mirror_corosync/exec/amfcomp.c
Hans Feldt 62bc733e2e - Error escalation improved, SU failover recovery action added
- Most runtime attributes in the inf. model calculated in runtime from
  more fundamental information. (improves consistency)
- sg_assign_si can now recalculate workloads considering existing
  assignments
- Logging improvements, similar to what is required as notification in
  AMF spec.
- CLC-CLI INSTANTIATE now exits aisexec when it fails (should later be
  sent as an NTF alarm)
- CLC-CLI CLEANUP correctly handles already terminated processes
- testamf1.c printouts removed for normal operation
- Iterator functions for SI/CSI assignments 



git-svn-id: http://svn.fedorahosted.org/svn/corosync/trunk@1108 fd59a12c-fef9-0310-b244-a6a79926bd2f
2006-07-07 08:04:01 +00:00

1691 lines
48 KiB
C

/** @file amfcomp.c
*
* Copyright (c) 2002-2006 MontaVista Software, Inc.
* Author: Steven Dake (sdake@mvista.com)
*
* Copyright (c) 2006 Ericsson AB.
* Author: Hans Feldt
* - Introduced AMF B.02 information model
* - Use DN in API and multicast messages
* - (Re-)Introduction of event based multicast messages
* - Refactoring of code into several AMF files
* Author: Anders Eriksson, Lars Holm
* - Component/SU restart, SU failover
*
* All rights reserved.
*
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* AMF Component Class Implementation
*
* This file contains functions for handling AMF-components. It can be
* viewed as the implementation of the AMF Component class (called comp)
* as described in SAI-Overview-B.02.01. The SA Forum specification
* SAI-AIS-AMF-B.02.01 has been used as specification of the behaviour
* and is referred to as 'the spec' below.
*
* The functions in this file are responsible for handling the following
* types of components:
* - sa-aware components
* (proxy or non-proxy)
* - non-sa-aware components
* (non-proxied non-pre-instantiable and
* proxied pre-instantiable or not pre-instantiable)
*
* The functions of this file are also responsible for:
* - handling all communication with the AMF API library supported by the
* AMF main function, see below
* - instantiating and terminating components upon request
* - updating the ha-state of the CSI-assignment related to the component
* - initiating an error report to the parent SU
* - handling all run time attributes of the AMF Component; all cached
* attributes are stored as variables and sent to the IMM service
* upon the changes described in the specification.
*
* Incoming events from the AMF library is primarily handled by the AMF
* main function which:
* <1> transforms the incoming event to an event that is multicast
* to all AMF service instances in the cluster
* <2> the event received from multicast is tranformed to a function
* call of the external interface of comp
*
* Outgoing events to the AMF library is handled by static functions called
* lib_<api callback function name>_request which creates an invocation handle
* unique to this call and stores any variables comp want to associate to the
* call back so it is possible to pick them up when the component responses
* through the API. Finally, a timer is started to supervise that a response
* really is received.
*
* Comp initiates error reports to its parent SU in the cases described in
* paragraph 3.3.2.2 in the spec. Comp delegates all actions to SU except
* - it stores the received or pre-configured recommended recovery
* action
* - sets the operational state to DISABLED unless the
* recommended recovery action was SA_AMF_COMP_RESTART. (In this case
* SU or node may set operational state of the component later on
* when it has been fully investigated that no escallation to a
* more powerful recovery action shall be made.)
*
* Comp contains the following state machines:
* - presence state machine (PRSM)
* - operational state machine (OPSM)
* - readiness state machine (RESM)
* - ha state per component service instance (CSI)
*
* The behaviour of comp is mainly controlled by the presence state machine,
* while the operational and readiness state machines are used only to report
* information to its parent (service unit SU) and management (IMM). Comp does
* not control the logic to assign a CSI to itself and neither to decide the
* value of the ha-state but only to faciltate the communication of the CSI
* set (or remove) order and to evaluate the response from the library.
*
* The presence state machine implements all the states described in the
* specification.
* The '-ING' states of PRSM are designed as composite states (UML terminology).
* Being a composite state means that the state contains substates.
* PRSM composite states are:
* - TERMINATING (TERMINATE and CLEANUP)
* - INSTANTIATING (INSTANTIATE, INSTANTIATEDELAY and CLEANUP)
* - RESTARTING (TERMINATE, INSTANTIATE, INSTANTIATEDELAY and CLEANUP)
*
* The reason for introducing these composite states is to make it easier to
* understand the implementation of the behaviour described in paragraphs
* 4.1 - 4.6 in the spec. The comp PRSM implements all the logic described
* except for node reboot, which is handled by the AMF Node class.
* Also PRSM reports all changes of state to its parent SU.
*
*/
#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <assert.h>
#include "../include/saAis.h"
#include "../include/saAmf.h"
#include "../include/ipc_gen.h"
#include "../include/ipc_amf.h"
#include "totempg.h"
#include "main.h"
#include "ipc.h"
#include "service.h"
#include "util.h"
#include "amf.h"
#include "print.h"
