mirror_corosync/exec/amf.c
Hans Feldt 905ba3b406 - printouts buffered before log_setup() has been called, flushed at early exit.
- rests of old logging removed from all code (#define LOG_SERVICE...).
- line feed added if not in message.
- new trace() function added so that trace macros adds minimum of code and runtime penalties to user code.
- ENTER_ARGS macro changed to ENTER. ENTER macro now requires arguments.
- openais.conf.5 man page updated with logger directives.



git-svn-id: http://svn.fedorahosted.org/svn/corosync/trunk@1021 fd59a12c-fef9-0310-b244-a6a79926bd2f
2006-05-03 08:45:44 +00:00

5019 lines
150 KiB
C

/*
* Copyright (c) 2002-2006 MontaVista Software, Inc.
*
* All rights reserved.
*
* Author: Steven Dake (sdake@mvista.com)
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <signal.h>
#include <string.h>
#include <pthread.h>
#include <assert.h>
#include "../include/saAis.h"
#include "../include/saAmf.h"
#include "../include/ipc_gen.h"
#include "../include/ipc_amf.h"
#include "../include/list.h"
#include "../include/queue.h"
#include "../lcr/lcr_comp.h"
#include "totempg.h"
#include "aispoll.h"
#include "mempool.h"
#include "util.h"
#include "amfconfig.h"
#include "main.h"
#include "service.h"
#include "objdb.h"
#include "print.h"
#define LOG_LEVEL_FROM_LIB LOG_LEVEL_DEBUG
#define LOG_LEVEL_FROM_GMI LOG_LEVEL_DEBUG
#define LOG_LEVEL_ENTER_FUNC LOG_LEVEL_DEBUG
enum amf_message_req_types {
MESSAGE_REQ_EXEC_AMF_OPERATIONAL_STATE_COMP_SET = 0,
MESSAGE_REQ_EXEC_AMF_PRESENCE_STATE_COMP_SET = 1,
MESSAGE_REQ_EXEC_AMF_ADMINISTRATIVE_STATE_CSI_SET = 2,
MESSAGE_REQ_EXEC_AMF_ADMINISTRATIVE_STATE_UNIT_SET = 3,
MESSAGE_REQ_EXEC_AMF_ADMINISTRATIVE_STATE_GROUP_SET = 4
};
struct invocation {
void *data;
int interface;
int active;
};
struct invocation *invocation_entries = 0;
int invocation_entries_size = 0;
int waiting = 0;
enum amf_response_interfaces {
AMF_RESPONSE_HEALTHCHECKCALLBACK = 1,
AMF_RESPONSE_CSISETCALLBACK = 2,
AMF_RESPONSE_CSIREMOVECALLBACK = 3,
AMF_RESPONSE_COMPONENTTERMINATECALLBACK = 4
};
struct csi_set_callback_data {
struct amf_comp *comp;
struct amf_csi *csi;
struct amf_pg *pg;
};
struct csi_remove_callback_data {
struct amf_csi *csi;
};
struct component_terminate_callback_data {
struct amf_comp *comp;
};
struct healthcheck_active {
SaAmfHealthcheckKeyT key;
SaAmfHealthcheckInvocationT invocationType;
SaAmfRecommendedRecoveryT recommendedRecovery;
struct amf_comp *comp;
struct amf_healthcheck *healthcheck;
poll_timer_handle timer_healthcheck_duration;
poll_timer_handle timer_healthcheck_period;
struct list_head list;
int active;
};
static char *presencestate_ntoa (SaAmfPresenceStateT state);
static char *operationalstate_ntoa (SaAmfOperationalStateT state);
static char *hastate_ntoa (SaAmfHAStateT state);
static char *readinessstate_ntoa (int state);
static void amf_confchg_fn (
enum totem_configuration_type configuration_type,
struct totem_ip_address *member_list, int member_list_entries,
struct totem_ip_address *left_list, int left_list_entries,
struct totem_ip_address *joined_list, int joined_list_entries,
struct memb_ring_id *ring_id);
static int amf_lib_exit_fn (void *conn);
static int amf_exec_init_fn (struct objdb_iface_ver0 *objdb);
static int amf_lib_init_fn (void *conn);
static void message_handler_req_lib_amf_componentregister (void *conn, void *msg);
static void message_handler_req_lib_amf_componentunregister (void *conn, void *msg);
static void message_handler_req_lib_amf_pmstart (void *conn, void *msg);
static void message_handler_req_lib_amf_pmstop (void *conn, void *msg);
static void message_handler_req_lib_amf_healthcheckstart (void *conn, void *msg);
static void message_handler_req_lib_amf_healthcheckconfirm (void *conn, void *msg);
static void message_handler_req_lib_amf_healthcheckstop (void *conn, void *msg);
static void message_handler_req_lib_amf_hastateget (void *conn, void *message);
static void message_handler_req_lib_amf_csiquiescingcomplete (void *conn, void *msg);
static void message_handler_req_lib_amf_protectiongrouptrackstart (void *conn, void *msg);
static void message_handler_req_lib_amf_protectiongrouptrackstop (void *conn, void *msg);
static void message_handler_req_lib_amf_componenterrorreport (void *conn, void *msg);
static void message_handler_req_lib_amf_componenterrorclear (void *conn, void *msg);
static void message_handler_req_lib_amf_response (void *conn, void *msg);
static void message_handler_req_exec_amf_operational_state_comp_set (
void *message,
struct totem_ip_address *source);
static void message_handler_req_exec_amf_presence_state_comp_set (
void *message,
struct totem_ip_address *source);
static void message_handler_req_exec_amf_administrative_state_csi_set (
void *message,
struct totem_ip_address *source);
static void message_handler_req_exec_amf_administrative_state_unit_set (
void *message,
struct totem_ip_address *source);
static void message_handler_req_exec_amf_administrative_state_group_set (
void *message,
struct totem_ip_address *source);
void presence_state_comp_set (
struct amf_comp *comp,
SaAmfPresenceStateT presence_state);
void operational_state_comp_set (
struct amf_comp *comp,
SaAmfOperationalStateT operational_state);
void operational_state_unit_set (
struct amf_unit *unit,
SaAmfOperationalStateT operational_state);
int clc_instantiate_all (void);
int clc_instantiate (struct amf_comp *comp);
int clc_terminate (struct amf_comp *comp);
int clc_cli_instantiate (struct amf_comp *comp);
int clc_instantiate_callback (struct amf_comp *comp);
int clc_csi_set_callback (struct amf_comp *comp);
int clc_cli_terminate (struct amf_comp *comp);
int clc_terminate_callback (struct amf_comp *comp);
int clc_csi_remove_callback (struct amf_comp *comp);
int clc_cli_cleanup (struct amf_comp *comp);
int clc_cli_cleanup_local (struct amf_comp *comp);
void healthcheck_activate (struct healthcheck_active *healthcheck_active);
void healthcheck_deactivate (struct healthcheck_active *healthcheck_active);
void comp_healthcheck_activate (struct amf_comp *comp);
void comp_healthcheck_deactivate (struct amf_comp *comp);
static void escalation_policy_restart (struct amf_comp *comp);
struct libamf_ci_trackentry {
int active;
SaUint8T trackFlags;
SaAmfProtectionGroupNotificationT *notificationBufferAddress;
SaNameT csiName;
};
struct amf_comp;
struct amf_pd {
struct amf_comp *comp;
struct list_head list;
/*
struct libamf_ci_trackentry *tracks;
int trackEntries;
int trackActive;
*/
};
struct clc_interface {
int (*instantiate) (struct amf_comp *comp);
int (*terminate) (struct amf_comp *comp);
int (*cleanup) (struct amf_comp *comp);
};
/*
* Life cycle functions
*/
struct clc_interface clc_interface_sa_aware = {
clc_cli_instantiate,
clc_terminate_callback,
clc_cli_cleanup
};
struct clc_interface clc_interface_proxied_pre = {
clc_instantiate_callback,
clc_terminate_callback,
clc_cli_cleanup
};
struct clc_interface clc_interface_proxied_non_pre = {
clc_csi_set_callback,
clc_csi_remove_callback,
clc_cli_cleanup_local
};
struct clc_interface clc_interface_non_proxied_non_saware = {
clc_cli_instantiate,
clc_cli_terminate,
clc_cli_cleanup_local
};
struct clc_interface *clc_interfaces[4] = {
&clc_interface_sa_aware,
&clc_interface_proxied_pre,
&clc_interface_proxied_non_pre,
&clc_interface_non_proxied_non_saware
};
/*
* Service Handler Definition
*/
static struct openais_lib_handler amf_lib_service[] =
{
{ /* 0 */
.lib_handler_fn = message_handler_req_lib_amf_componentregister,
.response_size = sizeof (struct res_lib_amf_componentregister),
.response_id = MESSAGE_RES_AMF_COMPONENTREGISTER,
.flow_control = OPENAIS_FLOW_CONTROL_REQUIRED
},
{ /* 1 */
.lib_handler_fn = message_handler_req_lib_amf_componentunregister,
.response_size = sizeof (struct res_lib_amf_componentunregister),
.response_id = MESSAGE_RES_AMF_COMPONENTUNREGISTER,
.flow_control = OPENAIS_FLOW_CONTROL_REQUIRED
},
{ /* 2 */
.lib_handler_fn = message_handler_req_lib_amf_pmstart,
.response_size = sizeof (struct res_lib_amf_pmstart),
.response_id = MESSAGE_RES_AMF_PMSTART,
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
{ /* 3 */
.lib_handler_fn = message_handler_req_lib_amf_pmstop,
.response_size = sizeof (struct res_lib_amf_pmstop),
.response_id = MESSAGE_RES_AMF_PMSTOP,
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
{ /* 4 */
.lib_handler_fn = message_handler_req_lib_amf_healthcheckstart,
.response_size = sizeof (struct res_lib_amf_healthcheckstart),
.response_id = MESSAGE_RES_AMF_HEALTHCHECKSTART,
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
{ /* 5 */
.lib_handler_fn = message_handler_req_lib_amf_healthcheckconfirm,
.response_size = sizeof (struct res_lib_amf_healthcheckconfirm),
.response_id = MESSAGE_RES_AMF_HEALTHCHECKCONFIRM,
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
{ /* 6 */
.lib_handler_fn = message_handler_req_lib_amf_healthcheckstop,
.response_size = sizeof (struct res_lib_amf_healthcheckstop),
.response_id = MESSAGE_RES_AMF_HEALTHCHECKSTOP,
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
{ /* 7 */
.lib_handler_fn = message_handler_req_lib_amf_hastateget,
.response_size = sizeof (struct res_lib_amf_hastateget),
.response_id = MESSAGE_RES_AMF_HASTATEGET,
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
{ /* 8 */
.lib_handler_fn = message_handler_req_lib_amf_csiquiescingcomplete,
.response_size = sizeof (struct res_lib_amf_csiquiescingcomplete),
.response_id = MESSAGE_RES_AMF_CSIQUIESCINGCOMPLETE,
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
{ /* 9 */
.lib_handler_fn = message_handler_req_lib_amf_protectiongrouptrackstart,
.response_size = sizeof (struct res_lib_amf_protectiongrouptrackstart),
.response_id = MESSAGE_RES_AMF_PROTECTIONGROUPTRACKSTART,
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
{ /* 10 */
.lib_handler_fn = message_handler_req_lib_amf_protectiongrouptrackstop,
.response_size = sizeof (struct res_lib_amf_protectiongrouptrackstop),
.response_id = MESSAGE_RES_AMF_PROTECTIONGROUPTRACKSTOP,
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
{ /* 11 */
.lib_handler_fn = message_handler_req_lib_amf_componenterrorreport,
.response_size = sizeof (struct res_lib_amf_componenterrorreport),
.response_id = MESSAGE_RES_AMF_COMPONENTERRORREPORT,
.flow_control = OPENAIS_FLOW_CONTROL_REQUIRED
},
{ /* 12 */
.lib_handler_fn = message_handler_req_lib_amf_componenterrorclear,
.response_size = sizeof (struct res_lib_amf_componenterrorclear),
.response_id = MESSAGE_RES_AMF_COMPONENTERRORCLEAR,
.flow_control = OPENAIS_FLOW_CONTROL_REQUIRED
},
{ /* 13 */
.lib_handler_fn = message_handler_req_lib_amf_response,
.response_size = sizeof (struct res_lib_amf_response),
.response_id = MESSAGE_RES_AMF_RESPONSE, // TODO
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
};
static struct openais_exec_handler amf_exec_service[] = {
{
.exec_handler_fn = message_handler_req_exec_amf_operational_state_comp_set,
},
{
.exec_handler_fn = message_handler_req_exec_amf_presence_state_comp_set,
},
{
.exec_handler_fn = message_handler_req_exec_amf_administrative_state_csi_set,
},
{
.exec_handler_fn = message_handler_req_exec_amf_administrative_state_unit_set,
},
{
.exec_handler_fn = message_handler_req_exec_amf_administrative_state_group_set
}
};
void amf_dump(void);
/*
* Exports the interface for the service
*/
struct openais_service_handler amf_service_handler = {
.name = (unsigned char *)"openais availability management framework B.01.01",
.id = AMF_SERVICE,
.private_data_size = sizeof (struct amf_pd),
.lib_init_fn = amf_lib_init_fn,
.lib_exit_fn = amf_lib_exit_fn,
.lib_service = amf_lib_service,
.lib_service_count = sizeof (amf_lib_service) / sizeof (struct openais_lib_handler),
.exec_init_fn = amf_exec_init_fn,
.exec_service = amf_exec_service,
.exec_service_count = sizeof (amf_exec_service) / sizeof (struct openais_exec_handler),
.confchg_fn = amf_confchg_fn,
.exec_dump_fn = amf_dump
};
struct openais_service_handler *amf_get_handler_ver0 (void);
struct openais_service_handler_iface_ver0 amf_service_handler_iface = {
.openais_get_service_handler_ver0 = amf_get_handler_ver0
};
struct lcr_iface openais_amf_ver0[1] = {
{
.name = "openais_amf",
.version = 0,
.versions_replace = 0,
.versions_replace_count = 0,
.dependencies = 0,
.dependency_count = 0,
.constructor = NULL,
.destructor = NULL,
.interfaces = NULL
}
};
struct lcr_comp amf_comp_ver0 = {
.iface_count = 1,
.ifaces = openais_amf_ver0
};
struct openais_service_handler *amf_get_handler_ver0 (void)
{
return (&amf_service_handler);
}
__attribute__ ((constructor)) static void register_this_component (void) {
lcr_interfaces_set (&openais_amf_ver0[0], &amf_service_handler_iface);
lcr_component_register (&amf_comp_ver0);
}
enum clc_command_run_operation_type {
CLC_COMMAND_RUN_OPERATION_TYPE_INSTANTIATE = 1,
CLC_COMMAND_RUN_OPERATION_TYPE_TERMINATE = 2,
CLC_COMMAND_RUN_OPERATION_TYPE_CLEANUP = 3
};
struct clc_command_run_data {
struct amf_comp *comp;
enum clc_command_run_operation_type type;
void (*completion_callback) (void *context);
};
int invocation_create (
int interface,
void *data)
{
struct invocation *invocation_addr = 0;
struct invocation *invocation_temp;
int i;
int loc = 0;
for (i = 0; i < invocation_entries_size; i++) {
if (invocation_entries[i].active == 0) {
invocation_addr = &invocation_entries[i];
loc = i;
break;
}
}
if (invocation_addr == 0) {
invocation_temp = (struct invocation *)realloc (invocation_entries,
(invocation_entries_size + 1) * sizeof (struct invocation));
if (invocation_temp == 0) {
return (-1);
}
invocation_entries = invocation_temp;
invocation_addr = &invocation_entries[invocation_entries_size];
loc = invocation_entries_size;
invocation_entries_size += 1;
}
invocation_addr->interface = interface;
invocation_addr->data = data;
invocation_addr->active = 1;
return (loc);
}
int invocation_get_and_destroy (int invocation, int *interface,
void **data)
{
if (invocation > invocation_entries_size) {
return (-1);
}
if (invocation_entries[invocation].active == 0) {
return (-1);
}
*interface = invocation_entries[invocation].interface;
*data = invocation_entries[invocation].data;
memset (&invocation_entries[invocation], 0, sizeof (struct invocation));
return (0);
}
void invocation_destroy_by_data (void *data)
{
int i;
for (i = 0; i < invocation_entries_size; i++) {
if (invocation_entries[i].data == data) {
memset (&invocation_entries[i], 0,
sizeof (struct invocation));
break;
}
}
}
void *clc_command_run (void *context)
{
struct clc_command_run_data *clc_command_run_data = (struct clc_command_run_data *)context;
pid_t pid;
int res;
char *argv[10];
char *envp[10];
int status;
char cmd[1024];
char env_comp_binary_name[1024];
char env_comp_binary_path[1024];
char env_comp_name[1024];
char *binary_to_run = NULL;
char *binary_path = NULL;
char *clc_cli_interface = NULL;
sleep (1);
dprintf ("clc_command_run()\n");
pid = fork();
if (pid == -1) {
dprintf ("Couldn't fork process %s\n", strerror (errno));
return (0);
}
if (pid) {
waiting = 1;
dprintf ("waiting for pid %d to finish\n", pid);
waitpid (pid, &status, 0);
if (clc_command_run_data->completion_callback) {
clc_command_run_data->completion_callback (context);
}
pthread_exit(0);
}
switch (clc_command_run_data->type) {
case CLC_COMMAND_RUN_OPERATION_TYPE_INSTANTIATE:
binary_to_run = clc_command_run_data->comp->instantiate_cmd;
clc_cli_interface = "CLC_CLI_INTERFACE=instantiate";
break;
case CLC_COMMAND_RUN_OPERATION_TYPE_TERMINATE:
binary_to_run = clc_command_run_data->comp->terminate_cmd;
clc_cli_interface = "CLC_CLI_INTERFACE=terminate";
break;
case CLC_COMMAND_RUN_OPERATION_TYPE_CLEANUP:
binary_to_run = clc_command_run_data->comp->cleanup_cmd;
clc_cli_interface = "CLC_CLI_INTERFACE=cleanup";
break;
default:
assert (0 != 1);
break;
}
if (strlen (clc_command_run_data->comp->clccli_path)) {
sprintf (cmd, "%s/%s",
clc_command_run_data->comp->clccli_path,
binary_to_run);
} else
if (strlen (clc_command_run_data->comp->unit->clccli_path)) {
sprintf (cmd, "%s/%s",
clc_command_run_data->comp->unit->clccli_path,
binary_to_run);
} else {
sprintf (cmd, "%s/%s",
clc_command_run_data->comp->unit->amf_group->clccli_path,
binary_to_run);
}
if (strlen (clc_command_run_data->comp->binary_path)) {
binary_path = clc_command_run_data->comp->binary_path;
} else
if (strlen (clc_command_run_data->comp->unit->binary_path)) {
binary_path = clc_command_run_data->comp->unit->binary_path;
} else {
binary_path = clc_command_run_data->comp->unit->amf_group->binary_path;
