mirror of
https://git.proxmox.com/git/mirror_corosync
synced 2025-05-30 12:46:11 +00:00

- Most runtime attributes in the inf. model calculated in runtime from more fundamental information. (improves consistency) - sg_assign_si can now recalculate workloads considering existing assignments - Logging improvements, similar to what is required as notification in AMF spec. - CLC-CLI INSTANTIATE now exits aisexec when it fails (should later be sent as an NTF alarm) - CLC-CLI CLEANUP correctly handles already terminated processes - testamf1.c printouts removed for normal operation - Iterator functions for SI/CSI assignments git-svn-id: http://svn.fedorahosted.org/svn/corosync/trunk@1108 fd59a12c-fef9-0310-b244-a6a79926bd2f
751 lines
22 KiB
C
751 lines
22 KiB
C
/** @file exec/amfsu.c
|
|
*
|
|
* Copyright (c) 2002-2006 MontaVista Software, Inc.
|
|
* Author: Steven Dake (sdake@mvista.com)
|
|
*
|
|
* Copyright (c) 2006 Ericsson AB.
|
|
* Author: Hans Feldt
|
|
* - Introduced AMF B.02 information model
|
|
* - Use DN in API and multicast messages
|
|
* - (Re-)Introduction of event based multicast messages
|
|
* - Refactoring of code into several AMF files
|
|
* Author: Anders Eriksson, Lars Holm
|
|
* - Component/SU restart, SU failover
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
*
|
|
* This software licensed under BSD license, the text of which follows:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* - Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* - Neither the name of the MontaVista Software, Inc. nor the names of its
|
|
* contributors may be used to endorse or promote products derived from this
|
|
* software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* AMF Service Unit Class Implementation
|
|
*
|
|
* This file contains functions for handling AMF-service units(SUs). It can be
|
|
* viewed as the implementation of the AMF Service Unit class (called SU)
|
|
* as described in SAI-Overview-B.02.01. The SA Forum specification
|
|
* SAI-AIS-AMF-B.02.01 has been used as specification of the behaviour
|
|
* and is referred to as 'the spec' below.
|
|
*
|
|
* The functions in this file are responsible for:
|
|
* - instantiating and terminating service units on request
|
|
* (considering the dependencies between components described in paragraph
|
|
* 3.9.2)
|
|
* - creating and deleting CSI-assignment objects between its components and
|
|
* CSI-objects upon request
|
|
* - receiving error reports from its components and forwarding them to
|
|
* appropriate handler (SU or SG or node or cluster)
|
|
* - implementing restart of itself and its components (paragraph 3.12.1.2)
|
|
* - implementing error escallation level 1 (paragraph 3.12.2.2 in the spec)
|
|
* - handling all run time attributes of the AMF SU; all cached
|
|
* attributes are stored as variables and sent to the IMM service
|
|
* upon the changes described in the specification.
|
|
*
|
|
* SU contains the following state machines:
|
|
* - presence state machine (PRSM)
|
|
* - administrative state machine (ADSM) (NOT IN THIS RELEASE)
|
|
* - operational state machine (OPSM)
|
|
* - readiness state machine (RESM)
|
|
* - ha state per service instance (SI)
|
|
* - restart control state machine (RCSM)
|
|
*
|
|
* The presence state machine orders intantiation of its components on request.
|
|
* It fully respects the dependency rules between components at instantiation
|
|
* such that it orders instantiation simultaneously only of components on the
|
|
* same instantiation level. The presence state machine is implemented with
|
|
* the states described in the spec and the state transitions are trigged by
|
|
* reported state transitions from its contained components according to
|
|
* paragraph 3.3.1.1.
|
|
*
|
|
* The operational state machine is not responsible for any control function.
|
|
* It assumes the DISABLED state if an incoming operational state change report
|
|
* from a component indicates the component has assumed the DISABLED state.
|
|
* Operational state changes are reported to IMM.
|
|
*
|
|
* The readiness state machine is not used for any control but is updated and
|
|
* reported to IMM when it is changed.
|
|
*
|
|
* The restart control state machine (RCSM) is used to implement level 1 of
|
|
* the error escallation polycy described in chapter 3.12.2 of the spec. It
|
|
* also implements component restart and service unit restart as described in
|
|
* paragraph 3.12.1.2 and 3.12.1.3.
|
|
* RCSM contains three composite states.
|
|
* Being a composite state means that the state contains substates.