enum clc_command_run_operation_type {
CLC_COMMAND_RUN_OPERATION_TYPE_INSTANTIATE = 1,
CLC_COMMAND_RUN_OPERATION_TYPE_TERMINATE = 2,
CLC_COMMAND_RUN_OPERATION_TYPE_CLEANUP = 3
};
struct clc_command_run_data {
struct amf_comp *comp;
enum clc_command_run_operation_type type;
void (*completion_callback) (void *context);
};
struct clc_interface {
int (*instantiate) (struct amf_comp *comp);
int (*terminate) (struct amf_comp *comp);
int (*cleanup) (struct amf_comp *comp);
};
struct csi_remove_callback_data {
struct amf_csi *csi;
};
struct component_terminate_callback_data {
struct amf_comp *comp;
};
static void comp_presence_state_set (
struct amf_comp *comp,
SaAmfPresenceStateT presence_state);
static int clc_cli_instantiate (struct amf_comp *comp);
static int clc_instantiate_callback (struct amf_comp *comp);
static int clc_csi_set_callback (struct amf_comp *comp);
static int clc_cli_terminate (struct amf_comp *comp);
static int lib_comp_terminate_request (struct amf_comp *comp);
static int clc_csi_remove_callback (struct amf_comp *comp);
static int clc_cli_cleanup (struct amf_comp *comp);
static int clc_cli_cleanup_local (struct amf_comp *comp);
static void healthcheck_deactivate (struct amf_healthcheck *healthcheck_active);
static void lib_healthcheck_request (struct amf_healthcheck *healthcheck);
static void timer_function_healthcheck_tmo (void *_healthcheck);
static void lib_csi_set_request (
struct amf_comp *comp,
struct amf_csi_assignment *csi_assignment);
/*
* Life cycle functions
*/
static struct clc_interface clc_interface_sa_aware = {
clc_cli_instantiate,
lib_comp_terminate_request,
clc_cli_cleanup
};
static struct clc_interface clc_interface_proxied_pre = {
clc_instantiate_callback,
lib_comp_terminate_request,
clc_cli_cleanup
};
static struct clc_interface clc_interface_proxied_non_pre = {
clc_csi_set_callback,
clc_csi_remove_callback,
clc_cli_cleanup_local
};
static struct clc_interface clc_interface_non_proxied_non_saware = {
clc_cli_instantiate,
clc_cli_terminate,
clc_cli_cleanup_local
};
static struct clc_interface *clc_interfaces[4] = {
&clc_interface_sa_aware,
&clc_interface_proxied_pre,
&clc_interface_proxied_non_pre,
&clc_interface_non_proxied_non_saware
};
struct invocation {
void *data;
int interface;
int active;
};
static struct invocation *invocation_entries = 0;
static int invocation_entries_size = 0;
static int invocation_create (
int interface,
void *data)
{
struct invocation *invocation_addr = 0;
struct invocation *invocation_temp;
int i;
int loc = 0;
for (i = 0; i < invocation_entries_size; i++) {
if (invocation_entries[i].active == 0) {
invocation_addr = &invocation_entries[i];
loc = i;
break;
}
}
if (invocation_addr == 0) {
invocation_temp = (struct invocation *)realloc (invocation_entries,
(invocation_entries_size + 1) * sizeof (struct invocation));
if (invocation_temp == 0) {
return (-1);
}
invocation_entries = invocation_temp;
invocation_addr = &invocation_entries[invocation_entries_size];
loc = invocation_entries_size;
invocation_entries_size += 1;
}
invocation_addr->interface = interface;
invocation_addr->data = data;
invocation_addr->active = 1;
return (loc);
}
static int invocation_get_and_destroy (SaUint64T invocation, int *interface,
void **data)
{
if (invocation > invocation_entries_size) {
return (-1);
}
if (invocation_entries[invocation].active == 0) {
return (-1);
}
*interface = invocation_entries[invocation].interface;
*data = invocation_entries[invocation].data;
memset (&invocation_entries[invocation], 0, sizeof (struct invocation));
return (0);
}
static int invocation_get (SaUint64T invocation, int *interface,
void **data)
{
if (invocation > invocation_entries_size) {
return (-1);
}
if (invocation_entries[invocation].active == 0) {
return (-1);
}
*interface = invocation_entries[invocation].interface;
*data = invocation_entries[invocation].data;
return (0);
}
static void invocation_destroy_by_data (void *data)
{
int i;
for (i = 0; i < invocation_entries_size; i++) {
if (invocation_entries[i].data == data) {
memset (&invocation_entries[i], 0,
sizeof (struct invocation));
break;
}
}
}
/**
* Set suspected error flag and report to SU.
*
* @param comp
* @param recommended_recovery
*/
static void report_error_suspected (
struct amf_comp *comp,
SaAmfRecommendedRecoveryT recommended_recovery)
{
comp->error_suspected = 1;
amf_su_comp_error_suspected (
comp->su, comp, recommended_recovery);
}
char *amf_comp_dn_make (struct amf_comp *comp, SaNameT *name)
{
int i = snprintf((char*) name->value, SA_MAX_NAME_LENGTH,
"safComp=%s,safSu=%s,safSg=%s,safApp=%s",
comp->name.value, comp->su->name.value,
comp->su->sg->name.value, comp->su->sg->application->name.value);
assert (i <= SA_MAX_NAME_LENGTH);
name->length = i;
return (char *)name->value;
}
#ifndef xprintf
#define xprintf(...)
#endif
static void *clc_command_run (void *context)
{
struct clc_command_run_data *clc_command_run_data =
(struct clc_command_run_data *)context;
pid_t pid;
int res;
char *argv[10];
char *envp[10];
int status;
char path[PATH_MAX];
char *cmd = 0;
char *comp_argv = 0;
char comp_name[SA_MAX_NAME_LENGTH];
int i;
ENTER_VOID();
pid = fork();
if (pid == -1) {
fprintf (stderr, "Couldn't fork process %s\n", strerror (errno));
return (0);
}
if (pid) {
xprintf ("waiting for pid %d to finish\n", pid);
waitpid (pid, &status, 0);
if (WEXITSTATUS(status) != 0) {
fprintf (stderr, "Error: CLC_CLI failed with exit status:"
" %d - %s\n", WEXITSTATUS(status),
strerror (WEXITSTATUS(status)));
/*
* TODO: remove this and handle properly later...