}
argv[0] = cmd;
argv[1] = '\0';
envp[0] = cmd;
envp[1] = clc_cli_interface;
envp[2] = env_comp_binary_name;
envp[3] = env_comp_binary_path;
envp[4] = env_comp_name;
envp[5] = '\0';
sprintf (env_comp_binary_name, "COMP_BINARY_NAME=%s",
clc_command_run_data->comp->binary_name);
sprintf (env_comp_binary_path, "COMP_BINARY_PATH=%s",
binary_path);
strcpy (env_comp_name, "SA_AMF_COMPONENT_NAME=");
strncat (env_comp_name, (char *)clc_command_run_data->comp->name.value,
clc_command_run_data->comp->name.length);
if (cmd[0] == '\0') {
return (0);
}
dprintf ("running command '%s' with environment:\n", cmd);
dprintf ("0 %s\n", envp[0]);
dprintf ("1 %s\n", envp[1]);
dprintf ("2 %s\n", envp[2]);
dprintf ("3 %s\n", envp[3]);
dprintf ("4 %s\n", envp[4]);
res = execve (cmd, argv, envp);
if (res == -1) {
dprintf ("Couldn't exec process %d=%s\n", errno, strerror (errno));
}
assert (res != -1);
return (0);
}
struct req_exec_amf_operational_state_comp_set {
struct req_header header;
SaNameT name;
SaAmfOperationalStateT operational_state;
};
struct req_exec_amf_presence_state_comp_set {
struct req_header header;
SaNameT name;
SaAmfPresenceStateT presence_state;
};
struct req_exec_amf_administrative_state_csi_set {
struct req_header header;
SaNameT name;
SaAmfAdminStateT administrative_state;
};
struct req_exec_amf_administrative_state_unit_set {
struct req_header header;
SaNameT name;
SaAmfAdminStateT administrative_state;
};
struct req_exec_amf_administrative_state_group_set {
struct req_header header;
SaNameT name;
SaAmfAdminStateT administrative_state;
};
struct req_exec_amf_comp_restart {
struct req_header header;
SaNameT compName;
};
/*
* Instantiate possible operations
*/
int clc_cli_instantiate (struct amf_comp *comp)
{
int res;
pthread_t thread;
struct clc_command_run_data *clc_command_run_data;
ENTER("comp %s\n", getSaNameT (&comp->name));
clc_command_run_data = malloc (sizeof (struct clc_command_run_data));
clc_command_run_data->comp = comp;
clc_command_run_data->type = CLC_COMMAND_RUN_OPERATION_TYPE_INSTANTIATE;
clc_command_run_data->completion_callback = NULL;
res = pthread_create (&thread, NULL, clc_command_run, (void *)clc_command_run_data);
pthread_detach (thread);
// TODO error code from pthread_create
return (res);
}
int clc_instantiate_callback (struct amf_comp *comp)
{
ENTER("comp %s\n", getSaNameT (&comp->name));
return (0);
}
int clc_csi_set_callback (struct amf_comp *comp)
{
ENTER("comp %s\n", getSaNameT (&comp->name));
return (0);
}
/*
* Terminate possible operations
*/
int clc_cli_terminate (struct amf_comp *comp)
{
ENTER("comp %s\n", getSaNameT (&comp->name));
return (0);
}
int clc_terminate_callback (struct amf_comp *comp)
{
struct res_lib_amf_componentterminatecallback res_lib_amf_componentterminatecallback;
struct component_terminate_callback_data *component_terminate_callback_data;
ENTER("comp %s\n", getSaNameT (&comp->name));
if (comp->presence_state != SA_AMF_PRESENCE_INSTANTIATED) {
dprintf ("component terminated but not instantiated %s - %d\n",
getSaNameT (&comp->name), comp->presence_state);
assert (0);
return (0);
}
dprintf ("component name terminating %s\n", getSaNameT (&comp->name));
dprintf ("component presence state %d\n", comp->presence_state);
res_lib_amf_componentterminatecallback.header.id = MESSAGE_RES_AMF_COMPONENTTERMINATECALLBACK;
res_lib_amf_componentterminatecallback.header.size = sizeof (struct res_lib_amf_componentterminatecallback);
res_lib_amf_componentterminatecallback.header.error = SA_AIS_OK;
memcpy (&res_lib_amf_componentterminatecallback.compName,
&comp->name, sizeof (SaNameT));
component_terminate_callback_data =
malloc (sizeof (struct component_terminate_callback_data));
assert (component_terminate_callback_data); // TODO failure here of malloc
component_terminate_callback_data->comp = comp;
res_lib_amf_componentterminatecallback.invocation =
invocation_create (
AMF_RESPONSE_COMPONENTTERMINATECALLBACK,
component_terminate_callback_data);
dprintf ("Creating invocation %llu",
(unsigned long long)res_lib_amf_componentterminatecallback.invocation);
openais_conn_send_response (
openais_conn_partner_get (comp->conn),
&res_lib_amf_componentterminatecallback,
sizeof (struct res_lib_amf_componentterminatecallback));
return (0);
}
int clc_csi_remove_callback (struct amf_comp *comp)
{
dprintf ("clc_tcsi_remove_callback\n");
return (0);
}
/*
* This reinstantiates the cleaned up component
*/
void clc_cleanup_completion_callback (void *context) {
struct clc_command_run_data *clc_command_run_data = (struct clc_command_run_data *)context;
escalation_policy_restart (clc_command_run_data->comp);
}
/*
* Cleanup possible operations
*/
int clc_cli_cleanup (struct amf_comp *comp)
{
int res;
pthread_t thread;
struct clc_command_run_data *clc_command_run_data;
dprintf ("clc_cli_cleanup\n");
clc_command_run_data = malloc (sizeof (struct clc_command_run_data));
clc_command_run_data->comp = comp;
clc_command_run_data->type = CLC_COMMAND_RUN_OPERATION_TYPE_CLEANUP;
clc_command_run_data->completion_callback = clc_cleanup_completion_callback;
res = pthread_create (&thread, NULL, clc_command_run, (void *)clc_command_run_data);
pthread_detach (thread);
// TODO error code from pthread_create
return (res);
return (0);
}
int clc_cli_cleanup_local (struct amf_comp *comp)
{
dprintf ("clc_cli_cleanup_local\n");
return (0);
}
int clc_instantiate (struct amf_comp *comp)
{
int res;
dprintf ("clc instantiate for comp %s\n", getSaNameT (&comp->name));
presence_state_comp_set (comp, SA_AMF_PRESENCE_INSTANTIATING);
res = clc_interfaces[comp->comptype]->instantiate (comp);
return (res);
}
int clc_terminate (struct amf_comp *comp)
{
int res;
dprintf ("clc terminate for comp %s\n", getSaNameT (&comp->name));
assert (0);
operational_state_comp_set (comp, SA_AMF_OPERATIONAL_DISABLED);
presence_state_comp_set (comp, SA_AMF_PRESENCE_TERMINATING);
res = clc_interfaces[comp->comptype]->terminate (comp);
return (0);
}
int clc_cleanup (struct amf_comp *comp)
{
int res;
dprintf ("clc cleanup for comp %s\n", getSaNameT (&comp->name));
comp_healthcheck_deactivate (comp);
operational_state_comp_set (comp, SA_AMF_OPERATIONAL_DISABLED);
presence_state_comp_set (comp, SA_AMF_PRESENCE_TERMINATING);
res = clc_interfaces[comp->comptype]->cleanup (comp);
return (0);
}
/* IMPL */
static int amf_exec_init_fn (struct objdb_iface_ver0 *objdb)
{
int res;
char *error_string;
unsigned int object_service_handle;
int enabled = 0;
char *value;
log_init ("AMF");
objdb->object_find_reset (OBJECT_PARENT_HANDLE);
if (objdb->object_find (
OBJECT_PARENT_HANDLE,
"amf",
strlen ("amf"),
&object_service_handle) == 0) {
value = NULL;
if ( !objdb->object_key_get (object_service_handle,
"mode",
strlen ("mode"),
(void *)&value,
NULL) && value) {
if (strcmp (value, "enabled") == 0) {
enabled = 1;
} else
if (strcmp (value, "disabled") == 0) {
enabled = 0;
}
}
}
if (enabled) {
res = openais_amf_config_read (&error_string);
if (res == -1) {
log_printf (LOG_LEVEL_ERROR, error_string);
return res;
}
clc_instantiate_all ();
}
return (0);
}
static void amf_confchg_fn (
enum totem_configuration_type configuration_type,
struct totem_ip_address *member_list, int member_list_entries,
struct totem_ip_address *left_list, int left_list_entries,
struct totem_ip_address *joined_list, int joined_list_entries,
struct memb_ring_id *ring_id)
{
#ifdef COMPILE_OUT
int i;
log_printf (LOG_LEVEL_FROM_GMI, "Executive: amf_confchg_fn : type = %d,mnum = %d,jnum = %d,lnum = %d\n", configuration_type,member_list_entries,joined_list_entries,left_list_entries);
recovery = 1;
/*
* If node join, component register
*/
if ( joined_list_entries > 0 ) {
enumerate_components (amf_confchg_njoin, NULL);
}
/*
* If node leave, component unregister
*/
for (i = 0; i<left_list_entries ; i++) {
enumerate_components (amf_confchg_nleave, (void *)&(left_list[i]));
}
#ifdef TODO
if (configuration_type == TOTEMPG_CONFIGURATION_REGULAR) {
totempg_recovery_plug_unplug (amf_recovery_plug_handle);
recovery = 0;
}
#endif
#endif
}
int amf_lib_exit_fn (void *conn)
{
struct amf_comp *comp;
struct amf_pd *amf_pd = (struct amf_pd *)openais_conn_private_data_get (conn);
comp = amf_pd->comp;
TRACE8("amf_lib_exit_fn");
if (comp) {
comp->conn = 0;
dprintf ("setting in exit fn to uninst for comp %p\n", comp);
presence_state_comp_set (
comp,
SA_AMF_PRESENCE_UNINSTANTIATED);
operational_state_comp_set (
comp,
SA_AMF_OPERATIONAL_DISABLED);
comp_healthcheck_deactivate (comp);
}
return (0);
}
static int amf_lib_init_fn (void *conn)
{
struct amf_pd *amf_pd = (struct amf_pd *)openais_conn_private_data_get (conn);
list_init (&amf_pd->list);
return (0);
}
#ifdef COMPILE_OUT
static void amf_synchronize (void *message, struct in_addr source_addr)
{
struct req_exec_amf_componentregister *req_exec_amf_componentregister = (struct req_exec_amf_componentregister *)message;
struct amf_comp *component;
struct amf_comp *amfProxyComponent;
log_printf (LOG_LEVEL_ENTER_FUNC, "amf_synchronize%s\n",
getSaNameT (&req_exec_amf_componentregister->req_lib_amf_componentregister.compName));
/* Find Component */
component = find_comp (&req_exec_amf_componentregister->req_lib_amf_componentregister.compName);
amfProxyComponent = find_comp (&req_exec_amf_componentregister->req_lib_amf_componentregister.proxyCompName);
/* If this processor is component owner */
if (component->source_addr.s_addr == this_ip->sin_addr.s_addr) {
/* No Operation */
return;
}
/* If this isn't synchronizing target processor */
if (!(component->local == 0 && component->registered == 0)){
/* No Operation */
return;
}
/* Synchronize Status */
component->local = 0;
component->registered = 1;
component->conn_info = req_exec_amf_componentregister->source.conn_info;
component->source_addr = source_addr;
component->currentReadinessState = SA_AMF_OUT_OF_SERVICE;
component->newReadinessState = SA_AMF_OUT_OF_SERVICE;
component->currentHAState = SA_AMF_QUIESCED;
component->newHAState = SA_AMF_QUIESCED;
component->probableCause = 0;
component->enabledUnlockedState = 0;
component->disabledUnlockedState = 0;
component->currentReadinessState = req_exec_amf_componentregister->currentReadinessState;
component->newReadinessState = req_exec_amf_componentregister->newReadinessState;
component->currentHAState = req_exec_amf_componentregister->currentHAState;
component->newHAState = req_exec_amf_componentregister->newHAState;
if (req_exec_amf_componentregister->req_lib_amf_componentregister.proxyCompName.length > 0) {
component->saAmfProxyComponent = amfProxyComponent;
}
/*
* Determine if we should enter new state
*/
dsmSynchronizeStaus (component);
return;
}
#endif
DECLARE_LIST_INIT (library_notification_send_listhead);
// TODO static totempg_recovery_plug_handle amf_recovery_plug_handle;
#ifdef COMPILE_OUT
static void protectiongroup_notifications_send (
struct amf_comp *changedComponent,
SaAmfProtectionGroupChangesT changeToComponent)
{
int i;
struct conn_info *conn_info;
struct list_head *list;
log_printf (LOG_LEVEL_ENTER_FUNC, "protectiongroup_notifications_send: sending PGs to API.\n");
/*
* Iterate all tracked connections
*/
for (list = library_notification_send_listhead.next;
list != &library_notification_send_listhead;
list = list->next) {
conn_info = list_entry (list, struct conn_info, conn_list);
for (i = 0; i < conn_info->ais_ci.u.libamf_ci.trackEntries; i++) {
if (conn_info->ais_ci.u.libamf_ci.tracks[i].active) {
if (conn_info->ais_ci.u.libamf_ci.tracks[i].csiName.length
!= changedComponent->amf_pg->name.length) {
continue;
}
if (memcmp (conn_info->ais_ci.u.libamf_ci.tracks[i].csiName.value,
changedComponent->amf_pg->name.value,
conn_info->ais_ci.u.libamf_ci.tracks[i].csiName.length)) {
continue;
}
#ifdef COMPILE_OUT
protectiongroup_notification_send (conn_info,
conn_info->ais_ci.u.libamf_ci.tracks[i].notificationBufferAddress,
changedComponent->saAmfProtectionGroup,
changedComponent,
changeToComponent,
conn_info->ais_ci.u.libamf_ci.tracks[i].trackFlags);
#endif
} /* if track flags active */
} /* for all track entries */
} /* for all connection entries */
}
#endif
#ifdef COMPILE_OUT
static int make_protectiongroup_notification_allcomponent (
struct amf_comp *changedComponent,
SaAmfProtectionGroupChangesT changeToComponent,
SaAmfProtectionGroupNotificationT **notification )
{
SaAmfProtectionGroupNotificationT *protectionGroupNotification = 0;
int notifyEntries = 0;
struct amf_comp *component;
struct list_head *AmfGroupList;
struct list_head *AmfUnitList;
struct list_head *AmfComponentList;
struct saAmfGroup *saAmfGroup;
struct saAmfUnit *AmfUnit;
for (AmfGroupList = saAmfGroupHead.next; AmfGroupList != &saAmfGroupHead; AmfGroupList = AmfGroupList->next) {
saAmfGroup = list_entry (AmfGroupList, struct saAmfGroup, saAmfGroupList);
/*
* Search all units
*/
for (AmfUnitList = saAmfGroup->saAmfUnitHead.next;
AmfUnitList != &saAmfGroup->saAmfUnitHead;
AmfUnitList = AmfUnitList->next) {
AmfUnit = list_entry (AmfUnitList, struct saAmfUnit, saAmfUnitList);
/*
* Search all components
*/
for (AmfComponentList = AmfUnit->amf_compHead.next;
AmfComponentList != &AmfUnit->amf_compHead;
AmfComponentList = AmfComponentList->next) {
component = list_entry (AmfComponentList, struct amf_comp, amf_compList);
protectionGroupNotification =
(SaAmfProtectionGroupNotificationT *)mempool_realloc (protectionGroupNotification,
sizeof (SaAmfProtectionGroupNotificationT) * (notifyEntries + 1));
memset (&protectionGroupNotification[notifyEntries],
0,sizeof (SaAmfProtectionGroupNotificationT));
memcpy (&protectionGroupNotification[notifyEntries].member.compName,
&component->name, sizeof (SaNameT));
// memcpy (&protectionGroupNotification[notifyEntries].member.readinessState,
// &component->currentReadinessState, sizeof (SaAmfReadinessStateT));
memcpy (&protectionGroupNotification[notifyEntries].member.haState,
&component->currentHAState, sizeof (SaAmfHAStateT));
if (component == changedComponent) {
protectionGroupNotification[notifyEntries].change = changeToComponent;
} else {
protectionGroupNotification[notifyEntries].change
= SA_AMF_PROTECTION_GROUP_NO_CHANGE;
}
notifyEntries += 1;
}
}
}
if (notifyEntries) {
*notification = protectionGroupNotification;
}
return (notifyEntries);
}
#endif
#ifdef COMPILE_OUT
static int make_protectiongroup_notification (
struct saAmfProtectionGroup *amfProtectionGroup,
struct amf_comp *changedComponent,
SaAmfProtectionGroupChangesT changeToComponent,
SaAmfProtectionGroupNotificationT **notification )
{
struct res_lib_amf_protectiongrouptrackcallback res_lib_amf_protectiongrouptrackcallback;
int notifyEntries = 0;
struct amf_comp *component;
struct list_head *componentList;
SaAmfProtectionGroupNotificationT *protectionGroupNotification = 0;
memset (&res_lib_amf_protectiongrouptrackcallback,0,sizeof(res_lib_amf_protectiongrouptrackcallback));
for (componentList = amfProtectionGroup->saAmfMembersHead.next;
componentList != &amfProtectionGroup->saAmfMembersHead;
componentList = componentList->next) {
component = list_entry (componentList, struct amf_comp, saAmfProtectionGroupList);
protectionGroupNotification =
(SaAmfProtectionGroupNotificationT *)mempool_realloc (protectionGroupNotification,
sizeof (SaAmfProtectionGroupNotificationT) * (notifyEntries + 1));
memset (&protectionGroupNotification[notifyEntries],0,sizeof (SaAmfProtectionGroupNotificationT));
memcpy (&protectionGroupNotification[notifyEntries].member.compName,
&component->name, sizeof (SaNameT));
// memcpy (&protectionGroupNotification[notifyEntries].member.readinessState,
// &component->currentReadinessState, sizeof (SaAmfReadinessStateT));
memcpy (&protectionGroupNotification[notifyEntries].member.haState,
&component->currentHAState, sizeof (SaAmfHAStateT));
if (component == changedComponent) {
protectionGroupNotification[notifyEntries].change = changeToComponent;
} else {
protectionGroupNotification[notifyEntries].change = SA_AMF_PROTECTION_GROUP_NO_CHANGE;
}
notifyEntries += 1;
} /* for */
if (notifyEntries) {
*notification = protectionGroupNotification;
}
return (notifyEntries);
return (0);
}
#endif
#ifdef COMPILE_OUT
static void protectiongroup_notification_send (struct conn_info *conn_info,
SaAmfProtectionGroupNotificationT *notificationBufferAddress,
struct saAmfProtectionGroup *amfProtectionGroup,
struct amf_comp *changedComponent,
SaAmfProtectionGroupChangesT changeToComponent,
SaUint8T trackFlags)
{
//struct res_lib_amf_protectiongrouptrackcallback res_lib_amf_protectiongrouptrackcallback;