|
|
* RCSM composite states are:
|
|
* - ESCALLATION_LEVEL (LEVEL_0, LEVEL_1 and LEVEL_2)
|
|
* - RESTARTING_COMPONENT (DEACTIVATING, RESTARTING, SETTING and ACTIVATING)
|
|
* - RESTARTING_SERVICE_UNIT (DEACTIVATING, TERMINATING, INSTANTIATING,
|
|
* and ACTIVATING)
|
|
*
|
|
* ESCALLATION_LEVEL is a kind of idle state where no actions are performed
|
|
* and used only to remember the escallation level. Substate LEVEL_0 indicates
|
|
* no escallation. LEVEL_1 indicates that a component restart has been
|
|
* executed recently and the escallation timer is still running. At this level
|
|
* component restart requests will transition to RESTARTING_COMPONENT but
|
|
* if there are too many restart requests before the probation timer expires
|
|
* then a transition will be made to LEVEL_2 and the restart request will
|
|
* be forwarded to the node instance hosting this component.
|
|
* State RESTARTING_SERVICE_UNIT will only be assumed if the node explicitly
|
|
* requests the SU to execute a restart of itself (after having evaluated its
|
|
* part of the error escallation policy).
|
|
*
|
|
*/
|
|
|
|
/*
|
|
*
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
|
|
#include "amf.h"
|
|
#include "util.h"
|
|
#include "print.h"
|
|
#include "main.h"
|
|
|
|
static int presence_state_all_comps_in_su_are_set (struct amf_su *su,
|
|
SaAmfPresenceStateT state)
|
|
{
|
|
int all_set = 1;
|
|
struct amf_comp *comp;
|
|
|
|
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
|
|
if (comp->saAmfCompPresenceState != state) {
|
|
all_set = 0;
|
|
}
|
|
}
|
|
|
|
return all_set;
|
|
}
|
|
|
|
/**
|
|
* This function only logs since the readiness state is runtime
|
|
* calculated.
|
|
* @param su
|
|
* @param amf_readiness_state
|
|
*/
|
|
static void su_readiness_state_set (struct amf_su *su,
|
|
SaAmfReadinessStateT readiness_state)
|
|
{
|
|
log_printf (LOG_NOTICE, "Setting SU '%s' readiness state: %s\n",
|
|
su->name.value, amf_readiness_state (readiness_state));
|
|
}
|
|
|
|
static void clear_ha_state (
|
|
struct amf_su *su, struct amf_si_assignment *si_assignment)
|
|
{
|
|
ENTER ("");
|
|
si_assignment->saAmfSISUHAState = 0;
|
|
}
|
|
|
|
static void su_presence_state_set (struct amf_su *su,
|
|
SaAmfPresenceStateT presence_state)
|
|
{
|
|
/*
|
|
* Set all SI's confirmed HA state to unknown if uninstantiated
|
|
*/
|
|
if (su->saAmfSUPresenceState == SA_AMF_PRESENCE_UNINSTANTIATED) {
|
|
amf_su_foreach_si_assignment (su, clear_ha_state);
|
|
}
|
|
|
|
su->saAmfSUPresenceState = presence_state;
|
|
log_printf (LOG_NOTICE, "Setting SU '%s' presence state: %s\n",
|
|
su->name.value, amf_presence_state (presence_state));
|
|
|
|
if (su->restart_control_state != SU_RC_RESTART_SU_SETTING) {
|
|
amf_sg_su_state_changed (
|
|
su->sg, su, SA_AMF_PRESENCE_STATE, presence_state);
|
|
}
|
|
}
|
|
|
|
static void su_operational_state_set (struct amf_su *su,
|
|
SaAmfOperationalStateT oper_state)
|
|
{
|
|
struct amf_comp* comp;
|
|
|
|
su->saAmfSUOperState = oper_state;
|
|
log_printf (LOG_NOTICE, "Setting SU '%s' operational state: %s\n",
|
|
su->name.value, amf_op_state (oper_state));
|
|
|
|
