mirror_corosync/exec/amfsi.c
Hans Feldt 62bc733e2e - Error escalation improved, SU failover recovery action added
- Most runtime attributes in the inf. model calculated in runtime from
  more fundamental information. (improves consistency)
- sg_assign_si can now recalculate workloads considering existing
  assignments
- Logging improvements, similar to what is required as notification in
  AMF spec.
- CLC-CLI INSTANTIATE now exits aisexec when it fails (should later be
  sent as an NTF alarm)
- CLC-CLI CLEANUP correctly handles already terminated processes
- testamf1.c printouts removed for normal operation
- Iterator functions for SI/CSI assignments 



git-svn-id: http://svn.fedorahosted.org/svn/corosync/trunk@1108 fd59a12c-fef9-0310-b244-a6a79926bd2f
2006-07-07 08:04:01 +00:00

464 lines
15 KiB
C

/** @file amfsi.c
*
* Copyright (c) 2006 Ericsson AB.
* Author: Hans Feldt
* - Refactoring of code into several AMF files
* Author: Anders Eriksson, Lars Holm
* - Component/SU restart, SU failover
*
* All rights reserved.
*
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* AMF Workload related classes Implementation
*
* This file contains functions for handling :
* - AMF service instances(SI)
* - AMF SI Dependency
* - AMF SI Ranked SU
* - AMF SI Assignment
* - AMF component service instances (CSI)
* - AMF CSI Assignment
* - AMF CSI Type
* - AMF CSI Attribute
* The file can be viewed as the implementation of the classes listed above
* as described in SAI-Overview-B.02.01. The SA Forum specification
* SAI-AIS-AMF-B.02.01 has been used as specification of the behaviour
* and is referred to as 'the spec' below.
*
* The functions in this file are responsible for:
* - calculating and storing an SI_dependency_level integer per SI
* - calculating and storing a csi_dependency_level integer per CSI
* - on request change HA state of an SI or CSI in such a way that the
* requirements regarding SI -> SI dependencies (paragraphs 3.9.1.1 and
* 3.9.1.2) and CSI -> CSI dependencies (paragraph 3.9.1.3) are fully
* respected
*
* The si_dependency_level is an attribute calculated at init (in the future
* also at reconfiguration) which indicates dependencies between SIs as
* an integer. The si_dependency level indicates to which extent an SI depends
* on other SIs such that an SI that depends on no other SI is on
* si_dependecy_level == 1, an SI that depends only on an SI on
* si_dependency_level == 1 is on si_dependency-level == 2.
* An SI that depends on several SIs gets a si_dependency_level that is one
* unit higher than the SI with the highest si_dependency_level it depends on.
*
* The csi_dependency_level attribute works the same way.
*
* According to paragraph 3.9.1 of the spec, a change to or from the ACTIVE
* HA state is not always allowed without first deactivate dependent SI and CSI
* assignments. Dependencies between CSIs are absolute while an SI that depends
* on another SI may tolerate that the SI on which it depends is inactive for a
* configurable time (the tolerance time). The consequence of this is that a
* request to change the SI state may require a sequence of requests to
* components to assume a new HA state for a CSI-assignment and to guarantee
* the dependency rules, the active response from the component has to be
* awaited before next HA state can be set.
*
* This file implements an SI state machine that fully implements these rules.