SaAmfProtectionGroupNotificationT *protectionGroupNotification = 0;
int notifyEntries;
/*
* Step through all components and generate protection group list for csi
*/
memset (&res_lib_amf_protectiongrouptrackcallback, 0, sizeof(res_lib_amf_protectiongrouptrackcallback));
if ( trackFlags == SA_TRACK_CHANGES ) {
notifyEntries = make_protectiongroup_notification_allcomponent (changedComponent,
changeToComponent, &protectionGroupNotification);
}else if (trackFlags == SA_TRACK_CHANGES_ONLY) {
notifyEntries = make_protectiongroup_notification (amfProtectionGroup,
changedComponent, changeToComponent, &protectionGroupNotification );
}else{
notifyEntries = 0;
}
/*
* Send track callback
*/
if (notifyEntries) {
res_lib_amf_protectiongrouptrackcallback.header.size =
sizeof (struct res_lib_amf_protectiongrouptrackcallback) +
(notifyEntries * sizeof (SaAmfProtectionGroupNotificationT));
// res_lib_amf_protectiongrouptrackcallback.header.id = MESSAGE_RES_AMF_PROTECTIONGROUPTRACKCALLBACK;
res_lib_amf_protectiongrouptrackcallback.header.error = SA_AIS_OK;
res_lib_amf_protectiongrouptrackcallback.numberOfItems = notifyEntries;
res_lib_amf_protectiongrouptrackcallback.numberOfMembers = notifyEntries;
memcpy (&res_lib_amf_protectiongrouptrackcallback.csiName,
&amfProtectionGroup->name, sizeof (SaNameT));
res_lib_amf_protectiongrouptrackcallback.notificationBufferAddress = notificationBufferAddress;
openais_conn_send_response (conno, &res_lib_amf_protectiongrouptrackcallback,
sizeof (struct res_lib_amf_protectiongrouptrackcallback));
openais_conn_send_response (conno, protectionGroupNotification,
sizeof (SaAmfProtectionGroupNotificationT) * notifyEntries);
mempool_free (protectionGroupNotification);
}
}
static void error_report (struct amf_comp *comp)
{
struct req_exec_amf_error_report req_exec_amf_error_report;
struct iovec iovec;
req_exec_amf_error_report.header.size = sizeof (struct req_exec_amf_error_report);
req_exec_amf_error_report.header.id =
SERVICE_ID_MAKE (AMF_SERVICE, MESSAGE_REQ_EXEC_AMF_ERROR_REPORT);
memcpy (&req_exec_amf_error_report.compName,
&comp->name,
sizeof (SaNameT));
iovec.iov_base = (char *)&req_exec_amf_error_report;
iovec.iov_len = sizeof (req_exec_amf_error_report);
assert (totempg_groups_mcast_joined (openais_group_handle,
&iovec, 1, TOTEMPG_AGREED) == 0);
}
static void TODO_COMP_RESTART_THISISADEADPLACEHOLDER (struct amf_comp *comp)
{
struct req_exec_amf_comp_restart req_exec_amf_comp_restart;
struct iovec iovec;
req_exec_amf_comp_restart.header.size = sizeof (struct req_exec_amf_comp_restart);
req_exec_amf_comp_restart.header.id =
SERVICE_ID_MAKE (AMF_SERVICE, MESSAGE_REQ_EXEC_AMF_UNIT_RESTART);
memcpy (&req_exec_amf_comp_restart.compName, &comp->name,
sizeof (SaNameT));
iovec.iov_base = (char *)&req_exec_amf_comp_restart;
iovec.iov_len = sizeof (req_exec_amf_comp_restart);
assert (totempg_groups_mcast_joined (openais_group_handle,
&iovec, 1, TOTEMPG_AGREED) == 0);
}
#endif
#define INVOCATION_DONT_COMPARE 0xFFFFFFFFULL
struct healthcheck_active *find_healthcheck_active (
struct amf_comp *comp,
SaAmfHealthcheckKeyT *key,
SaAmfHealthcheckInvocationT invocation)
{
struct list_head *list;
struct healthcheck_active *ret_healthcheck_active = 0;
struct healthcheck_active *healthcheck_active;
for (list = comp->healthcheck_list.next;
list != &comp->healthcheck_list;
list = list->next) {
healthcheck_active = list_entry (list,
struct healthcheck_active, list);
if ((memcmp (key, &healthcheck_active->key,
sizeof (SaAmfHealthcheckKeyT)) == 0) &&
(invocation == INVOCATION_DONT_COMPARE ||
healthcheck_active->invocationType == invocation)) {
ret_healthcheck_active = healthcheck_active;
break;
}
}
return (ret_healthcheck_active);
}
void comp_healthcheck_activate (
struct amf_comp *comp)
{
struct list_head *key_list;
struct healthcheck_active *healthcheck_active;
for (key_list = comp->healthcheck_list.next;
key_list != &comp->healthcheck_list;
key_list = key_list->next) {
healthcheck_active = list_entry (key_list,
struct healthcheck_active, list);
if (healthcheck_active->active == 0) {
healthcheck_activate (healthcheck_active);
}
}
}
void comp_healthcheck_deactivate (
struct amf_comp *comp)
{
struct list_head *list;
struct list_head *next;
struct healthcheck_active *healthcheck_active;
log_printf (LOG_LEVEL_NOTICE, "ZZZ comp_healthcheck_deactivate %s\n",
getSaNameT (&comp->name));
for (list = comp->healthcheck_list.next, next = list->next;
list != &comp->healthcheck_list;
list = next, next = list->next) {
healthcheck_active = list_entry (list,
struct healthcheck_active, list);
dprintf ("healthcheck deactivating %p\n", healthcheck_active);
healthcheck_deactivate (healthcheck_active);
}
}
void presence_state_comp_set (
struct amf_comp *comp,
SaAmfPresenceStateT presence_state)
{
struct req_exec_amf_presence_state_comp_set req_exec_amf_presence_state_comp_set;
struct iovec iovec;
req_exec_amf_presence_state_comp_set.header.size = sizeof (struct req_exec_amf_presence_state_comp_set);
req_exec_amf_presence_state_comp_set.header.id =
SERVICE_ID_MAKE (AMF_SERVICE, MESSAGE_REQ_EXEC_AMF_PRESENCE_STATE_COMP_SET);
req_exec_amf_presence_state_comp_set.presence_state = presence_state;
memcpy (&req_exec_amf_presence_state_comp_set.name,
&comp->name,
sizeof (SaNameT));
iovec.iov_base = (char *)&req_exec_amf_presence_state_comp_set;
iovec.iov_len = sizeof (req_exec_amf_presence_state_comp_set);
assert (totempg_groups_mcast_joined (openais_group_handle,
&iovec, 1, TOTEMPG_AGREED) == 0);
}
void readiness_state_comp_set (struct amf_comp *comp)
{
dprintf ("inputs to readiness_state_comp_set\n");
dprintf ("\tunit readiness state %s\n",
readinessstate_ntoa (comp->unit->readiness_state));
dprintf ("\tcomp operational state %s\n",
operationalstate_ntoa (comp->unit->readiness_state));
/*
* Set component readiness state appropriately
* if unit in service and component is enabled, it is in service
* otherwise it is out of service page 37
*/
if (comp->unit->readiness_state == SA_AMF_READINESS_IN_SERVICE &&
comp->operational_state == SA_AMF_OPERATIONAL_ENABLED) {
comp->readiness_state = SA_AMF_READINESS_IN_SERVICE;
} else {
comp->readiness_state = SA_AMF_READINESS_OUT_OF_SERVICE;
}
dprintf ("readiness_state_comp_set (%s)\n",
operationalstate_ntoa (comp->operational_state));
}
void operational_state_comp_set (struct amf_comp *comp, SaAmfOperationalStateT operational_state)
{
struct req_exec_amf_operational_state_comp_set req_exec_amf_operational_state_comp_set;
struct iovec iovec;
req_exec_amf_operational_state_comp_set.header.size = sizeof (struct req_exec_amf_operational_state_comp_set);
req_exec_amf_operational_state_comp_set.header.id =
SERVICE_ID_MAKE (AMF_SERVICE, MESSAGE_REQ_EXEC_AMF_OPERATIONAL_STATE_COMP_SET);
req_exec_amf_operational_state_comp_set.operational_state = operational_state;
memcpy (&req_exec_amf_operational_state_comp_set.name,
&comp->name,
sizeof (SaNameT));
iovec.iov_base = (char *)&req_exec_amf_operational_state_comp_set;
iovec.iov_len = sizeof (req_exec_amf_operational_state_comp_set);
assert (totempg_groups_mcast_joined (openais_group_handle,
&iovec, 1, TOTEMPG_AGREED) == 0);
}
void csi_comp_set_callback (
struct amf_comp *comp,
struct amf_csi *csi,
struct amf_pg *pg)
{
struct list_head *name_value_list;
struct res_lib_amf_csisetcallback* res_lib_amf_csisetcallback;
void* p;
struct csi_set_callback_data *csi_set_callback_data;
struct amf_csi_name_value *name_value;
size_t char_legnth_of_csi_attrs=0;
size_t num_of_csi_attrs=0;
dprintf("\t Assigning CSI %s to component\n", getSaNameT (&csi->name));
for (name_value_list = csi->name_value_head.next;
name_value_list != &csi->name_value_head;
name_value_list = name_value_list->next) {
num_of_csi_attrs++;
name_value = list_entry (name_value_list, struct amf_csi_name_value, csi_name_list);
dprintf("\t\tname = %s, value = %s\n", name_value->name, name_value->value);
char_legnth_of_csi_attrs += strlen(name_value->name);
char_legnth_of_csi_attrs += strlen(name_value->value);
char_legnth_of_csi_attrs += 2;
}
p = malloc(sizeof(struct res_lib_amf_csisetcallback)+
char_legnth_of_csi_attrs);
assert(p);
res_lib_amf_csisetcallback = (struct res_lib_amf_csisetcallback*)p;
/* Address of the buffer containing the Csi name value pair */
char* csi_attribute_buf = res_lib_amf_csisetcallback->csi_attr_buf;
/* Byteoffset start att the zero byte */
unsigned int byte_offset = 0;
for (name_value_list = csi->name_value_head.next;
name_value_list != &csi->name_value_head;
name_value_list = name_value_list->next) {
name_value = list_entry (name_value_list, struct amf_csi_name_value, csi_name_list);
strcpy(&csi_attribute_buf[byte_offset],
(char*)name_value->name);
byte_offset += strlen(name_value->name) + 1;
strcpy(&csi_attribute_buf[byte_offset],
(char*)name_value->value);
byte_offset += strlen(name_value->value) + 1;
}
res_lib_amf_csisetcallback->number = num_of_csi_attrs;
res_lib_amf_csisetcallback->csiFlags = SA_AMF_CSI_ADD_ONE;
switch (comp->unit->requested_ha_state) {
case SA_AMF_HA_ACTIVE:
{
res_lib_amf_csisetcallback->csiStateDescriptor.activeDescriptor.activeCompName.length = 0;
res_lib_amf_csisetcallback->csiStateDescriptor.activeDescriptor.transitionDescriptor =
SA_AMF_CSI_NEW_ASSIGN;
break;
}
case SA_AMF_HA_STANDBY:
{
res_lib_amf_csisetcallback->csiStateDescriptor.standbyDescriptor.activeCompName.length = 0;
res_lib_amf_csisetcallback->csiStateDescriptor.standbyDescriptor.standbyRank = 1;
break;
}
case SA_AMF_HA_QUIESCED:
{
/*TODO*/
break;
}
case SA_AMF_HA_QUIESCING:
{
/*TODO*/
break;
}
default:
{
assert(SA_AMF_HA_ACTIVE||SA_AMF_HA_STANDBY||SA_AMF_HA_QUIESCING||SA_AMF_HA_QUIESCED);
break;
}
}
res_lib_amf_csisetcallback->header.id =
MESSAGE_RES_AMF_CSISETCALLBACK;
res_lib_amf_csisetcallback->header.size =
sizeof (struct res_lib_amf_csisetcallback)+
char_legnth_of_csi_attrs;
res_lib_amf_csisetcallback->header.error = SA_AIS_OK;
memcpy (&res_lib_amf_csisetcallback->compName,
&comp->name, sizeof (SaNameT));
memcpy (&res_lib_amf_csisetcallback->csiName,
&csi->name, sizeof (SaNameT));
res_lib_amf_csisetcallback->haState = comp->unit->requested_ha_state;
csi_set_callback_data = malloc (sizeof (struct csi_set_callback_data));
assert (csi_set_callback_data); // TODO failure here of malloc
csi_set_callback_data->comp = comp;
csi_set_callback_data->csi = csi;
csi_set_callback_data->pg = pg;
res_lib_amf_csisetcallback->invocation =
invocation_create (
AMF_RESPONSE_CSISETCALLBACK,
csi_set_callback_data);
openais_conn_send_response (
openais_conn_partner_get (comp->conn),
res_lib_amf_csisetcallback,
res_lib_amf_csisetcallback->header.size);
free(p);
}
void pg_create (struct amf_si *si, struct amf_pg **pg_out)
{
struct amf_pg *pg;
// struct amf_pg_comp *pg_comp;
pg = malloc (sizeof (struct amf_pg));
assert (pg);
list_init (&pg->pg_comp_head);
list_init (&pg->pg_list);
list_add (&pg->pg_list, &si->pg_head);
*pg_out = pg;
}
void csi_unit_set_callback (struct amf_unit *unit, struct amf_si *si)
{
struct list_head *complist;
struct list_head *csilist;
struct list_head *typenamelist;
struct amf_csi *csi;
struct amf_pg *pg = NULL;
struct amf_comp *comp;
struct amf_comp_csi_type_name *type_name;
// pg_create (csi_in->si, &pg);
// TODO remove si from csi data structure
dprintf ("assigning SI %s to SU %s for components:\n",
getSaNameT (&si->name),
getSaNameT (&unit->name));
/*
** for each component in SU, find a CSI in the SI with the same type
*/
for (complist = unit->comp_head.next;
complist != &unit->comp_head;
complist = complist->next) {
comp = list_entry (complist, struct amf_comp, comp_list);
dprintf ("\t%s\n", getSaNameT (&comp->name));
int no_of_csi_types = 0;
for (typenamelist = comp->csi_type_name_head.next;
typenamelist != &comp->csi_type_name_head;
typenamelist = typenamelist->next) {
type_name = list_entry (typenamelist, struct amf_comp_csi_type_name, list);
no_of_csi_types++;
int no_of_assignments = 0;
for (csilist = si->csi_head.next;
csilist != &si->csi_head;
csilist = csilist->next) {
csi = list_entry (csilist, struct amf_csi, csi_list);
if (!memcmp(csi->type_name.value, type_name->name.value, type_name->name.length)) {
csi_comp_set_callback (comp, csi, pg);
no_of_assignments++;
}
}
if (no_of_assignments == 0) {
dprintf ("\t No CSIs of type %s configured?!!\n",
getSaNameT (&type_name->name));
}
}
if (no_of_csi_types == 0) {
dprintf ("\t No CSI types configured for %s ?!!\n",
getSaNameT (&comp->name));
}
}
}
void csi_comp_remove_callback (struct amf_comp *comp, struct amf_csi *csi)
{
struct res_lib_amf_csiremovecallback res_lib_amf_csiremovecallback;
struct csi_remove_callback_data *csi_remove_callback_data;
printf ("\t%s\n",
getSaNameT (&comp->name));
res_lib_amf_csiremovecallback.header.id = MESSAGE_RES_AMF_CSIREMOVECALLBACK;
res_lib_amf_csiremovecallback.header.size = sizeof (struct res_lib_amf_csiremovecallback);
res_lib_amf_csiremovecallback.header.error = SA_AIS_OK;
csi_remove_callback_data = malloc (sizeof (struct csi_remove_callback_data));
assert (csi_remove_callback_data); // TODO failure here of malloc
csi_remove_callback_data->csi = csi;
res_lib_amf_csiremovecallback.invocation =
invocation_create (
AMF_RESPONSE_CSIREMOVECALLBACK,
csi_remove_callback_data);
memcpy (&res_lib_amf_csiremovecallback.compName,
&comp->name, sizeof (SaNameT));
memcpy (&res_lib_amf_csiremovecallback.csiName,
&csi->name, sizeof (SaNameT));
res_lib_amf_csiremovecallback.csiFlags = 0;
openais_conn_send_response (
openais_conn_partner_get (comp->conn),
&res_lib_amf_csiremovecallback,
sizeof (struct res_lib_amf_csiremovecallback));
}
extern struct list_head amf_groupHead;
int clc_instantiate_all (void) {
struct list_head *list_group;
struct amf_group *group;
struct list_head *list_unit;
struct amf_unit *unit;
struct list_head *list_comp;
struct amf_comp *comp;
for (list_group = amf_groupHead.next;
list_group != &amf_groupHead;
list_group = list_group->next) {
group = list_entry (list_group,
struct amf_group, group_list);
for (list_unit = group->unit_head.next;
list_unit != &group->unit_head;
list_unit = list_unit->next) {
unit = list_entry (list_unit,
struct amf_unit, unit_list);
for (list_comp = unit->comp_head.next;
list_comp != &unit->comp_head;
list_comp = list_comp->next) {
comp = list_entry (list_comp,
struct amf_comp, comp_list);
if (strlen ((char *)comp->instantiate_cmd)) {
clc_instantiate (comp);
}
}
}
}
return (0);
}
void comp_terminate (struct amf_comp *comp)
{
clc_terminate (comp);
}
void unit_terminate (struct amf_unit *unit)
{
struct list_head *list_comp;
struct amf_comp *comp;
for (list_comp = unit->comp_head.next;
list_comp != &unit->comp_head;
list_comp = list_comp->next) {
comp = list_entry (list_comp, struct amf_comp, comp_list);
clc_terminate (comp);
}
}
void comp_cleanup (struct amf_comp *comp)
{
clc_cleanup (comp);
}
void unit_cleanup (struct amf_unit *unit)
{
struct list_head *list_comp;
struct amf_comp *comp;
for (list_comp = unit->comp_head.next;
list_comp != &unit->comp_head;
list_comp = list_comp->next) {
comp = list_entry (list_comp, struct amf_comp, comp_list);
clc_cleanup (comp);
}
}
void comp_restart (struct amf_comp *comp)
{
presence_state_comp_set (comp, SA_AMF_PRESENCE_RESTARTING);
}
void unit_restart (struct amf_unit *unit)
{
struct list_head *list_comp;
struct amf_comp *comp;
for (list_comp = unit->comp_head.next;
list_comp != &unit->comp_head;
list_comp = list_comp->next) {
comp = list_entry (list_comp, struct amf_comp, comp_list);
presence_state_comp_set (comp, SA_AMF_PRESENCE_RESTARTING);
}
}
void clc_unit_instantiate (struct amf_unit *unit)
{
struct list_head *list_comp;
struct amf_comp *comp;
dprintf ("ZZZZZZZZZZZZZZZZZ clc_unit_instantitate\n");
for (list_comp = unit->comp_head.next;
list_comp != &unit->comp_head;
list_comp = list_comp->next) {
comp = list_entry (list_comp, struct amf_comp, comp_list);
clc_instantiate (comp);
}
}
void csi_unit_remove_callbacks (struct amf_unit *unit)
{
struct list_head *list_si;
struct list_head *list_csi;
struct list_head *list_comp;
struct amf_si *si;
struct amf_csi *csi;
struct amf_comp *comp;
for (list_si = unit->si_head.next;
list_si != &unit->si_head;
list_si = list_si->next) {
si = list_entry (list_si, struct amf_si, unit_list);
for (list_csi = si->csi_head.next;
list_csi != &si->csi_head;
list_csi = list_csi->next) {
csi = list_entry (list_csi, struct amf_csi, csi_list);
for (list_comp = csi->unit->comp_head.next;
list_comp != &csi->unit->comp_head;
list_comp = list_comp->next) {
