc733e2e - Error escalation improved, SU failover recovery action added
- Most runtime attributes in the inf. model calculated in runtime from
  more fundamental information. (improves consistency)
- sg_assign_si can now recalculate workloads considering existing
  assignments
- Logging improvements, similar to what is required as notification in
  AMF spec.
- CLC-CLI INSTANTIATE now exits aisexec when it fails (should later be
  sent as an NTF alarm)
- CLC-CLI CLEANUP correctly handles already terminated processes
- testamf1.c printouts removed for normal operation
- Iterator functions for SI/CSI assignments 



git-svn-id: http://svn.fedorahosted.org/svn/corosync/trunk@1108 fd59a12c-fef9-0310-b244-a6a79926bd2f
2006-07-07 08:04:01 +00:00

751 lines
22 KiB
C

/** @file exec/amfsu.c
*
* Copyright (c) 2002-2006 MontaVista Software, Inc.
* Author: Steven Dake (sdake@mvista.com)
*
* Copyright (c) 2006 Ericsson AB.
* Author: Hans Feldt
* - Introduced AMF B.02 information model
* - Use DN in API and multicast messages
* - (Re-)Introduction of event based multicast messages
* - Refactoring of code into several AMF files
* Author: Anders Eriksson, Lars Holm
* - Component/SU restart, SU failover
*
* All rights reserved.
*
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* AMF Service Unit Class Implementation
*
* This file contains functions for handling AMF-service units(SUs). It can be
* viewed as the implementation of the AMF Service Unit class (called SU)
* as described in SAI-Overview-B.02.01. The SA Forum specification
* SAI-AIS-AMF-B.02.01 has been used as specification of the behaviour
* and is referred to as 'the spec' below.
*
* The functions in this file are responsible for:
* - instantiating and terminating service units on request
* (considering the dependencies between components described in paragraph
* 3.9.2)
* - creating and deleting CSI-assignment objects between its components and
* CSI-objects upon request
* - receiving error reports from its components and forwarding them to
* appropriate handler (SU or SG or node or cluster)
* - implementing restart of itself and its components (paragraph 3.12.1.2)
* - implementing error escallation level 1 (paragraph 3.12.2.2 in the spec)
* - handling all run time attributes of the AMF SU; all cached
* attributes are stored as variables and sent to the IMM service
* upon the changes described in the specification.
*
* SU contains the following state machines:
* - presence state machine (PRSM)
* - administrative state machine (ADSM) (NOT IN THIS RELEASE)
* - operational state machine (OPSM)
* - readiness state machine (RESM)
* - ha state per service instance (SI)
* - restart control state machine (RCSM)
*
* The presence state machine orders intantiation of its components on request.
* It fully respects the dependency rules between components at instantiation
* such that it orders instantiation simultaneously only of components on the
* same instantiation level. The presence state machine is implemented with
* the states described in the spec and the state transitions are trigged by
* reported state transitions from its contained components according to
* paragraph 3.3.1.1.
*
* The operational state machine is not responsible for any control function.
* It assumes the DISABLED state if an incoming operational state change report
* from a component indicates the component has assumed the DISABLED state.
* Operational state changes are reported to IMM.
*
* The readiness state machine is not used for any control but is updated and
* reported to IMM when it is changed.
*
* The restart control state machine (RCSM) is used to implement level 1 of
* the error escallation polycy described in chapter 3.12.2 of the spec. It
* also implements component restart and service unit restart as described in
* paragraph 3.12.1.2 and 3.12.1.3.
* RCSM contains three composite states.
* Being a composite state means that the state contains substates.
* RCSM composite states are:
* - ESCALLATION_LEVEL (LEVEL_0, LEVEL_1 and LEVEL_2)
* - RESTARTING_COMPONENT (DEACTIVATING, RESTARTING, SETTING and ACTIVATING)
* - RESTARTING_SERVICE_UNIT (DEACTIVATING, TERMINATING, INSTANTIATING,
* and ACTIVATING)
*
* ESCALLATION_LEVEL is a kind of idle state where no actions are performed
* and used only to remember the escallation level. Substate LEVEL_0 indicates
* no escallation. LEVEL_1 indicates that a component restart has been
* executed recently and the escallation timer is still running. At this level
* component restart requests will transition to RESTARTING_COMPONENT but
* if there are too many restart requests before the probation timer expires
* then a transition will be made to LEVEL_2 and the restart request will
* be forwarded to the node instance hosting this component.