if (oper_state == SA_AMF_OPERATIONAL_ENABLED) {
|
|
su_readiness_state_set (su, SA_AMF_READINESS_IN_SERVICE);
|
|
|
|
for (comp = su->comp_head; comp; comp = comp->next) {
|
|
amf_comp_readiness_state_set (comp, SA_AMF_READINESS_IN_SERVICE);
|
|
}
|
|
} else if (oper_state == SA_AMF_OPERATIONAL_DISABLED) {
|
|
su_readiness_state_set (su, SA_AMF_READINESS_OUT_OF_SERVICE);
|
|
for (comp = su->comp_head; comp; comp = comp->next) {
|
|
amf_comp_readiness_state_set (comp, SA_AMF_READINESS_OUT_OF_SERVICE);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void comp_assign_csi (struct amf_comp *comp, struct amf_csi *csi,
|
|
struct amf_si_assignment *si_assignment, SaAmfHAStateT ha_state)
|
|
{
|
|
struct amf_csi_assignment *csi_assignment;
|
|
|
|
dprintf (" Creating CSI '%s' to comp '%s' with hastate %s\n",
|
|
getSaNameT (&csi->name), getSaNameT (&comp->name),
|
|
amf_ha_state (ha_state));
|
|
|
|
csi_assignment = malloc (sizeof (struct amf_csi_assignment));
|
|
if (csi_assignment == NULL) {
|
|
openais_exit_error (AIS_DONE_OUT_OF_MEMORY);
|
|
}
|
|
|
|
csi_assignment->next = csi->assigned_csis;
|
|
csi->assigned_csis = csi_assignment;
|
|
amf_comp_dn_make (comp, &csi_assignment->name);
|
|
csi_assignment->csi = csi;
|
|
csi_assignment->comp = comp;
|
|
csi_assignment->saAmfCSICompHAState = 0; /* undefined confirmed HA state */
|
|
csi_assignment->requested_ha_state = ha_state;
|
|
csi_assignment->si_assignment = si_assignment;
|
|
}
|
|
|
|
static void su_restart (struct amf_su *su)
|
|
{
|
|
struct amf_comp *comp;
|
|
SaNameT dn;
|
|
|
|
ENTER ("'%s'", su->name.value);
|
|
|
|
amf_su_dn_make (su, &dn);
|
|
log_printf (LOG_NOTICE, "Error detected for '%s', recovery "
|
|
"action:\n\t\tSU restart", dn.value);
|
|
|
|
su->restart_control_state = SU_RC_RESTART_SU_DEACTIVATING;
|
|
su->restart_control_state = SU_RC_RESTART_SU_INSTANTIATING;
|
|
su->escalation_level_history_state =
|
|
SU_RC_ESCALATION_LEVEL_2;
|
|
|
|
su->saAmfSURestartCount += 1;
|
|
|
|
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
|
|
amf_comp_restart (comp);
|
|
}
|
|
}
|
|
|
|
static void comp_restart (struct amf_comp *comp)
|
|
{
|
|
SaNameT dn;
|
|
|
|
ENTER ("'%s'", comp->name.value);
|
|
amf_comp_dn_make (comp, &dn);
|
|
log_printf (LOG_NOTICE, "Error detected for '%s', recovery "
|
|
"action:\n\t\tcomponent restart", dn.value);
|
|
|
|
comp->su->restart_control_state = SU_RC_RESTART_COMP_DEACTIVATING;
|
|
comp->su->restart_control_state = SU_RC_RESTART_COMP_RESTARTING;
|
|
comp->su->escalation_level_history_state = SU_RC_ESCALATION_LEVEL_1;
|
|
amf_comp_restart (comp);
|
|
}
|
|
|
|
void amf_su_instantiate (struct amf_su *su)
|
|
{
|
|
struct amf_comp *comp;
|
|
|
|
ENTER ("'%s'", su->name.value);
|
|
|
|
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
|
|
amf_comp_instantiate (comp);
|
|
}
|
|
}
|
|
|
|
void amf_su_assign_si (struct amf_su *su, struct amf_si *si,
|
|
SaAmfHAStateT ha_state)
|
|
{
|
|
struct amf_si_assignment *si_assignment;
|
|
|
|
dprintf ("Creating SI '%s' to SU '%s' with hastate %s\n",
|
|
getSaNameT (&si->name), getSaNameT (&su->name),
|
|
amf_ha_state (ha_state));
|
|
|
|