comp = list_entry (list_comp, struct amf_comp, comp_list);
}
}
}
}
// THIS MIGHT BE GOOD FOR SOMEPTHING ELSE
#ifdef COMPILE_OUT
void csi_unit_remove_callbacks (struct amf_unit *unit)
{
struct list_head *list_comp;
struct list_head *list_si;
struct list_head *list_csi;
struct list_head *list_pg;
struct list_head *list_pg_comp;
struct amf_comp *comp;
struct amf_csi *csi;
struct amf_si *si;
struct amf_pg *pg;
struct amf_pg_comp *pg_comp;
for (list_si = unit->si_head.next;
list_si != &unit->si_head;
list_si = list_si->next) {
si = list_entry (list_si, struct amf_si, unit_list);
for (list_pg = si->pg_head.next;
list_pg != &si->pg_head;
list_pg = list_pg->next) {
pg = list_entry (list_pg, struct amf_pg, pg_list);
printf ("pg %x\n", pg);
for (list_pg_comp = pg->pg_comp_head.next;
list_pg_comp != &pg->pg_comp_head;
list_pg_comp = list_pg_comp->next) {
pg_comp = list_entry (list_pg_comp,
struct amf_pg_comp, list);
printf ("pg_comp %x\n", pg_comp);
printf ("remove component callback\n");
csi_comp_remove_callback (
pg_comp->comp,
pg_comp->csi);
}
}
}
}
#endif
char csi_number = 0;
void csi_unit_create (struct amf_unit *unit, struct amf_si *si,
struct amf_csi **csi_out)
{
struct amf_csi *csi;
dprintf ("creating csi for si %p unit %p\n", si, unit);
si->csi_count += 1;
csi = malloc (sizeof (struct amf_csi));
list_init (&csi->csi_list);
list_add (&csi->csi_list, &si->csi_head);
list_add (&si->unit_list, &unit->si_head);
csi->si = si;
csi->unit = unit;
csi->pg_set = 0;
sprintf ((char *)csi->name.value, "CSI %d", csi_number);
csi->name.length = strlen ((char *)csi->name.value);
csi_number += 1;
*csi_out = csi;
}
void ha_state_unit_set (struct amf_unit *unit, struct amf_si *si,
SaAmfHAStateT ha_state)
{
dprintf ("Assigning SI %s to SU %s with hastate %s\n",
getSaNameT (&si->name), getSaNameT (&unit->name), hastate_ntoa (ha_state));
unit->requested_ha_state = ha_state;
csi_unit_set_callback (unit, si);
}
int unit_inservice_count (struct amf_group *group)
{
struct list_head *list;
struct amf_unit *unit;
int answer = 0;
for (list = group->unit_head.next;
list != &group->unit_head;
list = list->next) {
unit = list_entry (list,
struct amf_unit, unit_list);
if (unit->readiness_state == SA_AMF_READINESS_IN_SERVICE) {
answer += 1;
}
}
return (answer);
}
int comp_inservice_count (struct amf_unit *unit)
{
struct list_head *list;
struct amf_comp *comp;
int answer = 0;
for (list = unit->comp_head.next;
list != &unit->comp_head;
list = list->next) {
comp = list_entry (list, struct amf_comp, comp_list);
if (comp->readiness_state == SA_AMF_READINESS_IN_SERVICE) {
answer += 1;
}
}
return (answer);
}
int si_count (struct amf_group *group)
{
struct list_head *list_si;
struct amf_si *si;
int answer = 0;
for (list_si = group->si_head.next;
list_si != &group->si_head;
list_si = list_si->next) {
si = list_entry (list_si, struct amf_si, si_list);
answer += 1;
}
return (answer);
}
static inline int div_round (int a, int b)
{
int res;
res = a / b;
if ((a % b) != 0)
res++;
return res;
}
void assign_nm_active (struct amf_group *group, int su_units_assign)
{
struct amf_unit *unit;
struct amf_si *si;
struct list_head *list_si;
struct list_head *list_unit;
int assigned = 0;
int assign_per_su = 0;
int total_assigned = 0;
assign_per_su = si_count (group);
assign_per_su = div_round (assign_per_su, su_units_assign);
if (assign_per_su > group->maximum_active_instances) {
assign_per_su = group->maximum_active_instances;
}
list_si = group->si_head.next;
list_unit = group->unit_head.next;
while (list_unit != &group->unit_head) {
unit = list_entry (list_unit,
struct amf_unit, unit_list);
if (unit->readiness_state != SA_AMF_READINESS_IN_SERVICE) {
list_unit = list_unit->next;
continue; /* Not in service */
}
assigned = 0;
while (list_si != &group->si_head &&
assigned < assign_per_su &&
total_assigned < si_count (group)) {
si = list_entry (list_si, struct amf_si, si_list);
assigned += 1;
total_assigned += 1;
ha_state_unit_set (unit, si, SA_AMF_HA_ACTIVE);
list_si = list_si->next;
}
list_unit = list_unit->next;
}
}
void assign_nm_standby (struct amf_group *group, int units_assign_standby)
{
struct amf_unit *unit;
struct amf_si *si;
struct list_head *list_si;
struct list_head *list_unit;
int assigned = 0;
int assign_per_su = 0;
if (units_assign_standby == 0) {
return;
}
assign_per_su = si_count (group);
assign_per_su = div_round (assign_per_su, units_assign_standby);
if (assign_per_su > group->maximum_standby_instances) {
assign_per_su = group->maximum_standby_instances;
}
list_si = group->si_head.next;
list_unit = group->unit_head.next;
while (list_unit != &group->unit_head) {
unit = list_entry (list_unit,
struct amf_unit, unit_list);
if (unit->readiness_state != SA_AMF_READINESS_IN_SERVICE ||
unit->requested_ha_state == SA_AMF_HA_ACTIVE) {
list_unit = list_unit->next;
continue; /* Not available for assignment */
}
assigned = 0;
while (list_si != &group->si_head && assigned < assign_per_su) {
si = list_entry (list_si, struct amf_si, si_list);
assigned += 1;
ha_state_unit_set (unit, si, SA_AMF_HA_STANDBY);
list_si = list_si->next;
}
list_unit = list_unit->next;
}
}
void assign_nm_spare (struct amf_group *group)
{
struct amf_unit *unit;
struct list_head *list;
for (list = group->unit_head.next;
list != &group->unit_head;
list = list->next) {
unit = list_entry (list,
struct amf_unit, unit_list);
if (unit->readiness_state == SA_AMF_READINESS_IN_SERVICE &&
(unit->requested_ha_state != SA_AMF_HA_ACTIVE &&
unit->requested_ha_state != SA_AMF_HA_STANDBY)) {
printf ("Assigning to SU %s with SPARE\n",
getSaNameT (&unit->name));
}
}
}
void clear_requested_ha_state (struct amf_group *group)
{
struct list_head *list;
struct amf_unit *unit;
for (list = group->unit_head.next;
list != &group->unit_head;
list = list->next) {
unit = list_entry (list,
struct amf_unit, unit_list);
unit->requested_ha_state = 0;
}
csi_number = 0;
}
void assign_sis (struct amf_group *group)
{
int active_sus_needed;
int standby_sus_needed;
int inservice_count;
int units_for_standby;
int units_for_active;
int ii_spare;
int su_active_assign;
int su_standby_assign;
int su_spare_assign;
clear_requested_ha_state (group);
/*
* Number of SUs to assign to active or standby state
*/
inservice_count = (float)unit_inservice_count (group);
active_sus_needed = div_round (si_count(group),
group->maximum_active_instances);
standby_sus_needed = div_round (si_count(group),
group->maximum_standby_instances);
units_for_active = inservice_count - group->preferred_standby_units;
if (units_for_active < 0) {
units_for_active = 0;
}
units_for_standby = inservice_count - group->preferred_active_units;
if (units_for_standby < 0) {
units_for_standby = 0;
}
ii_spare = inservice_count - group->preferred_active_units - group->preferred_standby_units;
if (ii_spare < 0) {
ii_spare = 0;
}
/*
* Determine number of active and standby service units
* to assign based upon reduction procedure
*/
if ((inservice_count - active_sus_needed) < 0) {
dprintf ("assignment VI - partial assignment with SIs drop outs\n");
su_active_assign = active_sus_needed;
su_standby_assign = 0;
su_spare_assign = 0;
} else
if ((inservice_count - active_sus_needed - standby_sus_needed) < 0) {
dprintf ("assignment V - partial assignment with reduction of standby units\n");
su_active_assign = active_sus_needed;
if (standby_sus_needed > units_for_standby) {
su_standby_assign = units_for_standby;
} else {
su_standby_assign = standby_sus_needed;
}
su_spare_assign = 0;
} else
if ((group->maximum_standby_instances * units_for_standby) <= si_count (group)) {
dprintf ("IV: full assignment with reduction of active service units\n");
su_active_assign = inservice_count - standby_sus_needed;
su_standby_assign = standby_sus_needed;
su_spare_assign = 0;
} else
if ((group->maximum_active_instances * units_for_active) <= si_count (group)) {
dprintf ("III: full assignment with reduction of standby service units\n");
su_active_assign = group->preferred_active_units;
su_standby_assign = units_for_standby;
su_spare_assign = 0;
} else
if (ii_spare == 0) {
dprintf ("II: full assignment with spare reduction\n");
su_active_assign = group->preferred_active_units;
su_standby_assign = group->preferred_standby_units;
su_spare_assign = 0;
} else {
dprintf ("I: full assignment with spares\n");
su_active_assign = group->preferred_active_units;
su_standby_assign = group->preferred_standby_units;
su_spare_assign = ii_spare;
}
dprintf ("(inservice=%d) (assigning active=%d) (assigning standby=%d) (assigning spares=%d)\n",
inservice_count, su_active_assign, su_standby_assign, su_spare_assign);
assign_nm_active (group, su_active_assign);
assign_nm_standby (group, su_standby_assign);
}
void readiness_state_unit_set (struct amf_unit *unit, SaAmfReadinessStateT readiness_state)
{
dprintf ("Assigning unit %s readiness state %s\n",
getSaNameT (&unit->name), readinessstate_ntoa (readiness_state));
unit->readiness_state = readiness_state;
assign_sis (unit->amf_group);
}
void presence_state_unit_set (struct amf_unit *unit, SaAmfPresenceStateT presence_state)
{
dprintf ("Setting service unit presence state %s\n",
presencestate_ntoa (presence_state));
}
static void escalation_policy_restart (struct amf_comp *comp)
{
dprintf ("escalation_policy_restart %d\n", comp->unit->escalation_level);
dprintf ("escalation policy restart uninsint %p\n", comp);
presence_state_comp_set (
comp,
SA_AMF_PRESENCE_UNINSTANTIATED);
operational_state_comp_set (
comp,
SA_AMF_OPERATIONAL_DISABLED);
switch (comp->unit->escalation_level) {
case ESCALATION_LEVEL_NO_ESCALATION:
comp_restart (comp);
break;
case ESCALATION_LEVEL_ONE:
comp_restart (comp);
break;
case ESCALATION_LEVEL_TWO:
break;
case ESCALATION_LEVEL_THREE:
break;
}
}
static void escalation_policy_cleanup (struct amf_comp *comp)
{
// escalation_timer_start (comp);
switch (comp->unit->escalation_level) {
case ESCALATION_LEVEL_NO_ESCALATION:
comp->unit->restart_count += 1;
if (comp->unit->restart_count >= comp->unit->amf_group->component_restart_max) {
comp->unit->escalation_level = ESCALATION_LEVEL_ONE;
escalation_policy_cleanup (comp);
comp->unit->restart_count = 0;
return;
}
printf ("Escalation level 0 - restart component\n");
printf ("Cleaning up and restarting component.\n");
comp_cleanup (comp);
break;
case ESCALATION_LEVEL_ONE:
comp->unit->restart_count += 1;
if (comp->unit->restart_count >= comp->unit->amf_group->unit_restart_max) {
comp->unit->escalation_level = ESCALATION_LEVEL_TWO;
escalation_policy_cleanup (comp);
return;
}
printf ("Escalation level 1 - restart unit\n");
printf ("Cleaning up and restarting unit.\n");
unit_cleanup (comp->unit);
break;
case ESCALATION_LEVEL_TWO:
printf ("Escalation level TWO\n");
unit_cleanup (comp->unit);
// unit_terminate_failover (comp);
break;
case ESCALATION_LEVEL_THREE:
//TODO
break;
}
}
static void timer_function_healthcheck_timeout (
void *data)
{
struct healthcheck_active *healthcheck_active =
(struct healthcheck_active *)data;
printf ("timeout occured on healthcheck for component %s.\n",
getSaNameT (&healthcheck_active->comp->name));
escalation_policy_cleanup (healthcheck_active->comp);
}
void healthcheck_activate (struct healthcheck_active *healthcheck_active)
{
struct res_lib_amf_healthcheckcallback res_lib_amf_healthcheckcallback;
healthcheck_active->active = 1;
// TODO memset (&res_lib_amf_healthcheckcallback, 0, sizeof(res_lib_amf_healthcheckcallback));
res_lib_amf_healthcheckcallback.header.id = MESSAGE_RES_AMF_HEALTHCHECKCALLBACK;
res_lib_amf_healthcheckcallback.header.size = sizeof (struct res_lib_amf_healthcheckcallback);
res_lib_amf_healthcheckcallback.header.error = SA_AIS_OK;
TRACE8 ("sending healthcheck to component %s",
getSaNameT (&healthcheck_active->comp->name));
res_lib_amf_healthcheckcallback.invocation =
invocation_create (
AMF_RESPONSE_HEALTHCHECKCALLBACK,
(void *)healthcheck_active);
memcpy (&res_lib_amf_healthcheckcallback.compName,
&healthcheck_active->comp->name,
sizeof (SaNameT));
memcpy (&res_lib_amf_healthcheckcallback.key,
&healthcheck_active->key,
sizeof (SaAmfHealthcheckKeyT));
openais_conn_send_response (
openais_conn_partner_get (healthcheck_active->comp->conn),
&res_lib_amf_healthcheckcallback,
sizeof (struct res_lib_amf_healthcheckcallback));
poll_timer_delete (aisexec_poll_handle,
healthcheck_active->timer_healthcheck_duration);
poll_timer_add (aisexec_poll_handle,
healthcheck_active->healthcheck->maximum_duration,
(void *)healthcheck_active,
timer_function_healthcheck_timeout,
&healthcheck_active->timer_healthcheck_duration);
}
void healthcheck_deactivate (struct healthcheck_active *healthcheck_active)
{
log_printf (LOG_LEVEL_NOTICE, "ZZZ deactivating healthcheck for component %s\n",
getSaNameT (&healthcheck_active->comp->name));
poll_timer_delete (aisexec_poll_handle,
healthcheck_active->timer_healthcheck_period);
poll_timer_delete (aisexec_poll_handle,
healthcheck_active->timer_healthcheck_duration);
invocation_destroy_by_data ((void *)healthcheck_active);
list_del (&healthcheck_active->list);
free (healthcheck_active);
}
static void timer_function_healthcheck_next (
void *data)
{
healthcheck_activate (data);
}
void healthcheck_unit_deactivate (
struct amf_unit *unit)
{
struct list_head *list;
struct list_head *key_list;
struct healthcheck_active *healthcheck_active;
struct amf_comp *comp;
for (list = unit->comp_head.next;
list != &unit->comp_head;
list = list->next) {
comp = list_entry (list, struct amf_comp, comp_list);
for (key_list = comp->healthcheck_list.next;
key_list != &comp->healthcheck_list;
key_list = key_list->next) {
healthcheck_active = list_entry (key_list,
struct healthcheck_active, list);
healthcheck_deactivate (healthcheck_active);
}
}
}
void healthcheck_unit_activate (
struct amf_unit *unit)
{
struct list_head *list;
struct list_head *key_list;
struct healthcheck_active *healthcheck_active;
struct amf_comp *comp;
for (list = unit->comp_head.next;
list != &unit->comp_head;
list = list->next) {
comp = list_entry (list, struct amf_comp, comp_list);
for (key_list = comp->healthcheck_list.next;
key_list != &comp->healthcheck_list;
key_list = key_list->next) {
healthcheck_active = list_entry (key_list,
struct healthcheck_active, list);
healthcheck_activate (healthcheck_active);
}
}
}
void operational_state_unit_set (
struct amf_unit *unit,
SaAmfOperationalStateT operational_state)
{
if (operational_state == unit->operational_state) {
dprintf ("Not assigning service unit new operational state - same state\n");
return;
}
unit->operational_state = operational_state;
dprintf ("Service unit operational state set to %s\n",
operationalstate_ntoa (operational_state));
if (operational_state == SA_AMF_OPERATIONAL_ENABLED) {
readiness_state_unit_set (unit,
SA_AMF_READINESS_IN_SERVICE);
/*
* Start healthcheck now
*/
// TODO healthcheck_unit_activate (unit);
} else
if (operational_state == SA_AMF_OPERATIONAL_DISABLED) {
readiness_state_unit_set (unit,
SA_AMF_READINESS_OUT_OF_SERVICE);
// ha_state_unit_set (unit, si, SA_AMF_HA_STANDBY);
// healthcheck_unit_deactivate (unit);
}
}
static void message_handler_req_exec_amf_operational_state_comp_set (
void *message,
struct totem_ip_address *address)
{
struct req_exec_amf_operational_state_comp_set *req_exec_amf_operational_state_comp_set =
(struct req_exec_amf_operational_state_comp_set *)message;
struct amf_comp *comp;
struct amf_comp *comp_compare;
struct list_head *list;
int all_set = 1;
comp = find_comp (&req_exec_amf_operational_state_comp_set->name);
comp->operational_state = req_exec_amf_operational_state_comp_set->operational_state;
dprintf ("Setting component %s operational state to %s\n",
getSaNameT (&comp->name),
operationalstate_ntoa (comp->operational_state));
/*
* If all operational states are ENABLED, then SU should be ENABLED
*/
for (list = comp->unit->comp_head.next;
list != &comp->unit->comp_head;
list = list->next) {
comp_compare = list_entry (list,
struct amf_comp, comp_list);
if (comp_compare->operational_state != SA_AMF_OPERATIONAL_ENABLED) {
all_set = 0;
break;
}
}
if (all_set) {
operational_state_unit_set (comp->unit,
SA_AMF_OPERATIONAL_ENABLED);
} else {
operational_state_unit_set (comp->unit,
SA_AMF_OPERATIONAL_DISABLED);
}
readiness_state_comp_set (comp);
}
static void message_handler_req_exec_amf_presence_state_comp_set (
void *message,
struct totem_ip_address *address)
{
struct req_exec_amf_presence_state_comp_set *req_exec_amf_presence_state_comp_set =
(struct req_exec_amf_presence_state_comp_set *)message;