* State RESTARTING_SERVICE_UNIT will only be assumed if the node explicitly
* requests the SU to execute a restart of itself (after having evaluated its
* part of the error escallation policy).
*
*/
/*
*
*/
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <errno.h>
#include "amf.h"
#include "util.h"
#include "print.h"
#include "main.h"
static int presence_state_all_comps_in_su_are_set (struct amf_su *su,
SaAmfPresenceStateT state)
{
int all_set = 1;
struct amf_comp *comp;
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
if (comp->saAmfCompPresenceState != state) {
all_set = 0;
}
}
return all_set;
}
/**
* This function only logs since the readiness state is runtime
* calculated.
* @param su
* @param amf_readiness_state
*/
static void su_readiness_state_set (struct amf_su *su,
SaAmfReadinessStateT readiness_state)
{
log_printf (LOG_NOTICE, "Setting SU '%s' readiness state: %s\n",
su->name.value, amf_readiness_state (readiness_state));
}
static void clear_ha_state (
struct amf_su *su, struct amf_si_assignment *si_assignment)
{
ENTER ("");
si_assignment->saAmfSISUHAState = 0;
}
static void su_presence_state_set (struct amf_su *su,
SaAmfPresenceStateT presence_state)
{
/*
* Set all SI's confirmed HA state to unknown if uninstantiated
*/
if (su->saAmfSUPresenceState == SA_AMF_PRESENCE_UNINSTANTIATED) {
amf_su_foreach_si_assignment (su, clear_ha_state);
}
su->saAmfSUPresenceState = presence_state;
log_printf (LOG_NOTICE, "Setting SU '%s' presence state: %s\n",
su->name.value, amf_presence_state (presence_state));
if (su->restart_control_state != SU_RC_RESTART_SU_SETTING) {
amf_sg_su_state_changed (
su->sg, su, SA_AMF_PRESENCE_STATE, presence_state);
}
}
static void su_operational_state_set (struct amf_su *su,
SaAmfOperationalStateT oper_state)
{
struct amf_comp* comp;
su->saAmfSUOperState = oper_state;
log_printf (LOG_NOTICE, "Setting SU '%s' operational state: %s\n",
su->name.value, amf_op_state (oper_state));
if (oper_state == SA_AMF_OPERATIONAL_ENABLED) {
su_readiness_state_set (su, SA_AMF_READINESS_IN_SERVICE);
for (comp = su->comp_head; comp; comp = comp->next) {
amf_comp_readiness_state_set (comp, SA_AMF_READINESS_IN_SERVICE);
}
} else if (oper_state == SA_AMF_OPERATIONAL_DISABLED) {
su_readiness_state_set (su, SA_AMF_READINESS_OUT_OF_SERVICE);
for (comp = su->comp_head; comp; comp = comp->next) {
amf_comp_readiness_state_set (comp, SA_AMF_READINESS_OUT_OF_SERVICE);
}
}
}
static void comp_assign_csi (struct amf_comp *comp, struct amf_csi *csi,
struct amf_si_assignment *si_assignment, SaAmfHAStateT ha_state)
{
struct amf_csi_assignment *csi_assignment;
dprintf (" Creating CSI '%s' to comp '%s' with hastate %s\n",
getSaNameT (&csi->name), getSaNameT (&comp->name),
amf_ha_state (ha_state));
csi_assignment = malloc (sizeof (struct amf_csi_assignment));
if (csi_assignment == NULL) {
openais_exit_error (AIS_DONE_OUT_OF_MEMORY);
}
csi_assignment->next = csi->assigned_csis;
csi->assigned_csis = csi_assignment;
amf_comp_dn_make (comp, &csi_assignment->name);
csi_assignment->csi = csi;
csi_assignment->comp = comp;
csi_assignment->saAmfCSICompHAState = 0; /* undefined confirmed HA state */
csi_assignment->requested_ha_state = ha_state;
csi_assignment->si_assignment = si_assignment;
}
static void su_restart (struct amf_su *su)
{
struct amf_comp *comp;
SaNameT dn;