si_assignment = malloc (sizeof (struct amf_si_assignment));
|
|
if (si_assignment == NULL) {
|
|
openais_exit_error (AIS_DONE_OUT_OF_MEMORY);
|
|
}
|
|
amf_su_dn_make (su, &si_assignment->name);
|
|
si_assignment->saAmfSISUHAState = 0; /* undefined confirmed HA state */
|
|
si_assignment->requested_ha_state = ha_state;
|
|
si_assignment->next = si->assigned_sis;
|
|
si->assigned_sis = si_assignment;
|
|
si_assignment->si = si;
|
|
si_assignment->su = su;
|
|
|
|
{
|
|
struct amf_csi *csi;
|
|
struct amf_comp *comp;
|
|
SaNameT *cs_type;
|
|
int i;
|
|
|
|
/*
|
|
** for each component in SU, find a CSI in the SI with the same type
|
|
*/
|
|
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
|
|
int no_of_cs_types = 0;
|
|
for (i = 0; comp->saAmfCompCsTypes[i]; i++) {
|
|
cs_type = comp->saAmfCompCsTypes[i];
|
|
no_of_cs_types++;
|
|
int no_of_assignments = 0;
|
|
|
|
for (csi = si->csi_head; csi != NULL; csi = csi->next) {
|
|
if (!memcmp(csi->saAmfCSTypeName.value, cs_type->value,
|
|
cs_type->length)) {
|
|
comp_assign_csi (comp, csi, si_assignment, ha_state);
|
|
no_of_assignments++;
|
|
}
|
|
}
|
|
if (no_of_assignments == 0) {
|
|
log_printf (
|
|
LOG_WARNING, "\t No CSIs of type %s configured?!!\n",
|
|
getSaNameT (cs_type));
|
|
}
|
|
}
|
|
if (no_of_cs_types == 0) {
|
|
log_printf (LOG_LEVEL_ERROR,
|
|
"\t No CS types configured for comp %s ?!!\n",
|
|
getSaNameT (&comp->name));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void si_ha_state_assumed_cbfn (
|
|
struct amf_si_assignment *si_assignment, int result)
|
|
{
|
|
struct amf_si_assignment *tmp_si_assignment;
|
|
struct amf_comp *comp;
|
|
struct amf_csi_assignment *csi_assignment;
|
|
int all_confirmed = 1;
|
|
|
|
ENTER ("");
|
|
|
|
tmp_si_assignment = amf_su_get_next_si_assignment(si_assignment->su, NULL);
|
|
|
|
while (tmp_si_assignment != NULL) {
|
|
for (comp = tmp_si_assignment->su->comp_head; comp != NULL;
|
|
comp = comp->next) {
|
|
|
|
csi_assignment = amf_comp_get_next_csi_assignment(comp, NULL);
|
|
while (csi_assignment != NULL) {
|
|
|
|
if (csi_assignment->requested_ha_state !=
|
|
csi_assignment->saAmfCSICompHAState) {
|
|
all_confirmed = 0;
|
|
}
|
|
csi_assignment = amf_comp_get_next_csi_assignment(
|
|
comp, csi_assignment);
|
|
}
|
|
}
|
|
tmp_si_assignment = amf_su_get_next_si_assignment(
|
|
si_assignment->su, tmp_si_assignment);
|
|
}
|
|
|
|
if (all_confirmed) {
|
|
switch (si_assignment->su->restart_control_state) {
|
|
case SU_RC_RESTART_COMP_SETTING:
|
|
log_printf (LOG_NOTICE, "Component restart recovery finished");
|
|
break;
|
|
case SU_RC_RESTART_SU_SETTING:
|
|
log_printf (LOG_NOTICE, "SU restart recovery finished");
|
|
break;
|
|
default:
|
|
assert (0);
|
|
}
|
|
si_assignment->su->restart_control_state =
|
|
si_assignment->su->escalation_level_history_state;
|
|
}
|
|
}
|
|
|
|
static void reassign_sis(struct amf_su *su)
|
|
{
|
|
struct amf_si_assignment *si_assignment;
|
|
|
|
ENTER ("");
|
|
|
|
si_assignment = amf_su_get_next_si_assignment(su, NULL);
|
|
|
|
while (si_assignment != NULL) {
|
|
si_assignment->saAmfSISUHAState = 0; /* unknown */
|
|