*/
openais_exit_error (AIS_DONE_FATAL_ERR);
}
xprintf ("process (%d) finished with %d\n", pid, status);
if (clc_command_run_data->completion_callback) {
clc_command_run_data->completion_callback (context);
}
pthread_exit(0);
}
switch (clc_command_run_data->type) {
case CLC_COMMAND_RUN_OPERATION_TYPE_INSTANTIATE:
cmd = clc_command_run_data->comp->saAmfCompInstantiateCmd;
comp_argv = clc_command_run_data->comp->saAmfCompInstantiateCmdArgv;
break;
case CLC_COMMAND_RUN_OPERATION_TYPE_TERMINATE:
cmd = clc_command_run_data->comp->saAmfCompTerminateCmd;
comp_argv = clc_command_run_data->comp->saAmfCompTerminateCmdArgv;
break;
case CLC_COMMAND_RUN_OPERATION_TYPE_CLEANUP:
cmd = clc_command_run_data->comp->saAmfCompCleanupCmd;
comp_argv = clc_command_run_data->comp->saAmfCompCleanupCmdArgv;
break;
default:
assert (0 != 1);
break;
}
/* If command is not an absolute path, search for paths in parent objects */
if (cmd[0] != '/') {
if (strlen (clc_command_run_data->comp->clccli_path)) {
sprintf (path, "%s/%s",
clc_command_run_data->comp->clccli_path, cmd);
} else if (strlen (clc_command_run_data->comp->su->clccli_path)) {
sprintf (path, "%s/%s",
clc_command_run_data->comp->su->clccli_path, cmd);
} else if (strlen (clc_command_run_data->comp->su->sg->clccli_path)) {
sprintf (path, "%s/%s",
clc_command_run_data->comp->su->sg->clccli_path, cmd);
} else if (strlen (clc_command_run_data->comp->su->sg->application->clccli_path)) {
sprintf (path, "%s/%s",
clc_command_run_data->comp->su->sg->application->clccli_path, cmd);
}
cmd = path;
}
argv[0] = cmd;
{
/* make a proper argv array */
i = 1;
char *ptrptr;
char *arg = strtok_r(comp_argv, " ", &ptrptr);
while (arg) {
argv[i] = arg;
arg = strtok_r(NULL, " ", & ptrptr);
i++;
}
}
argv[i] = NULL;
assert (i < 10);
envp[0] = comp_name;
i = snprintf(comp_name, SA_MAX_NAME_LENGTH,
"SA_AMF_COMPONENT_NAME=safComp=%s,safSu=%s,safSg=%s,safApp=%s",
clc_command_run_data->comp->name.value,
clc_command_run_data->comp->su->name.value,
clc_command_run_data->comp->su->sg->name.value,
clc_command_run_data->comp->su->sg->application->name.value);
assert (i <= SA_MAX_NAME_LENGTH);
for (i = 1; clc_command_run_data->comp->saAmfCompCmdEnv &&
clc_command_run_data->comp->saAmfCompCmdEnv[i - 1]; i++) {
envp[i] = clc_command_run_data->comp->saAmfCompCmdEnv[i - 1];
}
envp[i] = NULL;
assert (i < 10);
xprintf ("running command '%s' with environment:\n", cmd);
for (i = 0; envp[i] != NULL; i++) {
xprintf (" %s\n", envp[i]);
}
xprintf (" and argv:\n");
for (i = 0; argv[i] != NULL; i++) {
xprintf (" %s\n", argv[i]);
}
res = execve (cmd, argv, envp);
if (res == -1) {
fprintf (stderr, "Couldn't exec program %s (%s)\n",
cmd, strerror (errno));
}
assert (res != -1);
return (0);
}
/*
* Instantiate possible operations
*/
static int clc_cli_instantiate (struct amf_comp *comp)
{
int res;
pthread_t thread;
pthread_attr_t thread_attr; /* thread attribute */
struct clc_command_run_data *clc_command_run_data;
ENTER("comp '%s'\n", getSaNameT (&comp->name));
clc_command_run_data = malloc (sizeof (struct clc_command_run_data));
if (clc_command_run_data == NULL) {
openais_exit_error (AIS_DONE_OUT_OF_MEMORY);
}
clc_command_run_data->comp = comp;
clc_command_run_data->type = CLC_COMMAND_RUN_OPERATION_TYPE_INSTANTIATE;
clc_command_run_data->completion_callback = NULL;
pthread_attr_init (&thread_attr);
pthread_attr_setdetachstate (&thread_attr, PTHREAD_CREATE_DETACHED);
res = pthread_create (&thread, &thread_attr, clc_command_run,
(void *)clc_command_run_data);
if (res != 0) {
log_printf (LOG_LEVEL_ERROR, "pthread_create failed: %d", res);
}
// TODO error code from pthread_create
return (res);
}
static int clc_instantiate_callback (struct amf_comp *comp)
{
ENTER("comp %s\n", getSaNameT (&comp->name));
return (0);
}
static int clc_csi_set_callback (struct amf_comp *comp)
{
ENTER("comp %s\n", getSaNameT (&comp->name));
return (0);
}
/*
* Terminate possible operations
*/
static int clc_cli_terminate (struct amf_comp *comp)
{
ENTER("comp %s\n", getSaNameT (&comp->name));
return (0);
}
/**
* Request component to terminate itself
* @param comp
*
* @return int
*/
static int lib_comp_terminate_request (struct amf_comp *comp)
{
struct res_lib_amf_componentterminatecallback res_lib;
struct component_terminate_callback_data *component_terminate_callback_data;
ENTER("comp %s\n", getSaNameT (&comp->name));
res_lib.header.id = MESSAGE_RES_AMF_COMPONENTTERMINATECALLBACK;
res_lib.header.size = sizeof (struct res_lib_amf_componentterminatecallback);
res_lib.header.error = SA_AIS_OK;
memcpy (&res_lib.compName, &comp->name, sizeof (SaNameT));
component_terminate_callback_data =
malloc (sizeof (struct component_terminate_callback_data));
if (component_terminate_callback_data == NULL) {
openais_exit_error (AIS_DONE_OUT_OF_MEMORY);
}
component_terminate_callback_data->comp = comp;
res_lib.invocation =
invocation_create (
AMF_RESPONSE_COMPONENTTERMINATECALLBACK,
component_terminate_callback_data);
openais_conn_send_response (
openais_conn_partner_get (comp->conn),
&res_lib,
sizeof (struct res_lib_amf_componentterminatecallback));
return (0);
}
static int clc_csi_remove_callback (struct amf_comp *comp)
{
dprintf ("clc_tcsi_remove_callback\n");
return (0);
}
/*
* Clean up completed
*/
static void mcast_cleanup_completion_event (void *context)
{
struct clc_command_run_data *clc_command_run_data =
(struct clc_command_run_data *)context;
struct req_exec_amf_clc_cleanup_completed req;
struct iovec iovec;
TRACE2("CLC cleanup done for '%s'",