* This state machine is called SI Dependency Control State Machine (dcsm)
* and has the following states:
* - DEACTIVATED (there is no SI-assignment with active HA state)
* - ACTIVATING (a request to set the ACTIVE HA state has been received and
* setting ACTIVE HA states to the appropriate components are
* in progress)
* - ACTIVATED (there is at least one SI-assignment with the ACTIVE HA-state)
* - DEACTIVATING (a request to de-activate an SI or only a specific CSI
* within an SI has been received and setting the QUISCED
* HA states to the appropriate components are in progress)
* - DEPENDENCY_DEACTIVATING (the SI-SI dependency tolerance timer has expired
* and setting the QUISCED HA states to the
* appropriate components are in progress)
* - DEPENDENCY_DEACTIVATED (as state DEACTIVATED but will automatically
* transition to state ACTIVATING when the
* dependency problem is solved, i.e. the SI on
* which it depends has re-assumed the ACTIVE HA
* state)
* - SETTING (a request to change the HA state when neither the existing
* nor the requested state is ACTIVE)
*
* This file also implements:
* - SI: Assignment state (for report purposes)
* - SI Assignment: HA state
* - CSI Assignment: HA state
*
*/
#include <assert.h>
#include <stdio.h>
#include "amf.h"
#include "print.h"
#include "util.h"
#include "aispoll.h"
#include "main.h"
/**
* Check if any CSI assignment belonging to SU has the requested
* state.
* @param su
* @param hastate
*
* @return int
*/
static int any_csi_has_hastate_in_su (struct amf_su *su, SaAmfHAStateT hastate)
{
struct amf_comp *component;
struct amf_csi_assignment *csi_assignment;
int exist = 0;
for (component = su->comp_head; component != NULL;
component = component->next) {
csi_assignment = amf_comp_get_next_csi_assignment (component, NULL);
while (csi_assignment != NULL) {
if (csi_assignment->saAmfCSICompHAState == hastate) {
exist = 1;
goto done;
}
csi_assignment =
amf_comp_get_next_csi_assignment (component, csi_assignment);
}
}
done:
return exist;
}
/**
* Check if all CSI assignments belonging to a
* an SI assignemnt has the requested state.
* @param su
* @param hastate
*
* @return int
*/
static int all_csi_has_hastate_for_si (
struct amf_si_assignment *si_assignment, SaAmfHAStateT hastate)
{
struct amf_comp *component;
struct amf_csi_assignment *tmp_csi_assignment;
int all = 1;
for (component = si_assignment->su->comp_head; component != NULL;
component = component->next) {
tmp_csi_assignment = amf_comp_get_next_csi_assignment (component, NULL);
while (tmp_csi_assignment != NULL) {
if ((tmp_csi_assignment->si_assignment == si_assignment) &&
(tmp_csi_assignment->saAmfCSICompHAState != hastate)) {
all = 0;
goto done;
}
tmp_csi_assignment =
amf_comp_get_next_csi_assignment (component, tmp_csi_assignment);
}
}
done:
return all;
}
/**
* Implements table 6 in 3.3.2.4
* TODO: active & standby is not correct calculated acc. to
* table. This knowledge is e.g. used in assign_si_assumed_cbfn
* (sg.c)
* @param csi_assignment
*/
static void set_si_ha_state (struct amf_csi_assignment *csi_assignment)
{
SaAmfHAStateT old_ha_state =
csi_assignment->si_assignment->saAmfSISUHAState;
SaAmfAssignmentStateT old_assigment_state =
amf_si_get_saAmfSIAssignmentState (csi_assignment->csi->si);
if (all_csi_has_hastate_for_si (
csi_assignment->si_assignment, SA_AMF_HA_ACTIVE)) {
csi_assignment->si_assignment->saAmfSISUHAState = SA_AMF_HA_ACTIVE;
}
if (all_csi_has_hastate_for_si (
csi_assignment->si_assignment, SA_AMF_HA_STANDBY)) {
csi_assignment->si_assignment->saAmfSISUHAState = SA_AMF_HA_STANDBY;
}
if (any_csi_has_hastate_in_su (
csi_assignment->comp->su, SA_AMF_HA_QUIESCING)) {
csi_assignment->si_assignment->saAmfSISUHAState = SA_AMF_HA_QUIESCING;
}