amf_si_ha_state_assume (si_assignment, si_ha_state_assumed_cbfn);
|
|
si_assignment = amf_su_get_next_si_assignment(su, si_assignment);
|
|
}
|
|
}
|
|
|
|
static void su_comp_presence_state_changed (
|
|
struct amf_su *su, struct amf_comp *comp, int state)
|
|
{
|
|
ENTER ("'%s', '%s'", su->name.value, comp->name.value);
|
|
|
|
switch (state) {
|
|
case SA_AMF_PRESENCE_INSTANTIATED:
|
|
switch (su->restart_control_state) {
|
|
case SU_RC_ESCALATION_LEVEL_2:
|
|
/*
|
|
* TODO: send to node
|
|
*/
|
|
case SU_RC_ESCALATION_LEVEL_0:
|
|
if (presence_state_all_comps_in_su_are_set (
|
|
comp->su, SA_AMF_PRESENCE_INSTANTIATED)) {
|
|
|
|
su_presence_state_set (
|
|
comp->su, SA_AMF_PRESENCE_INSTANTIATED);
|
|
}
|
|
break;
|
|
case SU_RC_RESTART_COMP_RESTARTING:
|
|
su->restart_control_state = SU_RC_RESTART_COMP_SETTING;
|
|
reassign_sis (comp->su);
|
|
break;
|
|
case SU_RC_RESTART_SU_INSTANTIATING:
|
|
if (presence_state_all_comps_in_su_are_set (
|
|
comp->su, SA_AMF_PRESENCE_INSTANTIATED)) {
|
|
|
|
su->restart_control_state = SU_RC_RESTART_SU_SETTING;
|
|
su_presence_state_set (
|
|
comp->su, SA_AMF_PRESENCE_INSTANTIATED);
|
|
reassign_sis (comp->su);
|
|
}
|
|
break;
|
|
default:
|
|
dprintf ("state %d", su->restart_control_state);
|
|
assert (0);
|
|
}
|
|
break;
|
|
case SA_AMF_PRESENCE_UNINSTANTIATED:
|
|
if (presence_state_all_comps_in_su_are_set (
|
|
su, SA_AMF_PRESENCE_UNINSTANTIATED)) {
|
|
|
|
su_presence_state_set (comp->su,
|
|
SA_AMF_PRESENCE_UNINSTANTIATED);
|
|
}
|
|
break;
|
|
case SA_AMF_PRESENCE_INSTANTIATING:
|
|
break;
|
|
case SA_AMF_PRESENCE_RESTARTING:
|
|
break;
|
|
case SA_AMF_PRESENCE_TERMINATING:
|
|
break;
|
|
default:
|
|
assert (0);
|
|
}
|
|
}
|
|
|
|
static void su_comp_op_state_changed (
|
|
struct amf_su *su, struct amf_comp *comp, int state)
|
|
{
|
|
ENTER ("'%s', '%s'", su->name.value, comp->name.value);
|
|
|
|
switch (state) {
|
|
case SA_AMF_OPERATIONAL_ENABLED:
|
|
{
|
|
struct amf_comp *comp_compare;
|
|
int all_set = 1;
|
|
for (comp_compare = comp->su->comp_head;
|
|
comp_compare != NULL; comp_compare = comp_compare->next) {
|
|
if (comp_compare->saAmfCompOperState !=
|
|
SA_AMF_OPERATIONAL_ENABLED) {
|
|
|
|
all_set = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (all_set) {
|
|
su_operational_state_set (comp->su, SA_AMF_OPERATIONAL_ENABLED);
|
|
} else {
|
|
su_operational_state_set (comp->su, SA_AMF_OPERATIONAL_DISABLED);
|
|
}
|
|
break;
|
|
}
|
|
case SA_AMF_OPERATIONAL_DISABLED:
|
|
break;
|
|
default:
|
|
assert (0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Used by a component to report a state change event
|
|
* @param su
|
|
* @param comp
|
|
* @param type type of state
|
|
* @param state new state
|
|
*/
|
|
void amf_su_comp_state_changed (
|
|
struct amf_su *su, struct amf_comp *comp, SaAmfStateT type, int state)
|
|
{
|
|
switch (type) {
|
|
case SA_AMF_PRESENCE_STATE:
|
|
su_comp_presence_state_changed (su, comp, state);
|
|
break;
|
|
case SA_AMF_OP_STATE:
|
|
su_comp_op_state_changed (su, comp, state);
|
|
break;
|
|
default:
|
|
assert (0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Determine if the SU is hosted on the local node.