clc_command_run_data->comp->name.value);
req.header.size = sizeof (struct req_exec_amf_clc_cleanup_completed);
req.header.id = SERVICE_ID_MAKE (AMF_SERVICE,
MESSAGE_REQ_EXEC_AMF_CLC_CLEANUP_COMPLETED);
amf_comp_dn_make (clc_command_run_data->comp, &req.compName);
iovec.iov_base = (char *)&req;
iovec.iov_len = sizeof (req);
assert (totempg_groups_mcast_joined (openais_group_handle,
&iovec, 1, TOTEMPG_AGREED) == 0);
}
/*
* Cleanup possible operations
*/
static int clc_cli_cleanup (struct amf_comp *comp)
{
int res;
pthread_t thread;
pthread_attr_t thread_attr; /* thread attribute */
struct clc_command_run_data *clc_command_run_data;
dprintf ("clc_cli_cleanup\n");
clc_command_run_data = malloc (sizeof (struct clc_command_run_data));
if (clc_command_run_data == NULL) {
openais_exit_error (AIS_DONE_OUT_OF_MEMORY);
}
clc_command_run_data->comp = comp;
clc_command_run_data->type = CLC_COMMAND_RUN_OPERATION_TYPE_CLEANUP;
clc_command_run_data->completion_callback = mcast_cleanup_completion_event;
pthread_attr_init (&thread_attr);
pthread_attr_setdetachstate (&thread_attr, PTHREAD_CREATE_DETACHED);
res = pthread_create (&thread, &thread_attr, clc_command_run,
(void *)clc_command_run_data);
if (res != 0) {
log_printf (LOG_LEVEL_ERROR, "pthread_create failed: %d", res);
}
// TODO error code from pthread_create
return (res);
}
static int clc_cli_cleanup_local (struct amf_comp *comp)
{
dprintf ("clc_cli_cleanup_local\n");
return (0);
}
#if 0
static int clc_terminate (struct amf_comp *comp)
{
int res;
dprintf ("clc terminate for comp %s\n", getSaNameT (&comp->name));
assert (0);
operational_state_comp_set (comp, SA_AMF_OPERATIONAL_DISABLED);
comp_presence_state_set (comp, SA_AMF_PRESENCE_TERMINATING);
res = clc_interfaces[comp->comptype]->terminate (comp);
return (0);
}
#endif
struct amf_healthcheck *amf_comp_find_healthcheck (
struct amf_comp *comp, SaAmfHealthcheckKeyT *key)
{
struct amf_healthcheck *healthcheck;
struct amf_healthcheck *ret_healthcheck = 0;
if (key == NULL) {
return NULL;
}
for (healthcheck = comp->healthcheck_head;
healthcheck != NULL;
healthcheck = healthcheck->next) {
if (memcmp (key, &healthcheck->safHealthcheckKey,
sizeof (SaAmfHealthcheckKeyT)) == 0) {
ret_healthcheck = healthcheck;
break;
}
}
return (ret_healthcheck);
}
struct amf_comp *amf_comp_create(struct amf_su *su)
{
struct amf_comp *comp = calloc (1, sizeof (struct amf_comp));
if (comp == NULL) {
openais_exit_error(AIS_DONE_OUT_OF_MEMORY);
}
comp->next = su->comp_head;
su->comp_head = comp;
comp->su = su;
comp->saAmfCompOperState = SA_AMF_OPERATIONAL_DISABLED;
comp->saAmfCompPresenceState = SA_AMF_PRESENCE_UNINSTANTIATED;
comp->saAmfCompNumMaxInstantiateWithoutDelay = 2;
comp->saAmfCompNumMaxAmStartAttempt = 2;
comp->saAmfCompNumMaxAmStopAttempt = 2;
return comp;
}
struct amf_comp *amf_comp_find (struct amf_cluster *cluster, SaNameT *name)
{
struct amf_application *app;
struct amf_sg *sg;
struct amf_su *su;
struct amf_comp *comp = NULL;
char *app_name;
char *sg_name;
char *su_name;
char *comp_name;
char *ptrptr;
char *buf;
/* malloc new buffer since strtok_r writes to its first argument */
buf = malloc (name->length + 1);
memcpy (buf, name->value,name ->length);
comp_name = strtok_r(buf, ",", &ptrptr);
su_name = strtok_r(NULL, ",", &ptrptr);
sg_name = strtok_r(NULL, ",", &ptrptr);
app_name = strtok_r(NULL, ",", &ptrptr);
if (comp_name == NULL || su_name == NULL ||
sg_name == NULL || app_name == NULL) {
goto end;
}
comp_name += 8;
su_name += 6;
sg_name += 6;
app_name += 7;
for (app = cluster->application_head; app != NULL; app = app->next) {
if (strncmp (app_name,
(char*)app->name.value, app->name.length) == 0) {
for (sg = app->sg_head; sg != NULL; sg = sg->next) {
if (strncmp (sg_name, (char*)sg->name.value,
sg->name.length) == 0) {
for (su = sg->su_head; su != NULL; su = su->next) {
if (strncmp (su_name, (char*)su->name.value,
su->name.length) == 0) {
for (comp = su->comp_head;
comp != NULL;
comp = comp->next) {
if (strncmp (comp_name,
(char*)comp->name.value,
comp->name.length) == 0) {
goto end;
}
}
}
}
}
}
}
}
end:
free (buf);
return comp;
}
void amf_comp_healthcheck_deactivate (struct amf_comp *comp)
{
struct amf_healthcheck *healthcheck;
if (!amf_su_is_local (comp->su))
return;
ENTER ("'%s'\n", getSaNameT (&comp->name));
for (healthcheck = comp->healthcheck_head;
healthcheck != NULL;
healthcheck = healthcheck->next) {
if (healthcheck->active) {
healthcheck_deactivate (healthcheck);
}
}
}
static void comp_ha_state_set ( struct amf_comp *comp,
struct amf_csi_assignment *csi_assignment,
SaAmfHAStateT ha_state)
{
/* set confirmed HA state */
csi_assignment->saAmfCSICompHAState = ha_state;
TRACE1 ("Setting comp '%s', SU '%s' CSI '%s', HA state: %s\n",
comp->name.value, comp->su->name.value,
csi_assignment->csi->name.value,
amf_ha_state (csi_assignment->saAmfCSICompHAState));
amf_si_comp_set_ha_state_done (csi_assignment->csi->si, csi_assignment);
}
static void comp_presence_state_set (struct amf_comp *comp,
SaAmfPresenceStateT presence_state)
{
comp->saAmfCompPresenceState = presence_state;
TRACE1 ("Setting comp '%s', SU '%s' presence state: %s\n",
comp->name.value, comp->su->name.value,
amf_presence_state (comp->saAmfCompPresenceState));
amf_su_comp_state_changed (
comp->su, comp, SA_AMF_PRESENCE_STATE, presence_state);
}
#if 0
static void lib_csi_remove_request (struct amf_comp *comp,
struct amf_csi *csi)
{
struct res_lib_amf_csiremovecallback res_lib_amf_csiremovecallback;
struct csi_remove_callback_data *csi_remove_callback_data;
dprintf ("\t%s\n", getSaNameT (&comp->name));