ENTER ("'%s'", su->name.value);
amf_su_dn_make (su, &dn);
log_printf (LOG_NOTICE, "Error detected for '%s', recovery "
"action:\n\t\tSU restart", dn.value);
su->restart_control_state = SU_RC_RESTART_SU_DEACTIVATING;
su->restart_control_state = SU_RC_RESTART_SU_INSTANTIATING;
su->escalation_level_history_state =
SU_RC_ESCALATION_LEVEL_2;
su->saAmfSURestartCount += 1;
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
amf_comp_restart (comp);
}
}
static void comp_restart (struct amf_comp *comp)
{
SaNameT dn;
ENTER ("'%s'", comp->name.value);
amf_comp_dn_make (comp, &dn);
log_printf (LOG_NOTICE, "Error detected for '%s', recovery "
"action:\n\t\tcomponent restart", dn.value);
comp->su->restart_control_state = SU_RC_RESTART_COMP_DEACTIVATING;
comp->su->restart_control_state = SU_RC_RESTART_COMP_RESTARTING;
comp->su->escalation_level_history_state = SU_RC_ESCALATION_LEVEL_1;
amf_comp_restart (comp);
}
void amf_su_instantiate (struct amf_su *su)
{
struct amf_comp *comp;
ENTER ("'%s'", su->name.value);
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
amf_comp_instantiate (comp);
}
}
void amf_su_assign_si (struct amf_su *su, struct amf_si *si,
SaAmfHAStateT ha_state)
{
struct amf_si_assignment *si_assignment;
dprintf ("Creating SI '%s' to SU '%s' with hastate %s\n",
getSaNameT (&si->name), getSaNameT (&su->name),
amf_ha_state (ha_state));
si_assignment = malloc (sizeof (struct amf_si_assignment));
if (si_assignment == NULL) {
openais_exit_error (AIS_DONE_OUT_OF_MEMORY);
}
amf_su_dn_make (su, &si_assignment->name);
si_assignment->saAmfSISUHAState = 0; /* undefined confirmed HA state */
si_assignment->requested_ha_state = ha_state;
si_assignment->next = si->assigned_sis;
si->assigned_sis = si_assignment;
si_assignment->si = si;
si_assignment->su = su;
{
struct amf_csi *csi;
struct amf_comp *comp;
SaNameT *cs_type;
int i;
/*
** for each component in SU, find a CSI in the SI with the same type
*/
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
int no_of_cs_types = 0;
for (i = 0; comp->saAmfCompCsTypes[i]; i++) {
cs_type = comp->saAmfCompCsTypes[i];
no_of_cs_types++;
int no_of_assignments = 0;
for (csi = si->csi_head; csi != NULL; csi = csi->next) {
if (!memcmp(csi->saAmfCSTypeName.value, cs_type->value,
cs_type->length)) {
comp_assign_csi (comp, csi, si_assignment, ha_state);
no_of_assignments++;
}
}
if (no_of_assignments == 0) {
log_printf (
LOG_WARNING, "\t No CSIs of type %s configured?!!\n",
getSaNameT (cs_type));
}
}
if (no_of_cs_types == 0) {
log_printf (LOG_LEVEL_ERROR,
"\t No CS types configured for comp %s ?!!\n",
getSaNameT (&comp->name));
}
}
}
}
static void si_ha_state_assumed_cbfn (
struct amf_si_assignment *si_assignment, int result)
{
struct amf_si_assignment *tmp_si_assignment;
struct amf_comp *comp;
struct amf_csi_assignment *csi_assignment;
int all_confirmed = 1;
ENTER ("");
tmp_si_assignment = amf_su_get_next_si_assignment(si_assignment->su, NULL);
while (tmp_si_assignment != NULL) {
for (comp = tmp_si_assignment->su->comp_head; comp != NULL;
comp = comp->next) {
csi_assignment = amf_comp_get_next_csi_assignment(comp, NULL);
while (csi_assignment != NULL) {
if (csi_assignment->requested_ha_state !=
csi_assignment->saAmfCSICompHAState) {
all_confirmed = 0;
}
csi_assignment = amf_comp_get_next_csi_assignment(
comp, csi_assignment);
}
}
tmp_si_assignment = amf_su_get_next_si_assignment(