|
|
* @param su
|
|
*
|
|
* @return int
|
|
*/
|
|
int amf_su_is_local (struct amf_su *su)
|
|
{
|
|
if (name_match (&this_amf_node->name, &su->saAmfSUHostedByNode)) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Called by a component to report a suspected error on a component
|
|
* @param su
|
|
* @param comp
|
|
* @param recommended_recovery
|
|
*/
|
|
void amf_su_comp_error_suspected (
|
|
struct amf_su *su,
|
|
struct amf_comp *comp,
|
|
SaAmfRecommendedRecoveryT recommended_recovery)
|
|
{
|
|
ENTER ("Comp '%s', SU '%s'", comp->name.value, su->name.value);
|
|
|
|
/*
|
|
* Defer all new events. Workaround to be able to use gdb.
|
|
*/
|
|
if (su->sg->avail_state != SG_AC_Idle) {
|
|
ENTER ("Comp '%s', SU '%s'", comp->name.value, su->name.value);
|
|
fprintf (stderr, "Warning Debug: event deferred!\n");
|
|
return;
|
|
}
|
|
|
|
switch (su->restart_control_state) {
|
|
case SU_RC_ESCALATION_LEVEL_0:
|
|
if (comp->saAmfCompRestartCount >= su->sg->saAmfSGCompRestartMax) {
|
|
su->restart_control_state = SU_RC_ESCALATION_LEVEL_1;
|
|
amf_su_comp_error_suspected (su, comp, recommended_recovery);
|
|
} else {
|
|
comp_restart (comp);
|
|
}
|
|
break;
|
|
|
|
case SU_RC_ESCALATION_LEVEL_1:
|
|
if (comp->saAmfCompRestartCount >= su->sg->saAmfSGCompRestartMax) {
|
|
if (su->saAmfSURestartCount >= su->sg->saAmfSGSuRestartMax) {
|
|
su->restart_control_state = SU_RC_ESCALATION_LEVEL_2;
|
|
amf_su_comp_error_suspected (su, comp, recommended_recovery);
|
|
} else {
|
|
su_restart (comp->su);
|
|
}
|
|
} else {
|
|
comp_restart (comp);
|
|
}
|
|
break;
|
|
|
|
case SU_RC_ESCALATION_LEVEL_2:
|
|
if (su->saAmfSURestartCount >= su->sg->saAmfSGSuRestartMax) {
|
|
|
|
/*
|
|
* TODO: delegate to node
|
|
*/
|
|
struct amf_si_assignment *si_assignment =
|
|
amf_su_get_next_si_assignment (su, NULL);
|
|
if (si_assignment->saAmfSISUHAState == SA_AMF_HA_ACTIVE) {
|
|
SaNameT dn;
|
|
|
|
su_operational_state_set (su, SA_AMF_OPERATIONAL_DISABLED);
|
|
amf_comp_operational_state_set (
|
|
comp, SA_AMF_OPERATIONAL_DISABLED);
|
|
amf_comp_dn_make (comp, &dn);
|
|
log_printf (LOG_NOTICE, "Error detected for '%s', recovery "
|
|
"action:\n\t\tSU failover", dn.value);
|
|
amf_sg_failover_su_req (comp->su->sg, comp->su, this_amf_node);
|
|
return;
|
|
} else {
|
|
su_restart (comp->su);
|
|
}
|
|
} else {
|
|
su_restart (comp->su);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
assert (0);
|
|
}
|
|
}
|
|
|
|
void amf_su_init (void)
|
|
{
|
|
log_init ("AMF");
|
|
}
|
|
|
|
void amf_su_terminate (struct amf_su *su)
|
|
{
|
|
struct amf_comp *comp;
|
|
|
|
ENTER ("'%s'", su->name.value);
|
|
|
|
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
|
|
/*
|
|
* Terminate all components in SU abruptly
|
|
*/
|
|
comp->error_suspected = 1;
|
|
amf_comp_terminate (comp);
|
|
}
|
|
}
|
|
|
|
char *amf_su_dn_make (struct amf_su *su, SaNameT *name)
|
|
{
|
|
int i = snprintf((char*) name->value, SA_MAX_NAME_LENGTH,
|
|
"safSu=%s,safSg=%s,safApp=%s",
|
|
su->name.value, su->sg->name.value, su->sg->application->name.value);
|
|
assert (i <= SA_MAX_NAME_LENGTH);
|
|
name->length = i;
|
|
return (char *)name->value;
|
|
}