res_lib_amf_csiremovecallback.header.id = MESSAGE_RES_AMF_CSIREMOVECALLBACK;
res_lib_amf_csiremovecallback.header.size = sizeof (struct res_lib_amf_csiremovecallback);
res_lib_amf_csiremovecallback.header.error = SA_AIS_OK;
csi_remove_callback_data = malloc (sizeof (struct csi_remove_callback_data));
assert (csi_remove_callback_data); // TODO failure here of malloc
csi_remove_callback_data->csi = csi;
res_lib_amf_csiremovecallback.invocation =
invocation_create (
AMF_RESPONSE_CSIREMOVECALLBACK,
csi_remove_callback_data);
memcpy (&res_lib_amf_csiremovecallback.compName,
&comp->name, sizeof (SaNameT));
memcpy (&res_lib_amf_csiremovecallback.csiName,
&csi->name, sizeof (SaNameT));
res_lib_amf_csiremovecallback.csiFlags = 0;
openais_conn_send_response (
openais_conn_partner_get (comp->conn),
&res_lib_amf_csiremovecallback,
sizeof (struct res_lib_amf_csiremovecallback));
}
#endif
struct amf_csi_assignment *amf_comp_get_next_csi_assignment (
struct amf_comp *component, const struct amf_csi_assignment *csi_assignment)
{
struct amf_si *si;
struct amf_csi *csi;
struct amf_csi_assignment *tmp_csi_assignment;
SaNameT dn;
amf_comp_dn_make (component, &dn);
if (csi_assignment == NULL) {
si = component->su->sg->application->si_head;
csi = si->csi_head;
tmp_csi_assignment = csi->assigned_csis;
} else {
tmp_csi_assignment = csi_assignment->next;
if (tmp_csi_assignment == NULL) {
csi = csi_assignment->csi->next;
if (csi == NULL) {
si = csi_assignment->csi->si->next;
if (si == NULL) {
return NULL;
} else {
csi = si->csi_head;
tmp_csi_assignment = csi->assigned_csis;
}
} else {
si = csi->si;
tmp_csi_assignment = csi->assigned_csis;
}
} else {
csi = tmp_csi_assignment->csi;
si = csi->si;
}
}
for (; si != NULL; si = si->next) {
if (tmp_csi_assignment == NULL && csi == NULL && si != NULL) {
csi = si->csi_head;
tmp_csi_assignment = csi->assigned_csis;
}
for (; csi != NULL; csi = csi->next) {
if (tmp_csi_assignment == NULL && csi != NULL) {
tmp_csi_assignment = csi->assigned_csis;
}
for (; tmp_csi_assignment != NULL;
tmp_csi_assignment = tmp_csi_assignment->next) {
if (name_match (&tmp_csi_assignment->name, &dn)) {
return tmp_csi_assignment;
}
}
}
}
return NULL;
}
void amf_comp_foreach_csi_assignment (
struct amf_comp *component,
void (*foreach_fn)(struct amf_comp *component,
struct amf_csi_assignment *csi_assignment))
{
struct amf_csi_assignment *csi_assignment;
assert (foreach_fn != NULL);
csi_assignment = amf_comp_get_next_csi_assignment (component, NULL);
while (csi_assignment != NULL) {
foreach_fn (component, csi_assignment);
csi_assignment = amf_comp_get_next_csi_assignment (
component, csi_assignment);
}
}
static struct amf_csi_assignment *csi_assignment_find_in (
struct amf_comp *component, SaNameT *csi_name)
{
struct amf_csi_assignment *csi_assignment;
SaNameT dn;
csi_assignment = amf_comp_get_next_csi_assignment (component, NULL);
while (csi_assignment != NULL) {
amf_csi_dn_make (csi_assignment->csi, &dn);
if (name_match (csi_name, &dn)) {
return csi_assignment;
}
csi_assignment = amf_comp_get_next_csi_assignment (
component, csi_assignment);
}
return NULL;
}
static void healthcheck_deactivate (
struct amf_healthcheck *healthcheck_active)
{
dprintf ("deactivating healthcheck for component %s\n",
getSaNameT (&healthcheck_active->comp->name));
poll_timer_delete (aisexec_poll_handle,
healthcheck_active->timer_handle_period);
poll_timer_delete (aisexec_poll_handle,
healthcheck_active->timer_handle_duration);
invocation_destroy_by_data ((void *)healthcheck_active);
healthcheck_active->active = 0;
}
/**
* This function is called by the timer subsystem when AMF should request
* a new healthcheck from a component.
* @param data
*/
static void timer_function_healthcheck_next_fn (void *_healthcheck)
{
struct amf_healthcheck *healthcheck = _healthcheck;
/* send healthcheck request to component */
lib_healthcheck_request (healthcheck);
/* start duration timer for response */
poll_timer_add (aisexec_poll_handle,
healthcheck->saAmfHealthcheckMaxDuration,
(void *)healthcheck,
timer_function_healthcheck_tmo,
&healthcheck->timer_handle_duration);
}
/**
* Multicast a healthcheck timeout event.
* @param healthcheck
*/
static void mcast_healthcheck_tmo_event (
struct amf_healthcheck *healthcheck)
{
struct req_exec_amf_healthcheck_tmo req_exec;
struct iovec iovec;
req_exec.header.size = sizeof (struct req_exec_amf_healthcheck_tmo);
req_exec.header.id = SERVICE_ID_MAKE (AMF_SERVICE,
MESSAGE_REQ_EXEC_AMF_HEALTHCHECK_TMO);
amf_comp_dn_make (healthcheck->comp, &req_exec.compName);
memcpy (&req_exec.safHealthcheckKey,
&healthcheck->safHealthcheckKey, sizeof (SaAmfHealthcheckKeyT));
iovec.iov_base = (char *)&req_exec;
iovec.iov_len = sizeof (req_exec);
assert (totempg_groups_mcast_joined (openais_group_handle,
&iovec, 1, TOTEMPG_AGREED) == 0);
}
/**
* This function is called by the timer subsystem when a component has not
* performed a healthcheck on time.
* The event is multicasted to the cluster.
* @param data
*/
static void timer_function_healthcheck_tmo (
void *_healthcheck)
{
struct amf_healthcheck *healthcheck = (struct amf_healthcheck *)_healthcheck;
TRACE2 ("timeout occured on healthcheck for component %s.\n",
getSaNameT (&healthcheck->comp->name));
mcast_healthcheck_tmo_event (healthcheck);
}
static void lib_healthcheck_request (struct amf_healthcheck *healthcheck)
{
struct res_lib_amf_healthcheckcallback res_lib;
res_lib.header.id = MESSAGE_RES_AMF_HEALTHCHECKCALLBACK;
res_lib.header.size = sizeof (struct res_lib_amf_healthcheckcallback);