struct amf_comp *comp;
struct amf_comp *comp_compare;
struct list_head *list;
int all_set = 1;
comp = find_comp (&req_exec_amf_presence_state_comp_set->name);
if (req_exec_amf_presence_state_comp_set->presence_state == comp->presence_state) {
dprintf ("duplicate presence state set, not setting presence state\n");
return;
}
if (req_exec_amf_presence_state_comp_set->presence_state == SA_AMF_PRESENCE_UNINSTANTIATED) {
comp->conn = 0;
}
/*
* The restarting state can only be entered from the uninstantiated state
*/
if (req_exec_amf_presence_state_comp_set->presence_state == SA_AMF_PRESENCE_RESTARTING &&
comp->presence_state != SA_AMF_PRESENCE_UNINSTANTIATED) {
dprintf ("restart presence state set even though not in terminating state\n");
return;
}
comp->presence_state = req_exec_amf_presence_state_comp_set->presence_state;
if (comp->presence_state == SA_AMF_PRESENCE_RESTARTING) {
dprintf ("SET TO RESTARTING instantiating now\n");
clc_instantiate (comp);
}
dprintf ("Setting component %s presence state %s\n",
getSaNameT (&comp->name),
presencestate_ntoa (comp->presence_state));
/*
* Restart components that are requested to enter the restarting presence state
*/
/*
* If all comp presence states are INSTANTIATED, then SU should be instantated
*/
for (list = comp->unit->comp_head.next;
list != &comp->unit->comp_head;
list = list->next) {
comp_compare = list_entry (list,
struct amf_comp, comp_list);
if (comp_compare->presence_state != SA_AMF_PRESENCE_INSTANTIATED) {
all_set = 0;
break;
}
}
if (all_set) {
presence_state_unit_set (comp->unit,
SA_AMF_PRESENCE_INSTANTIATED);
}
}
static void message_handler_req_exec_amf_administrative_state_csi_set (
void *message,
struct totem_ip_address *address)
{
// struct req_exec_amf_administrative_state_csi_set *req_exec_amf_administrative_state_csi_set =
// (struct req_exec_amf_administrative_state_csi_set *)message;
// TODO
}
static void message_handler_req_exec_amf_administrative_state_unit_set (
void *message,
struct totem_ip_address *address)
{
// struct req_exec_amf_administrative_state_unit_set *req_exec_amf_administrative_state_unit_set =
// (struct req_exec_amf_administrative_state_unit_set *)message;
// TODO
}
static void message_handler_req_exec_amf_administrative_state_group_set (
void *message,
struct totem_ip_address *source)
{
// struct req_exec_amf_administrative_state_group_set *req_exec_amf_administrative_state_group_set =
// (struct req_exec_amf_administrative_state_group_set *)message;
// TODO
}
/*
* Library Interface Implementation
*/
static void message_handler_req_lib_amf_componentregister (
void *conn,
void *msg)
{
struct req_lib_amf_componentregister *req_lib_amf_componentregister =
(struct req_lib_amf_componentregister *)msg;
struct res_lib_amf_componentregister res_lib_amf_componentregister;
struct amf_comp *comp;
struct amf_pd *amf_pd = (struct amf_pd *)openais_conn_private_data_get (conn);
SaAisErrorT error = SA_AIS_ERR_NOT_EXIST;
comp = find_comp (&req_lib_amf_componentregister->compName);
if (comp) {
presence_state_comp_set (comp,
SA_AMF_PRESENCE_INSTANTIATED);
operational_state_comp_set (comp,
SA_AMF_OPERATIONAL_ENABLED);
comp->conn = conn;
amf_pd->comp = comp;
comp_healthcheck_activate (comp);
error = SA_AIS_OK;
}
res_lib_amf_componentregister.header.id = MESSAGE_RES_AMF_COMPONENTREGISTER;
res_lib_amf_componentregister.header.size = sizeof (struct res_lib_amf_componentregister);
res_lib_amf_componentregister.header.error = error;
openais_conn_send_response (conn, &res_lib_amf_componentregister,
sizeof (struct res_lib_amf_componentregister));
}
static void message_handler_req_lib_amf_componentunregister (
void *conn,
void *msg)
{
#ifdef COMPILE_OUT
struct req_lib_amf_componentunregister *req_lib_amf_componentunregister = (struct req_lib_amf_componentunregister *)message;
struct req_exec_amf_componentunregister req_exec_amf_componentunregister;
struct iovec iovec;
struct amf_comp *component;
log_printf (LOG_LEVEL_FROM_LIB, "Handle : message_handler_req_lib_amf_componentunregister()\n");
req_exec_amf_componentunregister.header.size = sizeof (struct req_exec_amf_componentunregister);
req_exec_amf_componentunregister.header.id =
SERVICE_ID_MAKE (AMF_SERVICE, MESSAGE_REQ_EXEC_AMF_COMPONENTUNREGISTER);
message_source_set (&req_exec_amf_componentunregister.source, conn_info);
memcpy (&req_exec_amf_componentunregister.req_lib_amf_componentunregister,
req_lib_amf_componentunregister,
sizeof (struct req_lib_amf_componentunregister));
component = find_comp (&req_lib_amf_componentunregister->compName);
if (component && component->registered && component->local) {
// component->probableCause = SA_AMF_NOT_RESPONDING;
}
iovec.iov_base = (char *)&req_exec_amf_componentunregister;
iovec.iov_len = sizeof (req_exec_amf_componentunregister);
assert (totempg_groups_mcast_joined (openais_group_handle,
&iovec, 1, TOTEMPG_AGREED) == 0);
#endif
}
static void message_handler_req_lib_amf_pmstart (
void *conn,
void *msg)
{
}
static void message_handler_req_lib_amf_pmstop (
void *conn,
void *msg)
{
}
static void message_handler_req_lib_amf_healthcheckstart (
void *conn, void *msg)
{
struct req_lib_amf_healthcheckstart *req_lib_amf_healthcheckstart =
(struct req_lib_amf_healthcheckstart *)msg;
struct res_lib_amf_healthcheckstart res_lib_amf_healthcheckstart;
struct amf_healthcheck *healthcheck;
struct healthcheck_active *healthcheck_active;
struct amf_comp *comp;
SaAisErrorT error = SA_AIS_OK;
printf ("healthcheck start\n");
fflush (stdout);
healthcheck = find_healthcheck (&req_lib_amf_healthcheckstart->healthcheckKey);
if (healthcheck == 0) {
error = SA_AIS_ERR_NOT_EXIST;
goto error_exit;
}
comp = find_comp (&req_lib_amf_healthcheckstart->compName);
if (comp == 0) {
error = SA_AIS_ERR_NOT_EXIST;
goto error_exit;
}
/*
* Determine if this healthcheck is already active
*/
healthcheck_active = find_healthcheck_active (
comp,
&req_lib_amf_healthcheckstart->healthcheckKey,
req_lib_amf_healthcheckstart->invocationType);
if (healthcheck_active) {
error = SA_AIS_ERR_EXIST;
goto error_exit;
}
healthcheck_active = malloc (sizeof (struct healthcheck_active));
if (healthcheck_active == 0) {
error = SA_AIS_ERR_NO_MEMORY;
goto error_exit;
}
/*
* Make new instance of healthcheck key
*/
list_init (&healthcheck_active->list);
memcpy (&healthcheck_active->key,
&req_lib_amf_healthcheckstart->healthcheckKey,
sizeof (SaAmfHealthcheckKeyT));
healthcheck_active->comp = comp;
healthcheck_active->invocationType = req_lib_amf_healthcheckstart->invocationType;
healthcheck_active->healthcheck = healthcheck;
healthcheck_active->timer_healthcheck_duration = 0;
healthcheck_active->timer_healthcheck_period = 0;
healthcheck_active->active = 0;
list_add_tail (&healthcheck_active->list, &comp->healthcheck_list);
if (comp->conn != 0) {
printf ("Activating healthcheck for the first time %p\n", healthcheck_active);
healthcheck_activate (healthcheck_active);
}
#ifdef TODO
do we want to do healtchecking only when full su has registered or also of non-fully registered sus
if (comp->unit->operational_state == SA_AMF_OPERATIONAL_ENABLED) {
/*
* Start healthcheck now
*/
healthcheck_unit_activate (comp->unit);
}
#endif
error_exit:
res_lib_amf_healthcheckstart.header.id = MESSAGE_RES_AMF_HEALTHCHECKSTART;
res_lib_amf_healthcheckstart.header.size = sizeof (struct res_lib_amf_healthcheckstart);
res_lib_amf_healthcheckstart.header.error = error;
openais_conn_send_response (conn, &res_lib_amf_healthcheckstart,
sizeof (struct res_lib_amf_healthcheckstart));
}
static void message_handler_req_lib_amf_healthcheckconfirm (
void *conn,
void *msg)
{
}
static void message_handler_req_lib_amf_healthcheckstop (
void *conn,
void *msg)
{
struct req_lib_amf_healthcheckstop *req_lib_amf_healthcheckstop =
(struct req_lib_amf_healthcheckstop *)msg;
struct res_lib_amf_healthcheckstop res_lib_amf_healthcheckstop;
struct healthcheck_active *healthcheck_active;
struct amf_comp *comp;
SaAisErrorT error = SA_AIS_OK;
printf ("healthcheck stop\n");
comp = find_comp (&req_lib_amf_healthcheckstop->compName);
if (comp == 0) {
error = SA_AIS_ERR_NOT_EXIST;
goto error_exit;
}
healthcheck_active = find_healthcheck_active (
comp,
&req_lib_amf_healthcheckstop->healthcheckKey,
INVOCATION_DONT_COMPARE);
printf ("active %p\n", healthcheck_active);
if (healthcheck_active == 0) {
error = SA_AIS_ERR_NOT_EXIST;
goto error_exit;
}
healthcheck_deactivate (healthcheck_active);
error_exit:
printf ("healthcheck stop\n");
res_lib_amf_healthcheckstop.header.id = MESSAGE_RES_AMF_HEALTHCHECKSTOP;
res_lib_amf_healthcheckstop.header.size = sizeof (struct res_lib_amf_healthcheckstop);
res_lib_amf_healthcheckstop.header.error = error;
openais_conn_send_response (conn, &res_lib_amf_healthcheckstop,
sizeof (struct res_lib_amf_healthcheckstop));
}
static void message_handler_req_lib_amf_hastateget (
void *conn,
void *msg)
{
#ifdef COMPILE_OUT
struct req_lib_amf_hastateget *req_lib_amf_hastateget = (struct req_lib_amf_hastateget *)msg;
struct res_lib_amf_hastateget res_lib_amf_hastateget;
struct amf_comp *component;
log_printf (LOG_LEVEL_FROM_LIB, "Handle : message_handler_req_lib_amf_hastateget()\n");
res_lib_amf_hastateget.header.id = MESSAGE_RES_AMF_HASTATEGET;
res_lib_amf_hastateget.header.size = sizeof (struct res_lib_amf_hastateget);
res_lib_amf_hastateget.header.error = SA_ERR_NOT_EXIST;
#ifdef COMPILE_OUT
component = component_in_protectiongroup_find (&req_lib_amf_hastateget->csiName, &req_lib_amf_hastateget->compName);
#endif
if (component) {
memcpy (&res_lib_amf_hastateget.haState,
&component->currentHAState, sizeof (SaAmfHAStateT));
res_lib_amf_hastateget.header.error = SA_AIS_OK;
}
openais_conn_send_response (conn, &res_lib_amf_hastateget, sizeof (struct res_lib_amf_hastateget));
#endif
}
static void message_handler_req_lib_amf_protectiongrouptrackstart (
void *conn,
void *msg)
{
#ifdef COMPILE_OUT
struct req_lib_amf_protectiongrouptrackstart *req_lib_amf_protectiongrouptrackstart = (struct req_lib_amf_protectiongrouptrackstart *)message;
struct res_lib_amf_protectiongrouptrackstart res_lib_amf_protectiongrouptrackstart;
struct libamf_ci_trackentry *track = 0;
int i;
struct saAmfProtectionGroup *amfProtectionGroup;
log_printf (LOG_LEVEL_FROM_LIB, "Handle : message_handler_req_lib_amf_protectiongrouptrackstart()\n");
amfProtectionGroup = protectiongroup_find (&req_lib_amf_protectiongrouptrackstart->csiName);
if (amfProtectionGroup) {
log_printf (LOG_LEVEL_DEBUG, "protectiongrouptrackstart: Got valid track start on CSI: %s.\n", getSaNameT (&req_lib_amf_protectiongrouptrackstart->csiName));
for (i = 0; i < conn_info->ais_ci.u.libamf_ci.trackEntries; i++) {
if (conn_info->ais_ci.u.libamf_ci.tracks[i].active == 0) {
track = &conn_info->ais_ci.u.libamf_ci.tracks[i];
break;
}
}
if (track == 0) {
grow_amf_track_table (conn_info, 1);
track = &conn_info->ais_ci.u.libamf_ci.tracks[i];
}
track->active = 1;
track->trackFlags = req_lib_amf_protectiongrouptrackstart->trackFlags;
track->notificationBufferAddress = req_lib_amf_protectiongrouptrackstart->notificationBufferAddress;
memcpy (&track->csiName,
&req_lib_amf_protectiongrouptrackstart->csiName, sizeof (SaNameT));
conn_info->ais_ci.u.libamf_ci.trackActive += 1;
list_add (&conn_info->conn_list, &library_notification_send_listhead);
/*
* If SA_TRACK_CURRENT is specified, write out all current connections
*/
} else {
log_printf (LOG_LEVEL_DEBUG, "invalid track start, csi not registered with system.\n");
}
res_lib_amf_protectiongrouptrackstart.header.id = MESSAGE_RES_AMF_PROTECTIONGROUPTRACKSTART;
res_lib_amf_protectiongrouptrackstart.header.size = sizeof (struct res_lib_amf_protectiongrouptrackstart);
res_lib_amf_protectiongrouptrackstart.header.error = SA_ERR_NOT_EXIST;
if (amfProtectionGroup) {
res_lib_amf_protectiongrouptrackstart.header.error = SA_AIS_OK;
}
openais_conn_send_response (conn, &res_lib_amf_protectiongrouptrackstart,
sizeof (struct res_lib_amf_protectiongrouptrackstart));
if (amfProtectionGroup &&
req_lib_amf_protectiongrouptrackstart->trackFlags & SA_TRACK_CURRENT) {
protectiongroup_notification_send (conn_info,
track->notificationBufferAddress,
amfProtectionGroup,
0,
0,
SA_TRACK_CHANGES_ONLY);
track->trackFlags &= ~SA_TRACK_CURRENT;
}
#endif
}
static void message_handler_req_lib_amf_csiquiescingcomplete (
void *conn,
void *msg)
{
}
static void message_handler_req_lib_amf_protectiongrouptrackstop (
void *conn,
void *msg)
{
#ifdef COMPILE_OUT
struct req_lib_amf_protectiongrouptrackstop *req_lib_amf_protectiongrouptrackstop = (struct req_lib_amf_protectiongrouptrackstop *)message;
struct res_lib_amf_protectiongrouptrackstop res_lib_amf_protectiongrouptrackstop;
struct libamf_ci_trackentry *track = 0;
int i;
log_printf (LOG_LEVEL_FROM_LIB, "Handle : message_handler_req_lib_amf_protectiongrouptrackstop()\n");
for (i = 0; i < conn_info->ais_ci.u.libamf_ci.trackEntries; i++) {
if (name_match (&req_lib_amf_protectiongrouptrackstop->csiName,
&conn_info->ais_ci.u.libamf_ci.tracks[i].csiName)) {
track = &conn_info->ais_ci.u.libamf_ci.tracks[i];
}
}
if (track) {
log_printf (LOG_LEVEL_DEBUG, "protectiongrouptrackstop: Trackstop on CSI: %s\n", getSaNameT (&req_lib_amf_protectiongrouptrackstop->csiName));
memset (track, 0, sizeof (struct libamf_ci_trackentry));
conn_info->ais_ci.u.libamf_ci.trackActive -= 1;
if (conn_info->ais_ci.u.libamf_ci.trackActive == 0) {
list_del (&conn_info->conn_list);
}
}
res_lib_amf_protectiongrouptrackstop.header.id = MESSAGE_RES_AMF_PROTECTIONGROUPTRACKSTOP;
res_lib_amf_protectiongrouptrackstop.header.size = sizeof (struct res_lib_amf_protectiongrouptrackstop);
res_lib_amf_protectiongrouptrackstop.header.error = SA_ERR_NOT_EXIST;
if (track) {
res_lib_amf_protectiongrouptrackstop.header.error = SA_AIS_OK;
}
openais_conn_send_response (conn, &res_lib_amf_protectiongrouptrackstop,
sizeof (struct res_lib_amf_protectiongrouptrackstop));
#endif
}
static void message_handler_req_lib_amf_componenterrorreport (
void *conn,
void *msg)
{
struct req_lib_amf_componenterrorreport *req_lib_amf_componenterrorreport = (struct req_lib_amf_componenterrorreport *)msg;
struct res_lib_amf_componenterrorreport res_lib_amf_componenterrorreport;
struct amf_comp *comp;
SaAisErrorT error = SA_AIS_ERR_NOT_EXIST;
ENTER();
log_printf (LOG_LEVEL_NOTICE, "Handle : message_handler_req_lib_amf_componenterrorreport()\n");
printf ("ERROR REPORT\n");
comp = find_comp (&req_lib_amf_componenterrorreport->erroneousComponent);
if (comp) {
printf ("escalation policy terminate\n");
escalation_policy_cleanup (comp);
error = SA_AIS_OK;
}
res_lib_amf_componenterrorreport.header.size = sizeof (struct res_lib_amf_componenterrorreport);
res_lib_amf_componenterrorreport.header.id = MESSAGE_RES_AMF_COMPONENTERRORREPORT;
res_lib_amf_componenterrorreport.header.error = error;
openais_conn_send_response (
conn, &res_lib_amf_componenterrorreport,
sizeof (struct res_lib_amf_componenterrorreport));
}
static void message_handler_req_lib_amf_componenterrorclear (
void *conn,
void *msg)
{
#ifdef COMPILLE_OUT
struct req_lib_amf_componenterrorclear *req_lib_amf_componenterrorclear = (struct req_lib_amf_componenterrorclear *)message;
struct req_exec_amf_componenterrorclear req_exec_amf_componenterrorclear;
struct iovec iovec;
log_printf (LOG_LEVEL_FROM_LIB, "Handle : message_handler_req_lib_amf_componenterrorclear()\n");
req_exec_amf_componenterrorclear.header.size = sizeof (struct req_exec_amf_componenterrorclear);
req_exec_amf_componenterrorclear.header.id =
SERVICE_ID_MAKE (AMF_SERVICE, MESSAGE_REQ_EXEC_AMF_COMPONENTERRORCLEAR);
message_source_set (&req_exec_amf_componenterrorclear.source, conn_info);
memcpy (&req_exec_amf_componenterrorclear.req_lib_amf_componenterrorclear,
req_lib_amf_componenterrorclear,
sizeof (struct req_lib_amf_componenterrorclear));
iovec.iov_base = (char *)&req_exec_amf_componenterrorclear;
iovec.iov_len = sizeof (req_exec_amf_componenterrorclear);
assert (totempg_groups_mcast_joined (openais_group_handle,
&iovec, 1, TOTEMPG_AGREED) == 0);
#endif
}
void pg_comp_create (
struct amf_pg *pg,
struct amf_csi *csi,
struct amf_comp *comp)
{
struct amf_pg_comp *pg_comp;
printf ("creating component for pg\n");
pg_comp = malloc (sizeof (struct amf_pg_comp));
assert (pg_comp);
pg_comp->comp = comp;
pg_comp->csi = csi;
list_init (&pg_comp->list);
list_add_tail (&pg_comp->list, &pg->pg_comp_head);
}
static void message_handler_req_lib_amf_response (void *conn, void *msg)
{