si_assignment->su, tmp_si_assignment);
}
if (all_confirmed) {
switch (si_assignment->su->restart_control_state) {
case SU_RC_RESTART_COMP_SETTING:
log_printf (LOG_NOTICE, "Component restart recovery finished");
break;
case SU_RC_RESTART_SU_SETTING:
log_printf (LOG_NOTICE, "SU restart recovery finished");
break;
default:
assert (0);
}
si_assignment->su->restart_control_state =
si_assignment->su->escalation_level_history_state;
}
}
static void reassign_sis(struct amf_su *su)
{
struct amf_si_assignment *si_assignment;
ENTER ("");
si_assignment = amf_su_get_next_si_assignment(su, NULL);
while (si_assignment != NULL) {
si_assignment->saAmfSISUHAState = 0; /* unknown */
amf_si_ha_state_assume (si_assignment, si_ha_state_assumed_cbfn);
si_assignment = amf_su_get_next_si_assignment(su, si_assignment);
}
}
static void su_comp_presence_state_changed (
struct amf_su *su, struct amf_comp *comp, int state)
{
ENTER ("'%s', '%s'", su->name.value, comp->name.value);
switch (state) {
case SA_AMF_PRESENCE_INSTANTIATED:
switch (su->restart_control_state) {
case SU_RC_ESCALATION_LEVEL_2:
/*
* TODO: send to node
*/
case SU_RC_ESCALATION_LEVEL_0:
if (presence_state_all_comps_in_su_are_set (
comp->su, SA_AMF_PRESENCE_INSTANTIATED)) {
su_presence_state_set (
comp->su, SA_AMF_PRESENCE_INSTANTIATED);
}
break;
case SU_RC_RESTART_COMP_RESTARTING:
su->restart_control_state = SU_RC_RESTART_COMP_SETTING;
reassign_sis (comp->su);
break;
case SU_RC_RESTART_SU_INSTANTIATING:
if (presence_state_all_comps_in_su_are_set (
comp->su, SA_AMF_PRESENCE_INSTANTIATED)) {
su->restart_control_state = SU_RC_RESTART_SU_SETTING;
su_presence_state_set (
comp->su, SA_AMF_PRESENCE_INSTANTIATED);
reassign_sis (comp->su);
}
break;
default:
dprintf ("state %d", su->restart_control_state);
assert (0);
}
break;
case SA_AMF_PRESENCE_UNINSTANTIATED:
if (presence_state_all_comps_in_su_are_set (
su, SA_AMF_PRESENCE_UNINSTANTIATED)) {
su_presence_state_set (comp->su,
SA_AMF_PRESENCE_UNINSTANTIATED);
}
break;
case SA_AMF_PRESENCE_INSTANTIATING:
break;
case SA_AMF_PRESENCE_RESTARTING:
break;
case SA_AMF_PRESENCE_TERMINATING:
break;
default:
assert (0);
}
}
static void su_comp_op_state_changed (
struct amf_su *su, struct amf_comp *comp, int state)
{
ENTER ("'%s', '%s'", su->name.value, comp->name.value);
switch (state) {
case SA_AMF_OPERATIONAL_ENABLED:
{
struct amf_comp *comp_compare;
int all_set = 1;
for (comp_compare = comp->su->comp_head;
comp_compare != NULL; comp_compare = comp_compare->next) {
if (comp_compare->saAmfCompOperState !=
SA_AMF_OPERATIONAL_ENABLED) {
all_set = 0;
break;
}
}
if (all_set) {
su_operational_state_set (comp->su, SA_AMF_OPERATIONAL_ENABLED);
} else {
su_operational_state_set (comp->su, SA_AMF_OPERATIONAL_DISABLED);
}
break;
}
case SA_AMF_OPERATIONAL_DISABLED:
break;
default:
assert (0);
}
}
/**
* Used by a component to report a state change event
* @param su
* @param comp
* @param type type of state
* @param state new state
*/
void amf_su_comp_state_changed (
struct amf_su *su, struct amf_comp *comp, SaAmfStateT type, int state)
{
switch (type) {
case SA_AMF_PRESENCE_STATE:
su_comp_presence_state_changed (su, comp, state);
break;
case SA_AMF_OP_STATE:
su_comp_op_state_changed (su, comp, state);
break;
default:
assert (0);
}
}
/**
* Determine if the SU is hosted on the local node.