if (any_csi_has_hastate_in_su (
csi_assignment->comp->su, SA_AMF_HA_QUIESCED)) {
csi_assignment->si_assignment->saAmfSISUHAState = SA_AMF_HA_QUIESCED;
}
/* log changes to HA state */
if (old_ha_state != csi_assignment->si_assignment->saAmfSISUHAState) {
log_printf (LOG_NOTICE, "SU HA state changed to '%s' for:\n"
"\t\tSI '%s', SU '%s'",
amf_ha_state (csi_assignment->si_assignment->saAmfSISUHAState),
csi_assignment->si_assignment->si->name.value,
csi_assignment->si_assignment->name.value);
}
/* log changes to assignment state */
if (old_assigment_state !=
amf_si_get_saAmfSIAssignmentState (csi_assignment->csi->si)) {
log_printf (LOG_NOTICE, "SI Assignment state changed to '%s' for:\n"
"\t\tSI '%s', SU '%s'",
amf_assignment_state (
amf_si_get_saAmfSIAssignmentState (csi_assignment->csi->si)),
csi_assignment->si_assignment->si->name.value,
csi_assignment->si_assignment->name.value);
}
}
char *amf_csi_dn_make (struct amf_csi *csi, SaNameT *name)
{
int i = snprintf((char*) name->value, SA_MAX_NAME_LENGTH,
"safCsi=%s,safSi=%s,safApp=%s",
csi->name.value, csi->si->name.value,
csi->si->application->name.value);
assert (i <= SA_MAX_NAME_LENGTH);
name->length = i;
return(char *)name->value;
}
void amf_si_init (void)
{
log_init ("AMF");
}
void amf_si_comp_set_ha_state_done (
struct amf_si *si, struct amf_csi_assignment *csi_assignment)
{
ENTER ("'%s', '%s'", si->name.value, csi_assignment->csi->name.value);
set_si_ha_state (csi_assignment);
assert (csi_assignment->si_assignment->assumed_callback_fn != NULL);
/*
* Report to caller when the requested SI assignment state is
* confirmed.
*/
if (csi_assignment->si_assignment->requested_ha_state ==
csi_assignment->si_assignment->saAmfSISUHAState) {
csi_assignment->si_assignment->assumed_callback_fn (
csi_assignment->si_assignment, 0);
csi_assignment->si_assignment->assumed_callback_fn = NULL;
}
}
void amf_si_activate (
struct amf_si *si,
void (*activated_callback_fn)(struct amf_si *si, int result))
{
struct amf_csi *csi;
ENTER ("'%s'", si->name.value);
for (csi = si->csi_head; csi != NULL; csi = csi->next) {
struct amf_csi_assignment *csi_assignment;
for (csi_assignment = csi->assigned_csis; csi_assignment != NULL;
csi_assignment = csi_assignment->next) {
csi_assignment->si_assignment->requested_ha_state =
SA_AMF_HA_ACTIVE;
/*
* TODO: only active assignments should be set when dependency
* levels are used.
*/
csi_assignment->requested_ha_state = SA_AMF_HA_ACTIVE;
amf_comp_hastate_set (csi_assignment->comp, csi_assignment);
}
}
}
void amf_si_comp_set_ha_state_failed (
struct amf_si *si, struct amf_csi_assignment *csi_assignment)
{
ENTER ("");
assert (0);
}
static void timer_function_ha_state_assumed (void *_si_assignment)
{
struct amf_si_assignment *si_assignment = _si_assignment;
ENTER ("");
si_assignment->saAmfSISUHAState = si_assignment->requested_ha_state;
si_assignment->assumed_callback_fn (si_assignment, 0);
}
void amf_si_ha_state_assume (
struct amf_si_assignment *si_assignment,
void (*assumed_ha_state_callback_fn)(struct amf_si_assignment *si_assignment,
int result))
{
struct amf_csi_assignment *csi_assignment;
struct amf_csi *csi;
int csi_assignment_cnt = 0;
int hastate_set_done_cnt = 0;
ENTER ("SI '%s' SU '%s' state %s", si_assignment->si->name.value,
si_assignment->su->name.value,
amf_ha_state (si_assignment->requested_ha_state));
si_assignment->assumed_callback_fn = assumed_ha_state_callback_fn;
for (csi = si_assignment->si->csi_head; csi != NULL; csi = csi->next) {
for (csi_assignment = csi->assigned_csis; csi_assignment != NULL;
csi_assignment = csi_assignment->next) {
/*
* If the CSI assignment and the SI assignment belongs to the
* same SU, we have a match and can request the component to
* change HA state.