struct req_lib_amf_response *req_lib_amf_response = (struct req_lib_amf_response *)msg;
struct res_lib_amf_response res_lib_amf_response;
struct csi_set_callback_data *csi_set_callback_data;
struct csi_remove_callback_data *csi_remove_callback_data;
struct component_terminate_callback_data *component_terminate_callback_data;
struct healthcheck_active *healthcheck_active;
int interface;
int res;
void *data;
SaAisErrorT error = SA_AIS_OK;
ENTER_VOID();
res = invocation_get_and_destroy (req_lib_amf_response->invocation,
&interface, &data);
if (res == -1) {
printf ("invocation not found\n");
error = SA_AIS_ERR_NOT_EXIST;
goto error_exit;
}
switch (interface) {
case AMF_RESPONSE_HEALTHCHECKCALLBACK:
healthcheck_active = (struct healthcheck_active *)data;
poll_timer_delete (aisexec_poll_handle,
healthcheck_active->timer_healthcheck_duration);
healthcheck_active->timer_healthcheck_duration = 0;
poll_timer_add (aisexec_poll_handle,
healthcheck_active->healthcheck->period,
(void *)healthcheck_active,
timer_function_healthcheck_next,
&healthcheck_active->timer_healthcheck_period);
break;
case AMF_RESPONSE_CSISETCALLBACK:
csi_set_callback_data = (struct csi_set_callback_data *)data;
dprintf ("csi callback executed from library.\n");
csi_set_callback_data->comp->ha_state =
csi_set_callback_data->comp->unit->requested_ha_state;
// list_add (&csi_set_callback_data->comp->
/*
pg_comp_create (
csi_set_callback_data->pg,
csi_set_callback_data->csi,
csi_set_callback_data->comp);
*/
free (csi_set_callback_data);
break;
case AMF_RESPONSE_CSIREMOVECALLBACK:
csi_remove_callback_data = (struct csi_remove_callback_data *)data;
dprintf ("response from removing the CSI\n");
// AAAA
list_del (&csi_remove_callback_data->csi->si->unit_list);
list_del (&csi_remove_callback_data->csi->csi_list);
free (csi_remove_callback_data);
break;
case AMF_RESPONSE_COMPONENTTERMINATECALLBACK:
component_terminate_callback_data = (struct component_terminate_callback_data *)data;
dprintf ("response from terminating component\n");
comp_healthcheck_deactivate (component_terminate_callback_data->comp);
escalation_policy_restart (component_terminate_callback_data->comp);
break;
default:
// TODO
log_printf (LOG_LEVEL_ERROR, "invalid invocation value %x\n", req_lib_amf_response->invocation);
break;
}
error_exit:
res_lib_amf_response.header.id = MESSAGE_RES_AMF_RESPONSE;
res_lib_amf_response.header.size = sizeof (struct res_lib_amf_response);
res_lib_amf_response.header.error = SA_AIS_OK;
openais_conn_send_response (conn, &res_lib_amf_response,
sizeof (struct res_lib_amf_response));
LEAVE_VOID();
}
#ifdef COMPILE_OUT
/*
* Executive Message Implementation
*/
static void message_handler_req_exec_amf_componentregister (void *message, struct in_addr source_addr, int endian_conversion_required)
{
#ifdef COMPILE_OUT
struct req_exec_amf_componentregister *req_exec_amf_componentregister = (struct req_exec_amf_componentregister *)message;
struct res_lib_amf_componentregister res_lib_amf_componentregister;
struct amf_comp *component;
struct amf_comp *amfProxyComponent;
SaAisErrorT error;
log_printf (LOG_LEVEL_FROM_GMI, "Executive: ComponentRegister for component %s\n",
getSaNameT (&req_exec_amf_componentregister->req_lib_amf_componentregister.compName));
/*
* Determine if proxy isn't registered
*/
error = SA_AIS_OK;
component = find_comp (&req_exec_amf_componentregister->req_lib_amf_componentregister.compName);
amfProxyComponent = find_comp (&req_exec_amf_componentregister->req_lib_amf_componentregister.proxyCompName);
/*
* If a node is joining menber ship ,Component States Synchronize
*/
if (req_exec_amf_componentregister->source.in_addr.s_addr == 0) {
amf_synchronize (message, source_addr);
return;
}
/*
* If component not in configuration files, return error
*/
if (component == 0) {
error = SA_ERR_NOT_EXIST;
}
/*
* If proxy doesn't exist and isn't registered, return error
*/
if ((amfProxyComponent == 0 &&
req_exec_amf_componentregister->req_lib_amf_componentregister.proxyCompName.length > 0) ||
(amfProxyComponent && amfProxyComponent->registered == 0)) {
error = SA_ERR_NOT_EXIST;
}
/*
* If component already registered, return error
*/
if (error == SA_AIS_OK) {
if (component->registered) {
error = SA_ERR_EXIST;
}
}
/*
* Finally register component and setup links for proxy if
* proxy present
*/
if (error == SA_AIS_OK) {
component->local = 0;
component->registered = 1;
component->conn_info = req_exec_amf_componentregister->source.conn_info;
component->source_addr = source_addr;
// component->currentReadinessState = SA_AMF_OUT_OF_SERVICE;
// component->newReadinessState = SA_AMF_OUT_OF_SERVICE;
component->currentHAState = 0;
component->newHAState = 0;
component->probableCause = 0;
component->enabledUnlockedState = 0;
component->disabledUnlockedState = 0;
component->healthcheck_outstanding = 0;
if (req_exec_amf_componentregister->req_lib_amf_componentregister.proxyCompName.length > 0) {
component->saAmfProxyComponent = amfProxyComponent;
}
}
/*
* If this node originated the request to the cluster, respond back
* to the AMF library
*/
if (message_source_is_local(&req_exec_amf_componentregister->source)) {
if (error == SA_AIS_OK) {
component->local = 1;
req_exec_amf_componentregister->source.conn_info->component = component;
}
log_printf (LOG_LEVEL_DEBUG, "sending component register response to fd %d\n",
req_exec_amf_componentregister->source.conn_info->fd);
res_lib_amf_componentregister.header.size = sizeof (struct res_lib_amf_componentregister);
res_lib_amf_componentregister.header.id = MESSAGE_RES_AMF_COMPONENTREGISTER;
res_lib_amf_componentregister.header.error = error;
openais_conn_send_response (req_exec_amf_componentregister->source.conn_info,
&res_lib_amf_componentregister,
sizeof (struct res_lib_amf_componentregister));
}
/*
* If no error on registration, determine if we should enter new state
*/
if (error == SA_AIS_OK) {
dsm (component);
}
#endif
}
static void message_handler_req_exec_amf_componentunregister (void *message, struct in_addr source_addr, int endian_conversion_required)
{
struct req_exec_amf_componentunregister *req_exec_amf_componentunregister = (struct req_exec_amf_componentunregister *)message;
struct res_lib_amf_componentunregister res_lib_amf_componentunregister;
struct amf_comp *component;
struct amf_comp *amfProxyComponent;
SaAisErrorT error;
log_printf (LOG_LEVEL_FROM_GMI, "Executive: Component_unregister for %s\n",
getSaNameT (&req_exec_amf_componentunregister->req_lib_amf_componentunregister.compName));
component = find_comp (&req_exec_amf_componentunregister->req_lib_amf_componentunregister.compName);
amfProxyComponent = find_comp (&req_exec_amf_componentunregister->req_lib_amf_componentunregister.proxyCompName);
/*
* Check for proxy and component not existing in system
*/
error = SA_AIS_OK;
if (component == 0) {
error = SA_ERR_NOT_EXIST;
}
if (req_exec_amf_componentunregister->req_lib_amf_componentunregister.proxyCompName.length > 0) {
if (amfProxyComponent) {
if (amfProxyComponent->registered == 0) {
error = SA_ERR_NOT_EXIST;
}
} else {
error = SA_ERR_NOT_EXIST;
}
}
/*
* If there is a proxycompname, make sure it is the proxy
* of compName
*/
if (error == SA_AIS_OK && amfProxyComponent) {
if (component->saAmfProxyComponent != amfProxyComponent) {
error = SA_ERR_BAD_OPERATION;
}
}
/*
* Finally unregister the component
*/
if (error == SA_AIS_OK) {
component->registered = 0;
// dsmEnabledUnlockedTransitionDisabledUnlocked (component);
}
/*
* If this node originated the request to the cluster, respond back
* to the AMF library
*/
if (message_source_is_local (&req_exec_amf_componentunregister->source)) {
log_printf (LOG_LEVEL_DEBUG, "sending component unregister response to fd %d\n",
req_exec_amf_componentunregister->source.conn_info->fd);
res_lib_amf_componentunregister.header.size = sizeof (struct res_lib_amf_componentunregister);
res_lib_amf_componentunregister.header.id = MESSAGE_RES_AMF_COMPONENTUNREGISTER;
res_lib_amf_componentunregister.header.error = error;
openais_conn_send_response (req_exec_amf_componentunregister->source.conn_info,
&res_lib_amf_componentunregister, sizeof (struct res_lib_amf_componentunregister));
}
return;
}
static void message_handler_req_exec_amf_componenterrorreport (void *message, struct in_addr source_addr, int endian_conversion_required)
{
struct req_exec_amf_componenterrorreport *req_exec_amf_componenterrorreport = (struct req_exec_amf_componenterrorreport *)message;
struct res_lib_amf_componenterrorreport res_lib_amf_componenterrorreport;
struct amf_comp *comp;
SaAisErrorT error = SA_AIS_OK;
log_printf (LOG_LEVEL_NOTICE, "Executive: ErrorReport for %s\n",
getSaNameT (&req_exec_amf_componenterrorreport->req_lib_amf_componenterrorreport.erroneousComponent));
comp = find_comp (&req_exec_amf_componenterrorreport->req_lib_amf_componenterrorreport.erroneousComponent);
if (comp == 0) {
error = SA_AIS_ERR_NOT_EXIST;
}
/*
* If this node originated the request to the cluster, respond back
* to the AMF library
*/
if (message_source_is_local (&req_exec_amf_componenterrorreport->source)) {
log_printf (LOG_LEVEL_DEBUG, "sending error report response to fd %d\n",
req_exec_amf_componenterrorreport->source.conn_info->fd);
if (comp) {
}
res_lib_amf_componenterrorreport.header.size = sizeof (struct res_lib_amf_componenterrorreport);
res_lib_amf_componenterrorreport.header.id = MESSAGE_RES_AMF_COMPONENTERRORREPORT;
res_lib_amf_componenterrorreport.header.error = error;
openais_conn_send_response (req_exec_amf_componenterrorreport->source.conn_info,
&res_lib_amf_componenterrorreport, sizeof (struct res_lib_amf_componenterrorreport));
}
return (0);
}
static void message_handler_req_exec_amf_componenterrorclear (void *message, struct in_addr source_addr, int endian_conversion_required)
{
struct req_exec_amf_componenterrorclear *req_exec_amf_componenterrorclear = (struct req_exec_amf_componenterrorclear *)message;
struct res_lib_amf_componenterrorclear res_lib_amf_componenterrorclear;
struct amf_comp *component;
SaAisErrorT error = SA_ERR_BAD_OPERATION;
#ifdef COMPILE_OUT
log_printf (LOG_LEVEL_FROM_GMI, "Executive: ErrorCancelAll for %s\n",
getSaNameT (&req_exec_amf_componenterrorclear->req_lib_amf_componenterrorclear.compName));
component = find_comp (&req_exec_amf_componenterrorclear->req_lib_amf_componenterrorclear.compName);
if (component && component->registered) {
/*
* Mark component in service if its a AMF service
* connected to this aisexec
*/
if (component->probableCause) {
component->probableCause = 0;
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_REGISTEREDORERRORCANCEL;
dsm (component);
}
error = SA_AIS_OK;
}
/*
* If this node originated the request to the cluster, respond back
* to the AMF library
*/
if (message_source_is_local (&req_exec_amf_componenterrorclear->source)) {
log_printf (LOG_LEVEL_DEBUG, "sending error report response to fd %d\n",
req_exec_amf_componenterrorclear->source.conn_info->fd);
res_lib_amf_componenterrorclear.header.size = sizeof (struct res_lib_amf_componenterrorclear);
res_lib_amf_componenterrorclear.header.id = MESSAGE_RES_AMF_COMPONENTERRORCLEAR;
res_lib_amf_componenterrorclear.header.error = error;
openais_conn_send_response (req_exec_amf_componenterrorclear->source.conn_info,
&res_lib_amf_componenterrorclear, sizeof (struct res_lib_amf_componenterrorclear));
}
#endif
return (0);
}
#endif
#ifdef COMPILE_OUT
static void grow_amf_track_table (struct conn_info *conn_info, int growby)
{
struct libamf_ci_trackentry *tracks;
int newsize;
int currsize = conn_info->ais_ci.u.libamf_ci.trackEntries;
newsize = growby + currsize;
if (newsize > currsize) {
tracks = (struct libamf_ci_trackentry *)mempool_realloc (conn_info->ais_ci.u.libamf_ci.tracks,
(newsize) * sizeof (struct libamf_ci_trackentry));
if (tracks == 0) {
#ifdef DEBUG
printf ("grow_amf_track_table: out of memory, woops\n");
#endif
// TODO
exit (1);
}
memset (&tracks[currsize], 0, growby * sizeof (struct libamf_ci_trackentry));
conn_info->ais_ci.u.libamf_ci.trackEntries = newsize;
conn_info->ais_ci.u.libamf_ci.tracks = tracks;
}
}
static void component_unregister (
struct amf_comp *component)
{
struct req_exec_amf_componentunregister req_exec_amf_componentunregister;
struct iovec iovec;
/*
* This only works on local components
*/
if (component == 0 || component->local != 1) {
return;
}
log_printf (LOG_LEVEL_ENTER_FUNC, "component_unregister: unregistering component %s\n",
getSaNameT (&component->name));
component->probableCause = SA_AMF_NOT_RESPONDING;
req_exec_amf_componentunregister.header.size = sizeof (struct req_exec_amf_componentunregister);
req_exec_amf_componentunregister.header.id =
SERVICE_ID_MAKE (AMF_SERVICE, MESSAGE_REQ_EXEC_AMF_COMPONENTUNREGISTER);
req_exec_amf_componentunregister.source.conn_info = 0;
req_exec_amf_componentunregister.source.in_addr.s_addr = 0;
memset (&req_exec_amf_componentunregister.req_lib_amf_componentunregister,
0, sizeof (struct req_lib_amf_componentunregister));
memcpy (&req_exec_amf_componentunregister.req_lib_amf_componentunregister.compName,
&component->name,
sizeof (SaNameT));
iovec.iov_base = (char *)&req_exec_amf_componentunregister;
iovec.iov_len = sizeof (req_exec_amf_componentunregister);
assert (totempg_groups_mcast_joined (openais_group_handle, &iovec, 1, TOTEMPG_AGREED) == 0);
}
static void component_register (
struct amf_comp *component)
{
struct req_exec_amf_componentregister req_exec_amf_componentregister;
struct iovec iovec;
/*
* This only works on local components
*/
if (component == 0 || component->local != 1) {
return;
}
log_printf (LOG_LEVEL_ENTER_FUNC, "component_register: registering component %s\n",
getSaNameT (&component->name));
req_exec_amf_componentregister.header.size = sizeof (struct req_exec_amf_componentregister);
req_exec_amf_componentregister.header.id =
SERVICE_ID_MAKE (AMF_SERVICE, MESSAGE_REQ_EXEC_AMF_COMPONENTREGISTER);
req_exec_amf_componentregister.source.conn_info = 0;
req_exec_amf_componentregister.source.in_addr.s_addr = 0;
req_exec_amf_componentregister.currentReadinessState = component->currentReadinessState;
req_exec_amf_componentregister.newReadinessState = component->newReadinessState;
req_exec_amf_componentregister.currentHAState = component->currentHAState;
req_exec_amf_componentregister.newHAState = component->newHAState;
memset (&req_exec_amf_componentregister.req_lib_amf_componentregister,
0, sizeof (struct req_lib_amf_componentregister));
memcpy (&req_exec_amf_componentregister.req_lib_amf_componentregister.compName,
&component->name,
sizeof (SaNameT));
iovec.iov_base = (char *)&req_exec_amf_componentregister;
iovec.iov_len = sizeof (req_exec_amf_componentregister);
assert (totempg_groups_mcast_joined (openais_group_handle, &iovec, 1, TOTEMPG_AGREED) == 0);
}
/***
This should be used for a partition I think
**/
void enumerate_components (
void (*function)(struct amf_comp *, void *data),
void *data)
{
struct list_head *AmfGroupList;
struct list_head *AmfUnitList;
struct list_head *AmfComponentList;
struct saAmfGroup *saAmfGroup;
struct saAmfUnit *AmfUnit;
struct amf_comp *AmfComponent;
/*
* Search all groups
*/
for (AmfGroupList = saAmfGroupHead.next;
AmfGroupList != &saAmfGroupHead;
AmfGroupList = AmfGroupList->next) {
saAmfGroup = list_entry (AmfGroupList,
struct saAmfGroup, saAmfGroupList);
/*
* Search all units
*/
for (AmfUnitList = saAmfGroup->saAmfUnitHead.next;
AmfUnitList != &saAmfGroup->saAmfUnitHead;
AmfUnitList = AmfUnitList->next) {
AmfUnit = list_entry (AmfUnitList,
struct saAmfUnit, saAmfUnitList);
/*
* Search all components
*/
for (AmfComponentList = AmfUnit->amf_compHead.next;
AmfComponentList != &AmfUnit->amf_compHead;
AmfComponentList = AmfComponentList->next) {
AmfComponent = list_entry (AmfComponentList,
struct amf_comp, amf_compList);
function (AmfComponent, data);
}
}
}
}
void ha_state_api_set (struct amf_comp *component, SaAmfHAStateT haState)
{
struct res_lib_amf_csisetcallback res_lib_amf_csisetcallback;
memset (&res_lib_amf_csisetcallback,0,sizeof(res_lib_amf_csisetcallback));
log_printf (LOG_LEVEL_ENTER_FUNC, "sending ha state to API\n");
if (component->local != 1) {
return;
}
if (component->probableCause == SA_AMF_NOT_RESPONDING) {
return;
}
/*
* this should be an assertion
*/
if (component->conn_info->state != CONN_STATE_ACTIVE ||
component->conn_info->service != AMF_SERVICE) {
return;
}
res_lib_amf_csisetcallback.header.id = MESSAGE_RES_AMF_CSISETCALLBACK;
res_lib_amf_csisetcallback.header.size = sizeof (struct res_lib_amf_csisetcallback);