* @param su
*
* @return int
*/
int amf_su_is_local (struct amf_su *su)
{
if (name_match (&this_amf_node->name, &su->saAmfSUHostedByNode)) {
return 1;
} else {
return 0;
}
}
/**
* Called by a component to report a suspected error on a component
* @param su
* @param comp
* @param recommended_recovery
*/
void amf_su_comp_error_suspected (
struct amf_su *su,
struct amf_comp *comp,
SaAmfRecommendedRecoveryT recommended_recovery)
{
ENTER ("Comp '%s', SU '%s'", comp->name.value, su->name.value);
/*
* Defer all new events. Workaround to be able to use gdb.
*/
if (su->sg->avail_state != SG_AC_Idle) {
ENTER ("Comp '%s', SU '%s'", comp->name.value, su->name.value);
fprintf (stderr, "Warning Debug: event deferred!\n");
return;
}
switch (su->restart_control_state) {
case SU_RC_ESCALATION_LEVEL_0:
if (comp->saAmfCompRestartCount >= su->sg->saAmfSGCompRestartMax) {
su->restart_control_state = SU_RC_ESCALATION_LEVEL_1;
amf_su_comp_error_suspected (su, comp, recommended_recovery);
} else {
comp_restart (comp);
}
break;
case SU_RC_ESCALATION_LEVEL_1:
if (comp->saAmfCompRestartCount >= su->sg->saAmfSGCompRestartMax) {
if (su->saAmfSURestartCount >= su->sg->saAmfSGSuRestartMax) {
su->restart_control_state = SU_RC_ESCALATION_LEVEL_2;
amf_su_comp_error_suspected (su, comp, recommended_recovery);
} else {
su_restart (comp->su);
}
} else {
comp_restart (comp);
}
break;
case SU_RC_ESCALATION_LEVEL_2:
if (su->saAmfSURestartCount >= su->sg->saAmfSGSuRestartMax) {
/*
* TODO: delegate to node
*/
struct amf_si_assignment *si_assignment =
amf_su_get_next_si_assignment (su, NULL);
if (si_assignment->saAmfSISUHAState == SA_AMF_HA_ACTIVE) {
SaNameT dn;
su_operational_state_set (su, SA_AMF_OPERATIONAL_DISABLED);
amf_comp_operational_state_set (
comp, SA_AMF_OPERATIONAL_DISABLED);
amf_comp_dn_make (comp, &dn);
log_printf (LOG_NOTICE, "Error detected for '%s', recovery "
"action:\n\t\tSU failover", dn.value);
amf_sg_failover_su_req (comp->su->sg, comp->su, this_amf_node);
return;
} else {
su_restart (comp->su);
}
} else {
su_restart (comp->su);
}
break;
default:
assert (0);
}
}
void amf_su_init (void)
{
log_init ("AMF");
}
void amf_su_terminate (struct amf_su *su)
{
struct amf_comp *comp;
ENTER ("'%s'", su->name.value);
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
/*
* Terminate all components in SU abruptly
*/
comp->error_suspected = 1;
amf_comp_terminate (comp);
}
}
char *amf_su_dn_make (struct amf_su *su, SaNameT *name)
{
int i = snprintf((char*) name->value, SA_MAX_NAME_LENGTH,
"safSu=%s,safSg=%s,safApp=%s",
su->name.value, su->sg->name.value, su->sg->application->name.value);
assert (i <= SA_MAX_NAME_LENGTH);
name->length = i;
return (char *)name->value;
}