res_lib.header.error = SA_AIS_OK;
res_lib.invocation =
invocation_create (AMF_RESPONSE_HEALTHCHECKCALLBACK, healthcheck);
amf_comp_dn_make (healthcheck->comp, &res_lib.compName);
memcpy (&res_lib.key, &healthcheck->safHealthcheckKey,
sizeof (SaAmfHealthcheckKeyT));
TRACE8 ("sending healthcheck request to component %s",
res_lib.compName.value);
openais_conn_send_response (
openais_conn_partner_get (healthcheck->comp->conn),
&res_lib, sizeof (struct res_lib_amf_healthcheckcallback));
}
static void lib_csi_set_request (
struct amf_comp *comp,
struct amf_csi_assignment *csi_assignment)
{
struct res_lib_amf_csisetcallback* res_lib;
void* p;
struct amf_csi_attribute *attribute;
size_t char_length_of_csi_attrs=0;
size_t num_of_csi_attrs=0;
int i;
struct amf_csi *csi;
char* csi_attribute_buf;
unsigned int byte_offset;
if (!amf_su_is_local (comp->su))
return;
csi = csi_assignment->csi;
ENTER ("Assigning CSI '%s' state %s to comp '%s'\n",
getSaNameT (&csi->name), amf_ha_state (csi_assignment->requested_ha_state),
comp->name.value);
for (attribute = csi->attributes_head;
attribute != NULL;
attribute = attribute->next) {
for (i = 0; attribute->value[i] != NULL; i++) {
num_of_csi_attrs++;
char_length_of_csi_attrs += strlen(attribute->name);
char_length_of_csi_attrs += strlen(attribute->value[i]);
char_length_of_csi_attrs += 2;
}
}
p = malloc(sizeof(struct res_lib_amf_csisetcallback) +
char_length_of_csi_attrs);
if (p == NULL) {
openais_exit_error (AIS_DONE_OUT_OF_MEMORY);
}
res_lib = (struct res_lib_amf_csisetcallback*)p;
/* Address of the buffer containing the Csi name value pair */
csi_attribute_buf = res_lib->csi_attr_buf;
/* Byteoffset start at the zero byte */
byte_offset = 0;
for (attribute = csi->attributes_head;
attribute != NULL;
attribute = attribute->next) {
for (i = 0; attribute->value[i] != NULL; i++) {
strcpy(&csi_attribute_buf[byte_offset], (char*)attribute->name);
byte_offset += strlen(attribute->name) + 1;
strcpy(&csi_attribute_buf[byte_offset], (char*)attribute->value[i]);
byte_offset += strlen(attribute->value[i]) + 1;
}
}
res_lib->number = num_of_csi_attrs;
res_lib->csiFlags = SA_AMF_CSI_ADD_ONE;
switch (csi_assignment->requested_ha_state) {
case SA_AMF_HA_ACTIVE: {
res_lib->csiStateDescriptor.activeDescriptor.activeCompName.length = 0;
res_lib->csiStateDescriptor.activeDescriptor.transitionDescriptor =
SA_AMF_CSI_NEW_ASSIGN;
break;
}
case SA_AMF_HA_STANDBY: {
res_lib->csiStateDescriptor.standbyDescriptor.activeCompName.length = 0;
res_lib->csiStateDescriptor.standbyDescriptor.standbyRank = 1;
break;
}
case SA_AMF_HA_QUIESCED: {
/*TODO*/
break;
}
case SA_AMF_HA_QUIESCING: {
/*TODO*/
break;
}
default: {
assert(SA_AMF_HA_ACTIVE||SA_AMF_HA_STANDBY||SA_AMF_HA_QUIESCING||SA_AMF_HA_QUIESCED);
break;
}
}
res_lib->header.id = MESSAGE_RES_AMF_CSISETCALLBACK;
res_lib->header.size =
sizeof (struct res_lib_amf_csisetcallback) +
char_length_of_csi_attrs;
res_lib->header.error = SA_AIS_OK;
amf_comp_dn_make (comp, &res_lib->compName);
amf_csi_dn_make (csi, &res_lib->csiName);
res_lib->haState = csi_assignment->requested_ha_state;
res_lib->invocation =
invocation_create (AMF_RESPONSE_CSISETCALLBACK, csi_assignment);
openais_conn_send_response (
openais_conn_partner_get (comp->conn), res_lib, res_lib->header.size);
free(p);
}
SaAisErrorT amf_comp_register (struct amf_comp *comp)
{
TRACE2("Exec comp register '%s'", &comp->name.value);
if (comp->saAmfCompPresenceState == SA_AMF_PRESENCE_RESTARTING) {
comp_presence_state_set (comp, SA_AMF_PRESENCE_INSTANTIATED);
} else if (comp->saAmfCompPresenceState == SA_AMF_PRESENCE_INSTANTIATING) {
amf_comp_operational_state_set (comp, SA_AMF_OPERATIONAL_ENABLED);
comp_presence_state_set (comp, SA_AMF_PRESENCE_INSTANTIATED);
}
else {
assert (0);
}
return SA_AIS_OK;
}
void amf_comp_error_report (
struct amf_comp *comp, SaAmfRecommendedRecoveryT recommendedRecovery)
{
struct res_lib_amf_componenterrorreport res_lib;
TRACE2("Exec comp error report '%s'", &comp->name.value);
if (amf_su_is_local (comp->su)) {
res_lib.header.size = sizeof (struct res_lib_amf_componenterrorreport);
res_lib.header.id = MESSAGE_RES_AMF_COMPONENTERRORREPORT;
res_lib.header.error = SA_AIS_OK;
openais_conn_send_response (comp->conn, &res_lib, sizeof (res_lib));
}
/* report to SU and let it handle the problem */
report_error_suspected (comp, recommendedRecovery);
}
/**
* Healthcheck timeout event handler
* @param comp
* @param healthcheck
*/
void amf_comp_healthcheck_tmo (
struct amf_comp *comp, struct amf_healthcheck *healthcheck)
{
TRACE2("Exec healthcheck tmo for '%s'", &comp->name.value);
/* report to SU and let it handle the problem */
report_error_suspected (comp, healthcheck->recommendedRecovery);
}
static void clear_ha_state (
struct amf_comp *comp, struct amf_csi_assignment *csi_assignment)
{
ENTER ("");
csi_assignment->saAmfCSICompHAState = 0;
}
/**
* Event method to be called when a cleanup completed event is received
* @param comp
*/
void amf_comp_cleanup_completed (struct amf_comp *comp)
{
TRACE2("Exec CLC cleanup completed for '%s'", &comp->name.value);
/* Set all CSI's confirmed HA state to unknown */
amf_comp_foreach_csi_assignment (comp, clear_ha_state);
/* clear error suspected flag, component is terminated now */
comp->error_suspected = 0;
if (comp->saAmfCompPresenceState == SA_AMF_PRESENCE_RESTARTING) {
amf_comp_instantiate (comp);
} else {
comp_presence_state_set (comp, SA_AMF_PRESENCE_UNINSTANTIATED);
}
}
/**
* Handle the request from a component to start a healthcheck