res_lib_amf_csisetcallback.header.error = SA_AIS_OK;
if (res_lib_amf_csisetcallback.invocation == -1) {
printf ("TODO set callback\n");
}
memcpy (&res_lib_amf_csisetcallback.compName,
&component->name, sizeof (SaNameT));
memcpy (&res_lib_amf_csisetcallback.csiName,
&component->saAmfProtectionGroup->name, sizeof (SaNameT));
res_lib_amf_csisetcallback.csiFlags = SA_AMF_CSI_ALL_INSTANCES;
res_lib_amf_csisetcallback.haState = haState;
// TODO set activeCompName to correct component name
memcpy (&res_lib_amf_csisetcallback.activeCompName,
&component->name, sizeof (SaNameT));
res_lib_amf_csisetcallback.transitionDescriptor = SA_AMF_CSI_NEW_ASSIGN;
component->newHAState = haState;
openais_conn_send_response (component->conn_info->conn_info_partner,
&res_lib_amf_csisetcallback,
sizeof (struct res_lib_amf_csisetcallback));
}
static void ha_state_group_set (
struct amf_comp *component,
SaAmfHAStateT haState)
{
struct req_exec_amf_hastateset req_exec_amf_hastateset;
struct iovec iovec;
req_exec_amf_hastateset.header.id =
SERVICE_ID_MAKE (AMF_SERVICE, MESSAGE_REQ_EXEC_AMF_HASTATESET);
req_exec_amf_hastateset.header.size = sizeof (struct req_exec_amf_hastateset);
memcpy (&req_exec_amf_hastateset.compName, &component->name, sizeof (SaNameT));
req_exec_amf_hastateset.haState = haState;
log_printf (LOG_LEVEL_ENTER_FUNC, "Sending ha state to cluster for component %s\n", getSaNameT (&component->name));
log_printf (LOG_LEVEL_DEBUG, "ha state is %d\n", haState);
iovec.iov_base = (char *)&req_exec_amf_hastateset;
iovec.iov_len = sizeof (req_exec_amf_hastateset);
assert (totempg_groups_mcast_joined (openais_group_handle, iovec, 1, TOTEMPG_AGREED) == 0);
}
void readiness_state_api_set (struct amf_comp *component,
SaAmfReadinessStateT readinessState)
{
struct res_lib_amf_readinessstatesetcallback res_lib_amf_readinessstatesetcallback;
memset (&res_lib_amf_readinessstatesetcallback,0,sizeof(res_lib_amf_readinessstatesetcallback));
/*
* If component is local, don't request service from API
*/
if (component->local != 1) {
return;
}
if (component->probableCause == SA_AMF_NOT_RESPONDING) {
return;
}
/*
* this should be an assertion
*/
if (component->conn_info->state != CONN_STATE_ACTIVE ||
component->conn_info->service != AMF_SERVICE) {
return;
}
res_lib_amf_readinessstatesetcallback.header.id = MESSAGE_RES_AMF_READINESSSTATESETCALLBACK;
res_lib_amf_readinessstatesetcallback.header.size = sizeof (struct res_lib_amf_readinessstatesetcallback);
res_lib_amf_readinessstatesetcallback.header.error = SA_AIS_OK;
res_lib_amf_readinessstatesetcallback.invocation =
req_lib_amf_invocation_create (
MESSAGE_REQ_AMF_RESPONSE_SAAMFREADINESSSTATESETCALLBACK,
comp);
if (res_lib_amf_readinessstatesetcallback.invocation == -1) {
printf ("TODO readiness set callback\n");
}
memcpy (&res_lib_amf_readinessstatesetcallback.compName,
&component->name, sizeof (SaNameT));
res_lib_amf_readinessstatesetcallback.readinessState = readinessState;
component->newReadinessState = readinessState;
log_printf (LOG_LEVEL_DEBUG, "Setting conn_info %p to readiness state %d\n", component->conn_info, readinessState);
openais_conn_send_response (component->conn_info->conn_info_partner,
&res_lib_amf_readinessstatesetcallback,
sizeof (struct res_lib_amf_readinessstatesetcallback));
}
static void readiness_state_group_set (
struct amf_comp *component,
SaAmfReadinessStateT readinessState)
{
struct req_exec_amf_readinessstateset req_exec_amf_readinessstateset;
struct iovec iovec;
req_exec_amf_readinessstateset.header.id =
SERVICE_ID_MAKE (AMF_SERVICE, MESSAGE_REQ_EXEC_AMF_READINESSSTATESET);
req_exec_amf_readinessstateset.header.size = sizeof (struct req_exec_amf_readinessstateset);
memcpy (&req_exec_amf_readinessstateset.compName, &component->name, sizeof (SaNameT));
req_exec_amf_readinessstateset.readinessState = readinessState;
log_printf (LOG_LEVEL_ENTER_FUNC, "Sending message to all cluster nodes to set readiness state of component %s\n",
getSaNameT (&component->name));
log_printf (LOG_LEVEL_DEBUG, "readiness state is %d\n", readinessState);
iovec.iov_base = (char *)&req_exec_amf_readinessstateset;
iovec.iov_len = sizeof (req_exec_amf_readinessstateset);
assert (totempg_groups_mcast_joined (openais_group_handle, &iovec, 1, TOTEMPG_AGREED) == 0);
}
static void dsmDisabledUnlockedRegisteredOrErrorCancel (
struct amf_comp *component)
{
struct saAmfUnit *unit;
struct list_head *list;
int serviceUnitEnabled;
log_printf (LOG_LEVEL_DEBUG, "dsmDisabledUnlockedRegisteredOrErrorCancel for %s\n",
getSaNameT (&component->name));
unit = component->saAmfUnit;
for (serviceUnitEnabled = 1, list = unit->amf_compHead.next;
list != &unit->amf_compHead;
list = list->next) {
component = list_entry (list,
struct amf_comp, amf_compList);
if (component->registered == 0 ||
component->probableCause) {
log_printf (LOG_LEVEL_DEBUG, "dsm: Can't transition states, found component not registered or failed.\n");
serviceUnitEnabled = 0;
break;
}
}
if (serviceUnitEnabled == 1) {
log_printf (LOG_LEVEL_DEBUG, "dsm entering AMF_ENABLED_UNLOCKED state.\n");
component->saAmfUnit->operationalAdministrativeState = AMF_ENABLED_UNLOCKED;
component->disabledUnlockedState = -1; // SHOULD BE INVALID
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_INITIAL;
dsm (component);
}
}
static void dsmDisabledUnlockedFailedComponent (
struct amf_comp *component)
{
log_printf (LOG_LEVEL_DEBUG, "dsmDisabledUnlockedFailedComponent: for %s.\n",
getSaNameT (&component->name));
switch (component->enabledUnlockedState) {
case AMF_ENABLED_UNLOCKED_IN_SERVICE_REQUESTED:
case AMF_ENABLED_UNLOCKED_IN_SERVICE_COMPLETED:
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_OUT_OF_SERVICE_REQUESTED;
if (component->probableCause == SA_AMF_NOT_RESPONDING) {
readiness_state_group_set (component, SA_AMF_OUT_OF_SERVICE);
} else {
readiness_state_api_set (component, SA_AMF_OUT_OF_SERVICE);
}
break;
case AMF_ENABLED_UNLOCKED_ACTIVE_REQUESTED:
case AMF_ENABLED_UNLOCKED_ACTIVE_COMPLETED:
case AMF_ENABLED_UNLOCKED_STANDBY_REQUESTED:
case AMF_ENABLED_UNLOCKED_STANDBY_COMPLETED:
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_QUIESCED_REQUESTED;
if (component->probableCause == SA_AMF_NOT_RESPONDING) {
ha_state_group_set (component, SA_AMF_QUIESCED);
} else {
ha_state_api_set (component, SA_AMF_QUIESCED);
}
poll_timer_delete (aisexec_poll_handle,
component->timer_healthcheck);
component->timer_healthcheck = 0;
break;
default:
log_printf (LOG_LEVEL_DEBUG, "invalid case 5 %d\n", component->enabledUnlockedState);
break;
}
}
static void dsmDisabledUnlockedFailed (
struct amf_comp *component)
{
struct saAmfUnit *unit;
struct list_head *list;
unit = component->saAmfUnit;
for (list = unit->amf_compHead.next;
list != &unit->amf_compHead;
list = list->next) {
component = list_entry (list, struct amf_comp, amf_compList);
dsmDisabledUnlockedFailedComponent (component);
}
return;
}
static void dsmDisabledUnlockedQuiescedRequested (
struct amf_comp *component)
{
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_QUIESCED_COMPLETED;
dsm (component);
}
static void dsmDisabledUnlockedQuiescedCompleted (
struct amf_comp *component)
{
struct saAmfUnit *unit;
struct list_head *list;
int serviceUnitQuiesced;
unit = component->saAmfUnit;
for (serviceUnitQuiesced = 1, list = unit->amf_compHead.next;
list != &unit->amf_compHead;
list = list->next) {
component = list_entry (list, struct amf_comp, amf_compList);
if (component->probableCause != SA_AMF_NOT_RESPONDING && component->registered) {
if (component->currentHAState != SA_AMF_QUIESCED) {
log_printf (LOG_LEVEL_DEBUG, "dsm: Can't transition states, found component not quiesced.\n");
serviceUnitQuiesced = 0;
break;
}
}
}
if (serviceUnitQuiesced == 1) {
log_printf (LOG_LEVEL_DEBUG, "All components have quiesced, Quiescing completed\n");
for (list = unit->amf_compHead.next;
list != &unit->amf_compHead;
list = list->next) {
component = list_entry (list, struct amf_comp, amf_compList);
log_printf (LOG_LEVEL_DEBUG, "dsm: Sending readiness state set to OUTOFSERVICE for comp %s.\n",
getSaNameT (&component->name));
if ( component->probableCause == SA_AMF_NOT_RESPONDING ) {
readiness_state_group_set (component, SA_AMF_OUT_OF_SERVICE);
} else {
readiness_state_api_set (component, SA_AMF_OUT_OF_SERVICE);
}
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_OUT_OF_SERVICE_REQUESTED;
}
}
}
static void dsmDisabledUnlockedOutOfServiceRequested (
struct amf_comp *component)
{
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_OUT_OF_SERVICE_COMPLETED;
dsm (component);
}
static void dsmDisabledUnlockedOutOfServiceCompleted (
struct amf_comp *component)
{
struct saAmfUnit *unit;
struct list_head *list;
int serviceUnitOutOfService;
struct saAmfGroup *group = 0;
struct list_head *comp_list = 0;
struct list_head *unit_list = 0;
int serviceUnitInStandby = 0;
int activeServiceUnits = 0;
/*
* Once all components of a service unit are out of service,
* activate another service unit in standby
*/
log_printf (LOG_LEVEL_DEBUG, "dsmDisabledUnlockedOutOfServiceCompleted: component out of service %s\n", getSaNameT (&component->name));
/*
* Determine if all components have responded to going out of service
*/
unit = component->saAmfUnit;
for (serviceUnitOutOfService = 1, list = unit->amf_compHead.next;
list != &unit->amf_compHead;
list = list->next) {
component = list_entry (list, struct amf_comp, amf_compList);
if (component->probableCause != SA_AMF_NOT_RESPONDING && component->registered) {
if (component->currentReadinessState != SA_AMF_OUT_OF_SERVICE) {
log_printf (LOG_LEVEL_DEBUG, "dsm: Can't transition states, found component not quiesced.\n");
serviceUnitOutOfService = 0;
break;
}
}
if ( component->registered == 0 ) {
protectiongroup_notifications_send (component, SA_AMF_PROTECTION_GROUP_REMOVED);
}
}
group = unit->saAmfGroup;
activeServiceUnits = activeServiceUnitsCount(group);
if (activeServiceUnits>=group->saAmfActiveUnitsDesired) {
return;
}
if (serviceUnitOutOfService == 1) {
log_printf (LOG_LEVEL_DEBUG, "SU has gone out of service.\n");
/*
* Search all units
*/
for (unit_list = group->saAmfUnitHead.next;
unit_list != &group->saAmfUnitHead;
unit_list = unit_list->next) {
unit = list_entry (unit_list,
struct saAmfUnit, saAmfUnitList);
log_printf (LOG_LEVEL_DEBUG, "Checking if service unit is in standby %s\n", getSaNameT (&unit->name));
/*
* Search all components
*/
for (serviceUnitInStandby = 1,
comp_list = unit->amf_compHead.next;
comp_list != &unit->amf_compHead;
comp_list = comp_list->next) {
component = list_entry (comp_list,
struct amf_comp, amf_compList);
if (component->currentHAState != SA_AMF_STANDBY) {
serviceUnitInStandby = 0;
break; /* for iteration of service unit components */
}
}
if (serviceUnitInStandby) {
break; /* for iteration of service group's service units */
}
}
/*
* All components in service unit are standby, activate standby service unit
*/
if (serviceUnitInStandby) {
log_printf (LOG_LEVEL_DEBUG, "unit in standby\n");
for (list = unit->amf_compHead.next;
list != &unit->amf_compHead;
list = list->next) {
component = list_entry (list,
struct amf_comp, amf_compList);
ha_state_api_set (component, SA_AMF_ACTIVE);
}
} else {
log_printf (LOG_LEVEL_DEBUG, "Can't activate standby service unit because no standby is available.\n");
}
}
}
static void dsmEnabledUnlockedInitial (
struct amf_comp *component)
{
struct saAmfUnit *unit;
struct list_head *list;
unit = component->saAmfUnit;
for (list = unit->amf_compHead.next;
list != &unit->amf_compHead;
list = list->next) {
component = list_entry (list, struct amf_comp, amf_compList);
readiness_state_api_set (component, SA_AMF_IN_SERVICE);
log_printf (LOG_LEVEL_DEBUG, "dsm: telling component %s to enter SA_AMF_IN_SERVICE.\n",
getSaNameT (&component->name));
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_IN_SERVICE_REQUESTED;
}
}
static void dsmEnabledUnlockedInServiceRequested (
struct amf_comp *component)
{
struct saAmfUnit *unit;
struct list_head *list;
int in_service;
log_printf (LOG_LEVEL_DEBUG, "dsmEnabledUnlockedInServiceRequested %s.\n", getSaNameT (&component->name));
unit = component->saAmfUnit;
for (in_service = 1, list = unit->amf_compHead.next;
list != &unit->amf_compHead;
list = list->next) {
component = list_entry (list, struct amf_comp, amf_compList);
if (component->currentReadinessState != SA_AMF_IN_SERVICE) {
log_printf (LOG_LEVEL_DEBUG, "dsm: Found atleast one component not in service\n");
in_service = 0;
break;
}
}
if (in_service) {
log_printf (LOG_LEVEL_DEBUG, "DSM determined component is in service\n");
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_IN_SERVICE_COMPLETED;
dsm (component);
}
}
static void dsmEnabledUnlockedInServiceCompleted (
struct amf_comp *component)
{
struct saAmfUnit *unit;
struct list_head *list;
SaAmfHAStateT newHaState;
int activeServiceUnits;
log_printf (LOG_LEVEL_DEBUG, "dsmEnabledUnlockedInServiceCompleted %s.\n", getSaNameT (&component->name));
unit = component->saAmfUnit;
for (list = unit->amf_compHead.next;
list != &unit->amf_compHead;
list = list->next) {
component = list_entry (list,
struct amf_comp, amf_compList);
log_printf (LOG_LEVEL_DEBUG, "Requesting component go active.\n");
/*
* Count number of active service units
*/
activeServiceUnits = activeServiceUnitsCount (component->saAmfUnit->saAmfGroup);
if (activeServiceUnits < component->saAmfUnit->saAmfGroup->saAmfActiveUnitsDesired) {
newHaState = SA_AMF_ACTIVE;
log_printf (LOG_LEVEL_DEBUG, "Setting ha state of component %s to SA_AMF_ACTIVE\n", getSaNameT (&component->name));
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_ACTIVE_REQUESTED;
} else {
newHaState = SA_AMF_STANDBY;
log_printf (LOG_LEVEL_DEBUG, "Setting ha state of component %s to SA_AMF_STANDBY\n", getSaNameT (&component->name));
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_STANDBY_REQUESTED;
}
ha_state_api_set (component, newHaState);
}
}
static void dsmEnabledUnlockedActiveRequested (
struct amf_comp *component)
{
if (component->local == 1) {
log_printf (LOG_LEVEL_DEBUG, "Adding healthcheck timer1\n");
poll_timer_add (aisexec_poll_handle,
component->healthcheckInterval,
(void *)component->conn_info,
timer_function_libamf_healthcheck,
&component->timer_healthcheck);
}
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_ACTIVE_COMPLETED;
}
static void dsmEnabledUnlockedStandbyRequested (
struct amf_comp *component)
{
if (component->local == 1) {
log_printf (LOG_LEVEL_DEBUG, "Adding healthcheck timer2\n");
poll_timer_add (aisexec_poll_handle,
component->healthcheckInterval,
(void *)component->conn_info,
timer_function_libamf_healthcheck,
&component->timer_healthcheck);
}
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_STANDBY_COMPLETED;
}
static void dsmEnabledUnlockedTransitionDisabledUnlocked (
struct amf_comp *component)
{
struct saAmfUnit *unit;
struct list_head *list;
unit = component->saAmfUnit;
for (list = unit->amf_compHead.next;
list != &unit->amf_compHead;
list = list->next) {
component = list_entry (list, struct amf_comp, amf_compList);
log_printf (LOG_LEVEL_DEBUG, "Requesting component %s transition to disabled.\n",
getSaNameT (&component->name));
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_FAILED;
}
component->saAmfUnit->operationalAdministrativeState = AMF_DISABLED_UNLOCKED;
dsm (component);
}
static void dsmSynchronizeStaus (
struct amf_comp *component)
{
enum amfOperationalAdministrativeState unit_status = AMF_DISABLED_UNLOCKED;
struct saAmfUnit *unit;
struct saAmfGroup *group;
struct list_head *list;
int activeServiceUnits;
if (component->currentReadinessState == component->newReadinessState) {
if (component->currentReadinessState == SA_AMF_OUT_OF_SERVICE) {
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_REGISTEREDORERRORCANCEL;
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_INITIAL;
} else if (component->currentReadinessState == SA_AMF_IN_SERVICE) {
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_REGISTEREDORERRORCANCEL;
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_IN_SERVICE_COMPLETED;
unit_status = AMF_ENABLED_UNLOCKED;
} else if (component->currentReadinessState == SA_AMF_QUIESCED) {
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_QUIESCED_COMPLETED;
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_INITIAL;
}
} else {
if (component->newReadinessState == SA_AMF_OUT_OF_SERVICE) {
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_OUT_OF_SERVICE_REQUESTED;