struct amf_si_assignment *amf_su_get_next_si_assignment (
struct amf_su *su, const struct amf_si_assignment *si_assignment)
{
struct amf_si *si;
struct amf_si_assignment *tmp_si_assignment;
SaNameT dn;
amf_su_dn_make (su, &dn);
if (si_assignment == NULL) {
si = su->sg->application->si_head;
tmp_si_assignment = si->assigned_sis;
} else {
tmp_si_assignment = si_assignment->next;
if (tmp_si_assignment == NULL) {
si = si_assignment->si->next;
if (si == NULL) {
return NULL;
} else {
tmp_si_assignment = si->assigned_sis;
}
} else {
si = tmp_si_assignment->si;
}
}
for (; si != NULL; si = si->next) {
if (tmp_si_assignment == NULL && si != NULL) {
tmp_si_assignment = si->assigned_sis;
}
for (; tmp_si_assignment != NULL;
tmp_si_assignment = tmp_si_assignment->next) {
if (name_match (&tmp_si_assignment->name, &dn)) {
return tmp_si_assignment;
}
}
}
return NULL;
}
void amf_su_foreach_si_assignment (
struct amf_su *su,
void (*foreach_fn)(struct amf_su *su,
struct amf_si_assignment *si_assignment))
{
struct amf_si_assignment *si_assignment;
assert (foreach_fn != NULL);
si_assignment = amf_su_get_next_si_assignment (su, NULL);
while (si_assignment != NULL) {
foreach_fn (su, si_assignment);
si_assignment = amf_su_get_next_si_assignment (su, si_assignment);
}
}
int amf_su_get_saAmfSUNumCurrActiveSIs(struct amf_su *su)
{
int cnt = 0;
struct amf_si_assignment *si_assignment;
si_assignment = amf_su_get_next_si_assignment (su, NULL);
while (si_assignment != NULL) {
if (su->sg->avail_state == SG_AC_AssigningOnRequest &&
si_assignment->requested_ha_state == SA_AMF_HA_ACTIVE) {
cnt++;
} else {
if (si_assignment->saAmfSISUHAState == SA_AMF_HA_ACTIVE) {
cnt++;
}
}
si_assignment = amf_su_get_next_si_assignment (su, si_assignment);
}
return cnt;
}
int amf_su_get_saAmfSUNumCurrStandbySIs(struct amf_su *su)
{
int cnt = 0;
struct amf_si_assignment *si_assignment;
si_assignment = amf_su_get_next_si_assignment (su, NULL);
while (si_assignment != NULL) {
if (su->sg->avail_state == SG_AC_AssigningOnRequest &&
si_assignment->requested_ha_state == SA_AMF_HA_STANDBY) {
cnt++;
} else {
if (si_assignment->saAmfSISUHAState == SA_AMF_HA_STANDBY) {
cnt++;
}
}
si_assignment = amf_su_get_next_si_assignment (su, si_assignment);
}
return cnt;
}
SaAmfReadinessStateT amf_su_get_saAmfSUReadinessState (struct amf_su *su)
{
if ((su->saAmfSUOperState == SA_AMF_OPERATIONAL_ENABLED) &&
((su->saAmfSUPresenceState == SA_AMF_PRESENCE_INSTANTIATED) ||
(su->saAmfSUPresenceState == SA_AMF_PRESENCE_RESTARTING))) {
return SA_AMF_READINESS_IN_SERVICE;
} else if (su->saAmfSUOperState == SA_AMF_OPERATIONAL_ENABLED) {
return SA_AMF_READINESS_STOPPING;
} else {
return SA_AMF_READINESS_OUT_OF_SERVICE;
}
}