*
* @param comp
* @param healthcheckKey
* @param invocationType
* @param recommendedRecovery
*
* @return SaAisErrorT - return value to component
*/
SaAisErrorT amf_comp_healthcheck_start (
struct amf_comp *comp,
SaAmfHealthcheckKeyT *healthcheckKey,
SaAmfHealthcheckInvocationT invocationType,
SaAmfRecommendedRecoveryT recommendedRecovery)
{
struct amf_healthcheck *healthcheck;
SaAisErrorT error = SA_AIS_OK;
healthcheck = amf_comp_find_healthcheck (comp, healthcheckKey);
if (healthcheck == 0) {
log_printf (LOG_ERR, "Healthcheckstart: Healthcheck '%s' not found",
healthcheckKey->key);
error = SA_AIS_ERR_NOT_EXIST;
goto error_exit;
}
dprintf ("Healthcheckstart: '%s', key '%s'",
comp->name.value, healthcheckKey->key);
/*
* Determine if this healthcheck is already active
*/
if (healthcheck->active) {
error = SA_AIS_ERR_EXIST;
goto error_exit;
}
/*
* Initialise
*/
healthcheck->invocationType = invocationType;
healthcheck->recommendedRecovery = recommendedRecovery;
healthcheck->timer_handle_duration = 0;
healthcheck->timer_handle_period = 0;
healthcheck->active = 1;
if (invocationType == SA_AMF_HEALTHCHECK_AMF_INVOKED) {
/* start timer to execute first healthcheck request */
poll_timer_add (aisexec_poll_handle,
healthcheck->saAmfHealthcheckPeriod,
(void *)healthcheck,
timer_function_healthcheck_next_fn,
&healthcheck->timer_handle_period);
} else if (invocationType == SA_AMF_HEALTHCHECK_COMPONENT_INVOKED) {
/* start supervision timer */
poll_timer_add (aisexec_poll_handle,
healthcheck->saAmfHealthcheckPeriod,
(void *)healthcheck,
timer_function_healthcheck_tmo,
&healthcheck->timer_handle_period);
} else {
error = SA_AIS_ERR_INVALID_PARAM;
}
error_exit:
return error;
}
/**
* Stop all or a specifed healthcheck
* @param comp
* @param healthcheckKey - NULL if all
*
* @return SaAisErrorT
*/
SaAisErrorT amf_comp_healthcheck_stop (
struct amf_comp *comp,
SaAmfHealthcheckKeyT *healthcheckKey)
{
struct amf_healthcheck *healthcheck;
SaAisErrorT error = SA_AIS_OK;
dprintf ("Healthcheckstop: '%s', key '%s'",
comp->name.value, healthcheckKey->key);
if (healthcheckKey == NULL) {
for (healthcheck = comp->healthcheck_head;
healthcheck != NULL;
healthcheck = healthcheck->next) {
healthcheck_deactivate (healthcheck);
}
} else {
healthcheck = amf_comp_find_healthcheck (comp, healthcheckKey);
if (healthcheck == NULL) {
log_printf (LOG_ERR, "Healthcheckstop: Healthcheck '%s' not found",
healthcheckKey->key);
error = SA_AIS_ERR_NOT_EXIST;
} else {
healthcheck_deactivate (healthcheck);
}
}
return error;
}
/**
* Instantiate a component
* @param comp
*/
void amf_comp_instantiate (struct amf_comp *comp)
{
int res = 0;
ENTER ("'%s' SU '%s'", getSaNameT (&comp->name),
getSaNameT (&comp->su->name));
if (comp->saAmfCompPresenceState != SA_AMF_PRESENCE_RESTARTING) {
comp_presence_state_set (comp, SA_AMF_PRESENCE_INSTANTIATING);
}
if (amf_su_is_local (comp->su)) {
res = clc_interfaces[comp->comptype]->instantiate (comp);
}
}
void amf_comp_readiness_state_set (struct amf_comp *comp,
SaAmfReadinessStateT state)
{
// comp->saAmfCompReadinessState = state;
TRACE1 ("Setting comp '%s' readiness state: %s\n",
comp->name.value, amf_readiness_state (state));
}
/**
* Handle a component response (received from the lib) of an earlier AMF request.
* This function should be invoked when the lib request is received.
* @param invocation [in] associates the response with the request (callback)
* @param error [in] response from the component of the associated callback
* @param retval [out] contains return value to component when needed
*
* @return ==0 respond to component, do not multicast
* @return >0 do not respond to component, multicast response
*/
int amf_comp_response_1 (
SaInvocationT invocation, SaAisErrorT error, SaAisErrorT *retval)
{
int res;
int interface;
void *data;
res = invocation_get (invocation, &interface, &data);
if (res == -1) {
log_printf (LOG_ERR, "Lib response: invocation not found\n");
*retval = SA_AIS_ERR_INVALID_PARAM;
return 0;
}
switch (interface) {
case AMF_RESPONSE_HEALTHCHECKCALLBACK: {
struct amf_healthcheck *healthcheck = data;
SaNameT name;
TRACE8 ("Healthcheck response from '%s': %d",
amf_comp_dn_make (healthcheck->comp, &name), error);
if (healthcheck->invocationType == SA_AMF_HEALTHCHECK_AMF_INVOKED) {
/* the response was on time, delete supervision timer */
poll_timer_delete (aisexec_poll_handle,
healthcheck->timer_handle_duration);
healthcheck->timer_handle_duration = 0;
/* start timer to execute next healthcheck request */
poll_timer_add (aisexec_poll_handle,
healthcheck->saAmfHealthcheckPeriod,
(void *)healthcheck,
timer_function_healthcheck_next_fn,
&healthcheck->timer_handle_period);
*retval = SA_AIS_OK;
} else {
*retval = SA_AIS_ERR_INVALID_PARAM;
}
return 0; /* do not multicast event */
break;
}
case AMF_RESPONSE_CSISETCALLBACK: /* fall-through */
case AMF_RESPONSE_CSIREMOVECALLBACK:
return 1; /* multicast event */
break;
#if 0
case AMF_RESPONSE_COMPONENTTERMINATECALLBACK: {
struct component_terminate_callback_data *component_terminate_callback_data;
component_terminate_callback_data = data;
dprintf ("Lib component terminate callback response, error: %d", error);
amf_comp_healthcheck_deactivate (component_terminate_callback_data->comp);
escalation_policy_restart (component_terminate_callback_data->comp);
return 1;
break;
}
#endif
default:
assert (0);
break;
}
}
/**
* Handle a component response (received from EVS) of an earlier AMF request.
* This function should be invoked when the multicast request is received.