|
|
|
|
struct amf_si_assignment *amf_su_get_next_si_assignment (
|
|
struct amf_su *su, const struct amf_si_assignment *si_assignment)
|
|
{
|
|
struct amf_si *si;
|
|
struct amf_si_assignment *tmp_si_assignment;
|
|
SaNameT dn;
|
|
|
|
amf_su_dn_make (su, &dn);
|
|
|
|
if (si_assignment == NULL) {
|
|
si = su->sg->application->si_head;
|
|
tmp_si_assignment = si->assigned_sis;
|
|
} else {
|
|
tmp_si_assignment = si_assignment->next;
|
|
if (tmp_si_assignment == NULL) {
|
|
si = si_assignment->si->next;
|
|
if (si == NULL) {
|
|
return NULL;
|
|
} else {
|
|
tmp_si_assignment = si->assigned_sis;
|
|
}
|
|
} else {
|
|
si = tmp_si_assignment->si;
|
|
}
|
|
}
|
|
|
|
for (; si != NULL; si = si->next) {
|
|
if (tmp_si_assignment == NULL && si != NULL) {
|
|
tmp_si_assignment = si->assigned_sis;
|
|
}
|
|
for (; tmp_si_assignment != NULL;
|
|
tmp_si_assignment = tmp_si_assignment->next) {
|
|
|
|
if (name_match (&tmp_si_assignment->name, &dn)) {
|
|
return tmp_si_assignment;
|
|
}
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void amf_su_foreach_si_assignment (
|
|
struct amf_su *su,
|
|
void (*foreach_fn)(struct amf_su *su,
|
|
struct amf_si_assignment *si_assignment))
|
|
{
|
|
struct amf_si_assignment *si_assignment;
|
|
|
|
assert (foreach_fn != NULL);
|
|
si_assignment = amf_su_get_next_si_assignment (su, NULL);
|
|
while (si_assignment != NULL) {
|
|
foreach_fn (su, si_assignment);
|
|
si_assignment = amf_su_get_next_si_assignment (su, si_assignment);
|
|
}
|
|
}
|
|
|
|
|
|
int amf_su_get_saAmfSUNumCurrActiveSIs(struct amf_su *su)
|
|
{
|
|
int cnt = 0;
|
|
struct amf_si_assignment *si_assignment;
|
|
|
|
si_assignment = amf_su_get_next_si_assignment (su, NULL);
|
|
while (si_assignment != NULL) {
|
|
if (su->sg->avail_state == SG_AC_AssigningOnRequest &&
|
|
si_assignment->requested_ha_state == SA_AMF_HA_ACTIVE) {
|
|
cnt++;
|
|
} else {
|
|
if (si_assignment->saAmfSISUHAState == SA_AMF_HA_ACTIVE) {
|
|
cnt++;
|
|
}
|
|
}
|
|
si_assignment = amf_su_get_next_si_assignment (su, si_assignment);
|
|
}
|
|
|
|
return cnt;
|
|
}
|
|
|
|
|
|
int amf_su_get_saAmfSUNumCurrStandbySIs(struct amf_su *su)
|
|
{
|
|
int cnt = 0;
|
|
struct amf_si_assignment *si_assignment;
|
|
|
|
si_assignment = amf_su_get_next_si_assignment (su, NULL);
|
|
while (si_assignment != NULL) {
|
|
if (su->sg->avail_state == SG_AC_AssigningOnRequest &&
|
|
si_assignment->requested_ha_state == SA_AMF_HA_STANDBY) {
|
|
cnt++;
|
|
} else {
|
|
if (si_assignment->saAmfSISUHAState == SA_AMF_HA_STANDBY) {
|
|
cnt++;
|
|
}
|
|
}
|
|
si_assignment = amf_su_get_next_si_assignment (su, si_assignment);
|
|
}
|
|
|
|
return cnt;
|
|
}
|
|
|
|
SaAmfReadinessStateT amf_su_get_saAmfSUReadinessState (struct amf_su *su)
|
|
{
|
|
if ((su->saAmfSUOperState == SA_AMF_OPERATIONAL_ENABLED) &&
|
|
((su->saAmfSUPresenceState == SA_AMF_PRESENCE_INSTANTIATED) ||
|
|
(su->saAmfSUPresenceState == SA_AMF_PRESENCE_RESTARTING))) {
|
|
|
|
return SA_AMF_READINESS_IN_SERVICE;
|
|
} else if (su->saAmfSUOperState == SA_AMF_OPERATIONAL_ENABLED) {
|
|
return SA_AMF_READINESS_STOPPING;
|
|
} else {
|
|
return SA_AMF_READINESS_OUT_OF_SERVICE;
|
|
}
|
|
}
|