*/
if (name_match (&csi_assignment->comp->su->name,
&si_assignment->su->name) &&
(csi_assignment->saAmfCSICompHAState !=
si_assignment->requested_ha_state)) {
csi_assignment_cnt++;
csi_assignment->requested_ha_state =
si_assignment->requested_ha_state;
amf_comp_hastate_set (csi_assignment->comp, csi_assignment);
if (csi_assignment->saAmfCSICompHAState ==
csi_assignment->requested_ha_state) {
hastate_set_done_cnt++;
}
}
}
}
/*
* If the SU has only one component which is the faulty one, we
* will not get an asynchronous response from the component.
* This response (amf_si_comp_set_ha_state_done) is used to do
* the next state transition. The asynchronous response is
* simulated using a timeout instead.
*/
if (csi_assignment_cnt == hastate_set_done_cnt) {
poll_timer_handle handle;
poll_timer_add (aisexec_poll_handle,
0,
si_assignment,
timer_function_ha_state_assumed,
&handle);
}
}
/**
* Get number of active assignments for the specified SI
* @param si
*
* @return int
*/
int amf_si_get_saAmfSINumCurrActiveAssignments (struct amf_si *si)
{
int cnt = 0;
struct amf_si_assignment *si_assignment;
for (si_assignment = si->assigned_sis; si_assignment != NULL;
si_assignment = si_assignment->next) {
if (si_assignment->saAmfSISUHAState == SA_AMF_HA_ACTIVE) {
cnt++;
}
}
return cnt;
}
int amf_si_get_saAmfSINumCurrStandbyAssignments (struct amf_si *si)
{
int cnt = 0;
struct amf_si_assignment *si_assignment;
for (si_assignment = si->assigned_sis; si_assignment != NULL;
si_assignment = si_assignment->next) {
if (si_assignment->saAmfSISUHAState == SA_AMF_HA_STANDBY) {
cnt++;
}
}
return cnt;
}
SaAmfAssignmentStateT amf_si_get_saAmfSIAssignmentState (struct amf_si *si)
{
if ((amf_si_get_saAmfSINumCurrActiveAssignments (si) ==
si->saAmfSIPrefActiveAssignments) &&
(amf_si_get_saAmfSINumCurrStandbyAssignments (si) ==
si->saAmfSIPrefStandbyAssignments)) {
return SA_AMF_ASSIGNMENT_FULLY_ASSIGNED;
} else if (amf_si_get_saAmfSINumCurrActiveAssignments (si) == 0) {
return SA_AMF_ASSIGNMENT_UNASSIGNED;
} else {
return SA_AMF_ASSIGNMENT_PARTIALLY_ASSIGNED;
}
}
void amf_csi_delete_assignments (struct amf_csi *csi, struct amf_su *su)
{
struct amf_csi_assignment *csi_assignment;
ENTER ("'%s'", su->name.value);
/*
* TODO: this only works for n+m where each CSI list has only
* two assignments, one active and one standby.
* TODO: use DN instead
*/
if (csi->assigned_csis->comp->su == su) {
csi_assignment = csi->assigned_csis;
csi->assigned_csis = csi_assignment->next;
} else {
csi_assignment = csi->assigned_csis->next;
csi->assigned_csis->next = NULL;
assert (csi_assignment != NULL && csi_assignment->comp->su == su);
}
assert (csi_assignment != NULL);
free (csi_assignment);
}