* @param invocation [in] associates the response with the request (callback)
* @param error [in] response from the component of the associated callback
* @param retval [out] contains return value to component when needed
*
* @return component to which the response should be sent
*/
struct amf_comp *amf_comp_response_2 (
SaInvocationT invocation, SaAisErrorT error, SaAisErrorT *retval)
{
int res;
int interface;
void *data;
struct amf_comp *comp = NULL;
assert (retval != NULL);
*retval = SA_AIS_OK;
res = invocation_get_and_destroy (invocation, &interface, &data);
if (res == -1) {
log_printf (LOG_ERR, "Comp response: invocation not found\n");
*retval = SA_AIS_ERR_INVALID_PARAM;
return NULL;
}
switch (interface) {
case AMF_RESPONSE_CSISETCALLBACK: {
struct amf_csi_assignment *csi_assignment = data;
dprintf ("CSI '%s' set callback response from '%s', error: %d",
csi_assignment->csi->name.value,
csi_assignment->comp->name.value, error);
comp = csi_assignment->comp;
if (error == SA_AIS_OK) {
comp_ha_state_set (
comp, csi_assignment, csi_assignment->requested_ha_state);
} else if (error == SA_AIS_ERR_FAILED_OPERATION) {
amf_si_comp_set_ha_state_failed (csi_assignment->csi->si,
csi_assignment);
} else {
*retval = SA_AIS_ERR_INVALID_PARAM;
}
break;
}
case AMF_RESPONSE_CSIREMOVECALLBACK: {
struct amf_csi_assignment *csi_assignment = data;
dprintf ("Lib csi '%s' remove callback response from '%s', error: %d",
csi_assignment->csi->name.value,
csi_assignment->comp->name.value, error);
comp = csi_assignment->comp;
if (error == SA_AIS_OK) {
comp_ha_state_set (comp, csi_assignment,
csi_assignment->requested_ha_state);
} else if (error == SA_AIS_ERR_FAILED_OPERATION) {
amf_si_comp_set_ha_state_failed (csi_assignment->csi->si,
csi_assignment);
} else {
*retval = SA_AIS_ERR_INVALID_PARAM;
}
break;
}
case AMF_RESPONSE_COMPONENTTERMINATECALLBACK: {
struct component_terminate_callback_data *callback_data = data;
dprintf ("Lib comp '%s' terminate callback response, error: %d",
callback_data->comp->name.value, error);
comp_presence_state_set (callback_data->comp,
SA_AMF_PRESENCE_UNINSTANTIATED);
break;
}
default:
assert (0);
break;
}
return comp;
}
/**
* Request a component to assume a particular HA state
* @param comp
* @param csi_assignment
* @param requested_ha_state
*/
void amf_comp_hastate_set (
struct amf_comp *component,
struct amf_csi_assignment *csi_assignment)
{
assert (component != NULL && csi_assignment != NULL);
ENTER ("'%s'", csi_assignment->csi->name.value);
if (!component->error_suspected) {
lib_csi_set_request(component, csi_assignment);
} else {
if (csi_assignment->requested_ha_state == SA_AMF_HA_QUIESCED) {
csi_assignment->saAmfCSICompHAState = csi_assignment->requested_ha_state;
} else {
assert (0);
}
}
}
/**
* Request termination of a component
* @param comp
*/
void amf_comp_terminate (struct amf_comp *comp)
{
dprintf ("comp terminate '%s'\n", getSaNameT (&comp->name));
amf_comp_healthcheck_stop (comp, NULL);
comp_presence_state_set (comp, SA_AMF_PRESENCE_TERMINATING);
if (amf_su_is_local (comp->su)) {
if (comp->error_suspected) {
clc_interfaces[comp->comptype]->cleanup (comp);
} else {
clc_interfaces[comp->comptype]->terminate (comp);
}
}
}
/**
* Request restart of a component
* @param comp
*/
void amf_comp_restart (struct amf_comp *comp)
{
dprintf ("comp restart '%s'\n", getSaNameT (&comp->name));
comp_presence_state_set (comp, SA_AMF_PRESENCE_RESTARTING);
comp->saAmfCompRestartCount += 1;
amf_comp_healthcheck_stop (comp, NULL);
if (amf_su_is_local (comp->su)) {
clc_interfaces[comp->comptype]->cleanup (comp);
}
}
/**
* Request to return the HA state for a components CSI
* @param comp
* @param csi_name
* @param ha_state
*
* @return SaAisErrorT
*/
SaAisErrorT amf_comp_hastate_get (
struct amf_comp *comp, SaNameT *csi_name, SaAmfHAStateT *ha_state)
{
struct amf_csi_assignment *assignment;
assert (comp != NULL && csi_name != NULL && ha_state != NULL);
dprintf ("comp ha state get from comp '%s' CSI '%s'\n",
getSaNameT (&comp->name), csi_name->value);
assignment = csi_assignment_find_in (comp, csi_name);
if (assignment != NULL) {
*ha_state = assignment->saAmfCSICompHAState;
return SA_AIS_OK;
}
return SA_AIS_ERR_INVALID_PARAM;
}
/**
* Response from a component informs AMF that it has performed a healthcheck
* @param comp
* @param healthcheckKey
* @param healthcheckResult
*
* @return SaAisErrorT
*/
SaAisErrorT amf_comp_healthcheck_confirm (
struct amf_comp *comp,
SaAmfHealthcheckKeyT *healthcheckKey,
SaAisErrorT healthcheckResult)
{
struct amf_healthcheck *healthcheck;
SaAisErrorT error = SA_AIS_OK;
dprintf ("Healthcheckconfirm: '%s', key '%s'",
comp->name.value, healthcheckKey->key);
healthcheck = amf_comp_find_healthcheck (comp, healthcheckKey);
if (healthcheck == NULL) {
log_printf (LOG_ERR, "Healthcheckstop: Healthcheck '%s' not found",
healthcheckKey->key);
error = SA_AIS_ERR_NOT_EXIST;
} else if (healthcheck->active) {
if (healthcheckResult == SA_AIS_OK) {
/* the response was on time, restart the supervision timer */
poll_timer_delete (aisexec_poll_handle,
healthcheck->timer_handle_period);
poll_timer_add (aisexec_poll_handle,
healthcheck->saAmfHealthcheckPeriod,
(void *)healthcheck,
timer_function_healthcheck_tmo,
&healthcheck->timer_handle_period);
} else if (healthcheckResult == SA_AIS_ERR_FAILED_OPERATION) {
/* send to cluster */
mcast_healthcheck_tmo_event (healthcheck);
} else {
error = SA_AIS_ERR_INVALID_PARAM;
}
} else {
error = SA_AIS_ERR_INVALID_PARAM;
}
return error;
}
void amf_comp_init (void)
{
log_init ("AMF");
}
void amf_comp_operational_state_set (struct amf_comp *comp,
SaAmfOperationalStateT oper_state)
{
comp->saAmfCompOperState = oper_state;
TRACE1 ("Setting comp '%s', SU '%s' operational state: %s\n",
comp->name.value, comp->su->name.value,
amf_op_state (comp->saAmfCompOperState));
amf_su_comp_state_changed (
comp->su, comp, SA_AMF_OP_STATE, oper_state);
}
int amf_comp_get_saAmfCompNumCurrActiveCsi(struct amf_comp *component)
{
int cnt = 0;
struct amf_csi_assignment *csi_assignment;
csi_assignment = amf_comp_get_next_csi_assignment (component, NULL);
while (csi_assignment != NULL) {
if (csi_assignment->saAmfCSICompHAState == SA_AMF_HA_ACTIVE) {
cnt++;
}
csi_assignment = amf_comp_get_next_csi_assignment (
component, csi_assignment);
}
return cnt;
}
int amf_comp_get_saAmfCompNumCurrStandbyCsi(struct amf_comp *component)
{
int cnt = 0;
struct amf_csi_assignment *csi_assignment;
csi_assignment = amf_comp_get_next_csi_assignment (component, NULL);
while (csi_assignment != NULL) {
if (csi_assignment->saAmfCSICompHAState == SA_AMF_HA_STANDBY) {
cnt++;
}
csi_assignment = amf_comp_get_next_csi_assignment (
component, csi_assignment);
}
return cnt;
}
SaAmfReadinessStateT amf_comp_get_saAmfCompReadinessState (
struct amf_comp *component)
{
if (component->saAmfCompOperState == SA_AMF_OPERATIONAL_ENABLED) {
return amf_su_get_saAmfSUReadinessState (component->su);
} else if (component->saAmfCompOperState == SA_AMF_OPERATIONAL_DISABLED) {
return SA_AMF_READINESS_OUT_OF_SERVICE;
}
assert (0);
}