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_INITIAL;
} else if (component->newReadinessState == SA_AMF_IN_SERVICE) {
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_REGISTEREDORERRORCANCEL;
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_IN_SERVICE_REQUESTED;
unit_status = AMF_ENABLED_UNLOCKED;
} else {
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_QUIESCED_REQUESTED;
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_INITIAL;
}
}
if (component->currentHAState == component->newHAState) {
if (component->currentHAState == SA_AMF_ACTIVE) {
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_REGISTEREDORERRORCANCEL;
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_ACTIVE_COMPLETED;
unit_status = AMF_ENABLED_UNLOCKED;
} else if (component->currentHAState == SA_AMF_STANDBY) {
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_REGISTEREDORERRORCANCEL;
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_STANDBY_COMPLETED;
unit_status = AMF_ENABLED_UNLOCKED;
} else {
/* depend on readiness status */
}
} else {
if (component->newHAState == SA_AMF_ACTIVE) {
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_REGISTEREDORERRORCANCEL;
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_ACTIVE_REQUESTED;
unit_status = AMF_ENABLED_UNLOCKED;
} else if (component->newHAState == SA_AMF_STANDBY) {
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_REGISTEREDORERRORCANCEL;
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_STANDBY_REQUESTED;
unit_status = AMF_ENABLED_UNLOCKED;
} else {
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_QUIESCED_REQUESTED;
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_INITIAL;
}
}
/* Syncronize Operational AdministrativeState */
component->saAmfUnit->operationalAdministrativeState = unit_status;
unit = component->saAmfUnit;
group = unit->saAmfGroup;
for (list = unit->amf_compHead.next; list != &unit->amf_compHead; list = list->next) {
activeServiceUnits = activeServiceUnitsCount(group);
if (activeServiceUnits <= group->saAmfActiveUnitsDesired) {
break;
}
if (component->currentHAState != SA_AMF_ACTIVE) {
continue;
}
ha_state_api_set (component, SA_AMF_STANDBY);
}
return;
}
static void dsmEnabledUnlocked (
struct amf_comp *component)
{
switch (component->enabledUnlockedState) {
case AMF_ENABLED_UNLOCKED_INITIAL:
dsmEnabledUnlockedInitial (component);
break;
case AMF_ENABLED_UNLOCKED_IN_SERVICE_REQUESTED:
dsmEnabledUnlockedInServiceRequested (component);
break;
case AMF_ENABLED_UNLOCKED_IN_SERVICE_COMPLETED:
dsmEnabledUnlockedInServiceCompleted (component);
break;
case AMF_ENABLED_UNLOCKED_ACTIVE_REQUESTED:
dsmEnabledUnlockedActiveRequested (component);
break;
case AMF_ENABLED_UNLOCKED_ACTIVE_COMPLETED:
/* noop - operational state */
break;
case AMF_ENABLED_UNLOCKED_STANDBY_REQUESTED:
dsmEnabledUnlockedStandbyRequested (component);
break;
case AMF_ENABLED_UNLOCKED_STANDBY_COMPLETED:
/* noop - operational state */
break;
default:
log_printf (LOG_LEVEL_DEBUG, "dsmEnabledUnlocked: unkown state machine value.\n");
}
}
static void dsmDisabledUnlocked (
struct amf_comp *component)
{
log_printf (LOG_LEVEL_DEBUG, "dsmDisabledUnlocked for %s state %d\n",
getSaNameT (&component->name),
component->disabledUnlockedState);
switch (component->disabledUnlockedState) {
case AMF_DISABLED_UNLOCKED_REGISTEREDORERRORCANCEL:
dsmDisabledUnlockedRegisteredOrErrorCancel (component);
break;
case AMF_DISABLED_UNLOCKED_FAILED:
dsmDisabledUnlockedFailed (component);
break;
case AMF_DISABLED_UNLOCKED_QUIESCED_REQUESTED:
dsmDisabledUnlockedQuiescedRequested (component);
break;
case AMF_DISABLED_UNLOCKED_QUIESCED_COMPLETED:
dsmDisabledUnlockedQuiescedCompleted (component);
break;
case AMF_DISABLED_UNLOCKED_OUT_OF_SERVICE_REQUESTED:
dsmDisabledUnlockedOutOfServiceRequested (component);
break;
case AMF_DISABLED_UNLOCKED_OUT_OF_SERVICE_COMPLETED:
dsmDisabledUnlockedOutOfServiceCompleted (component);
break;
default:
log_printf (LOG_LEVEL_DEBUG, "dsmDisabledUnlocked: unkown state machine value %d.\n", component->disabledUnlockedState);
}
}
static void dsm (
struct amf_comp *component)
{
log_printf (LOG_LEVEL_DEBUG, "dsm for component %s\n", getSaNameT (&component->name));
switch (component->saAmfUnit->operationalAdministrativeState) {
case AMF_DISABLED_UNLOCKED:
dsmDisabledUnlocked (component);
break;
case AMF_ENABLED_UNLOCKED:
dsmEnabledUnlocked (component);
break;
/*
AMF_DISABLED_LOCKED,
AMF_ENABLED_STOPPING
*/
default:
log_printf (LOG_LEVEL_DEBUG, "dsm: unknown state machine value.\n");
}
}
void error_report (
struct amf_comp *component,
SaAmfProbableCauseT probableCause)
{
struct req_exec_amf_componenterrorreport req_exec_amf_componenterrorreport;
struct iovec iovec;
req_exec_amf_componenterrorreport.header.size = sizeof (struct req_exec_amf_componenterrorreport);
req_exec_amf_componenterrorreport.header.id =
SERVICE_ID_MAKE (AMF_SERVICE, MESSAGE_REQ_EXEC_AMF_ERRORREPORT);
req_exec_amf_componenterrorreport.source.conn_info = 0;
req_exec_amf_componenterrorreport.source.in_addr.s_addr = 0;
memcpy (&req_exec_amf_componenterrorreport.req_lib_amf_componenterrorreport.erroneousComponent,
&component->name,
sizeof (SaNameT));
req_exec_amf_componenterrorreport.req_lib_amf_componenterrorreport.errorDescriptor.probableCause = probableCause;
iovec.iov_base = (char *)&req_exec_amf_componenterrorreport;
iovec.iov_len = sizeof (req_exec_amf_componenterrorreport);
assert (totempg_groups_mcast_joined (openais_group_handle, iovec, 2, TOTEMPG_AGREED) == 0);
}
int healthcheck_instance = 0;
struct saAmfProtectionGroup *protectiongroup_find (
SaNameT *csiName)
{
struct list_head *AmfGroupList;
struct list_head *AmfProtectionGroupList;
struct saAmfGroup *saAmfGroup;
struct saAmfProtectionGroup *AmfProtectionGroup;
/*
* Search all groups
*/
for (AmfGroupList = saAmfGroupHead.next;
AmfGroupList != &saAmfGroupHead;
AmfGroupList = AmfGroupList->next) {
saAmfGroup = list_entry (AmfGroupList,
struct saAmfGroup, saAmfGroupList);
/*
* Search all protection groups
*/
for (AmfProtectionGroupList = saAmfGroup->saAmfProtectionGroupHead.next;
AmfProtectionGroupList != &saAmfGroup->saAmfProtectionGroupHead;
AmfProtectionGroupList = AmfProtectionGroupList->next) {
AmfProtectionGroup = list_entry (AmfProtectionGroupList,
struct saAmfProtectionGroup, saAmfProtectionGroupList);
if (name_match (csiName, &AmfProtectionGroup->name)) {
return (AmfProtectionGroup);
}
}
}
return (0);
}
struct amf_comp *component_in_protectiongroup_find (
SaNameT *csiName,
SaNameT *compName)
{
struct list_head *AmfGroupList = 0;
struct list_head *AmfProtectionGroupList = 0;
struct list_head *AmfComponentList = 0;
struct saAmfGroup *saAmfGroup = 0;
struct saAmfProtectionGroup *AmfProtectionGroup = 0;
struct amf_comp *AmfComponent = 0;
int found = 0;
/*
* Search all groups
*/
for (AmfGroupList = saAmfGroupHead.next;
AmfGroupList != &saAmfGroupHead;
AmfGroupList = AmfGroupList->next) {
saAmfGroup = list_entry (AmfGroupList,
struct saAmfGroup, saAmfGroupList);
/*
* Search all protection groups
*/
for (AmfProtectionGroupList = saAmfGroup->saAmfProtectionGroupHead.next;
AmfProtectionGroupList != &saAmfGroup->saAmfProtectionGroupHead;
AmfProtectionGroupList = AmfProtectionGroupList->next) {
AmfProtectionGroup = list_entry (AmfProtectionGroupList,
struct saAmfProtectionGroup, saAmfProtectionGroupList);
if (name_match (csiName, &AmfProtectionGroup->name)) {
/*
* Search all components
*/
for (AmfComponentList = AmfProtectionGroup->saAmfMembersHead.next;
AmfComponentList != &AmfProtectionGroup->saAmfMembersHead;
AmfComponentList = AmfComponentList->next) {
AmfComponent = list_entry (AmfComponentList,
struct amf_comp, saAmfProtectionGroupList);
if (name_match (compName, &AmfComponent->name)) {
found = 1;
}
}
}
}
}
if (found) {
return (AmfComponent);
} else {
return (0);
}
}
/*
* The response handler for readiness state set callback
*/
static void response_handler_readinessstatesetcallback (struct conn_info *conn_info,
struct req_lib_amf_response *req_lib_amf_response)
{
if (req_lib_amf_response->error == SA_AIS_OK && conn_info->component) {
log_printf (LOG_LEVEL_ENTER_FUNC, "CALLBACK sending readiness state to %s\n",
getSaNameT (&conn_info->component->name));
readiness_state_group_set (conn_info->component, conn_info->component->newReadinessState);
}
}
/*
* iterate service unit components
* telling all components not already QUIESCING to enter SA_AMF_QUIESCED state
*/
static void response_handler_csisetcallback (struct conn_info *conn_info,
struct req_lib_amf_response *req_lib_amf_response)
{
if (req_lib_amf_response->error == SA_AIS_OK && conn_info->component) {
ha_state_group_set (conn_info->component, conn_info->component->newHAState);
}
}
void amf_confchg_njoin (struct amf_comp *component ,void *data)
{
if (component->source_addr.s_addr != this_ip->sin_addr.s_addr) {
return;
}
component_register (component);
return;
}
void amf_confchg_nleave (struct amf_comp *component ,void *data)
{
struct in_addr *source_addr = (struct in_addr *)data;
struct saAmfUnit *unit;
struct list_head *list;
struct amf_comp *leave_component = NULL;
enum amfDisabledUnlockedState disablestate = AMF_DISABLED_UNLOCKED_OUT_OF_SERVICE_COMPLETED;
if (component->source_addr.s_addr != source_addr->s_addr) {
return;
}
if (!component->registered) {
return;
}
log_printf (LOG_LEVEL_ENTER_FUNC, "amf_confchg_nleave(%s)\n", getSaNameT (&(component->name)));
/* Component status Initialize */
unit = component->saAmfUnit;
for (list = unit->amf_compHead.next; list != &unit->amf_compHead; list = list->next) {
component = list_entry (list,
struct amf_comp, amf_compList);
if (component->source_addr.s_addr != source_addr->s_addr) {
disablestate = AMF_DISABLED_UNLOCKED_FAILED;
continue;
}
component->registered = 0;
component->local = 0;
component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_REGISTEREDORERRORCANCEL;
component->enabledUnlockedState = AMF_ENABLED_UNLOCKED_INITIAL;
component->newReadinessState = SA_AMF_OUT_OF_SERVICE;
component->currentReadinessState = SA_AMF_OUT_OF_SERVICE;
component->newHAState = SA_AMF_QUIESCED;
component->currentHAState = SA_AMF_QUIESCED;
component->source_addr.s_addr = 0;
leave_component = component;
}
if (leave_component == NULL) {
return;
}
leave_component->saAmfUnit->operationalAdministrativeState = AMF_DISABLED_UNLOCKED;
leave_component->disabledUnlockedState = disablestate;
dsm (leave_component);
leave_component->disabledUnlockedState = AMF_DISABLED_UNLOCKED_REGISTEREDORERRORCANCEL;
return;
}
/*
* If receiving this message from another cluster node, another cluster node
* has selected a readiness state for a component connected to _that_ cluster
* node. That cluster node API has verified the readiness state, so its time to let
* the rest of the cluster nodes know about the readiness state change.
*/
static void message_handler_req_exec_amf_readinessstateset (void *message, struct in_addr source_addr, int endian_conversion_required)
{
struct req_exec_amf_readinessstateset *req_exec_amf_readinessstateset = (struct req_exec_amf_readinessstateset *)message;
struct amf_comp *component;
component = find_comp (&req_exec_amf_readinessstateset->compName);
if (component) {
log_printf (LOG_LEVEL_FROM_GMI,
"Executive: message_handler_req_exec_amf_readinessstateset (%s, RD:%d)\n",
getSaNameT (&component->name), req_exec_amf_readinessstateset->readinessState);
component->currentReadinessState = req_exec_amf_readinessstateset->readinessState;
component->newReadinessState = component->currentReadinessState;
dsm (component);
}
return (0);
}
/*
* If receiving this message from another cluster node, another cluster node
* has selected a ha state for a component connected to _that_ cluster
* node. That cluster node API has verified the ha state, so its time to let
* the rest of the cluster nodes know about the HA state change.
*/
static void message_handler_req_exec_amf_hastateset (void *message, struct in_addr source_addr, int endian_conversion_required)
{
struct req_exec_amf_hastateset *req_exec_amf_hastateset = (struct req_exec_amf_hastateset *)message;
struct amf_comp *component;
SaAmfProtectionGroupChangesT changeToComponent = SA_AMF_PROTECTION_GROUP_STATE_CHANGE;
component = find_comp (&req_exec_amf_hastateset->compName);
if (!component) {
return (0);
}
log_printf (LOG_LEVEL_FROM_GMI,
"Executive: message_handler_req_exec_amf_hastateset (%s, HA:%d)\n",
getSaNameT (&component->name), req_exec_amf_hastateset->haState);
if ( component->currentHAState == 0 ) {
if ( req_exec_amf_hastateset->haState == SA_AMF_ACTIVE
|| req_exec_amf_hastateset->haState == SA_AMF_STANDBY ) {
changeToComponent = SA_AMF_PROTECTION_GROUP_ADDED;
}
} else {
if (component->currentHAState == req_exec_amf_hastateset->haState) {
changeToComponent = SA_AMF_PROTECTION_GROUP_NO_CHANGE;
}
}
component->currentHAState = req_exec_amf_hastateset->haState;
component->newHAState = component->currentHAState;
dsm (component);
if( changeToComponent != SA_AMF_PROTECTION_GROUP_NO_CHANGE ) {
protectiongroup_notifications_send (component, changeToComponent);
}
return (0);
}
static void message_handler_req_lib_amf_readinessstateget (struct conn_info *conn_info, void *message)
{
struct req_lib_amf_componentregister *req_lib_amf_componentregister = (struct req_lib_amf_componentregister *)message;
struct req_exec_amf_componentregister req_exec_amf_componentregister;
struct iovec iovec;
log_printf (LOG_LEVEL_FROM_LIB, "Handle : message_handler_req_amf_componentregister()\n");
req_exec_amf_componentregister.header.size = sizeof (struct req_exec_amf_componentregister);
req_exec_amf_componentregister.header.id =
SERVICE_ID_MAKE (AMF_SERVICE, MESSAGE_REQ_EXEC_AMF_COMPONENTREGISTER);
message_source_set (&req_exec_amf_componentregister.source, conn_info);
memcpy (&req_exec_amf_componentregister.req_lib_amf_componentregister,
req_lib_amf_componentregister,
sizeof (struct req_lib_amf_componentregister));
iovec.iov_base = (char *)&req_exec_amf_componentregister;
iovec.iov_len = sizeof (req_exec_amf_componentregister);
assert (totempg_groups_mcast_joined (openais_group_handle, &iovec, 1, TOTEMPG_AGREED) == 0);
return (0);
}
static void message_handler_req_amf_componentunregister (struct conn_info *conn_info, void *message)
{
struct req_lib_amf_componentunregister *req_lib_amf_componentunregister = (struct req_lib_amf_componentunregister *)message;
struct req_exec_amf_componentunregister req_exec_amf_componentunregister;
struct iovec iovec;
struct saAmfComponent *component;
log_printf (LOG_LEVEL_FROM_LIB, "Handle : message_handler_req_amf_componentunregister()\n");
req_exec_amf_componentunregister.header.size = sizeof (struct req_exec_amf_componentunregister);
req_exec_amf_componentunregister.header.id = MESSAGE_REQ_EXEC_AMF_COMPONENTUNREGISTER;
message_source_set (&req_exec_amf_componentunregister.source, conn_info);
memcpy (&req_exec_amf_componentunregister.req_lib_amf_componentunregister,
req_lib_amf_componentunregister,
sizeof (struct req_lib_amf_componentunregister));
component = findComponent (&req_lib_amf_componentunregister->compName);
if (component && component->registered && component->local) {
component->probableCause = SA_AMF_NOT_RESPONDING;
}
iovec.iov_base = (char *)&req_exec_amf_componentunregister;
iovec.iov_len = sizeof (req_exec_amf_componentunregister);
assert (totempg_groups_mcast_joined (openais_group_handle, &iovec, 1, TOTEMPG_AGREED) == 0);
return (0);
}
static void message_handler_req_amf_readinessstateget (struct conn_info *conn_info, void *message)
{
struct req_amf_readinessstateget *req_amf_readinessstateget = (struct req_amf_readinessstateget *)message;
>>>>>>> .r872
struct res_lib_amf_readinessstateget res_lib_amf_readinessstateget;
struct amf_comp *component;
log_printf (LOG_LEVEL_FROM_LIB, "Handle : message_handler_req_lib_amf_readinessstateget()\n");
res_lib_amf_readinessstateget.header.id = MESSAGE_RES_AMF_READINESSSTATEGET;
res_lib_amf_readinessstateget.header.size = sizeof (struct res_lib_amf_readinessstateget);
res_lib_amf_readinessstateget.header.error = SA_ERR_NOT_EXIST;
component = find_comp (&req_lib_amf_readinessstateget->compName);
log_printf (LOG_LEVEL_DEBUG, "readinessstateget: found component %p\n", component);
if (component) {
memcpy (&res_lib_amf_readinessstateget.readinessState,
&component->currentReadinessState, sizeof (SaAmfReadinessStateT));
res_lib_amf_readinessstateget.header.error = SA_AIS_OK;
}
openais_conn_send_response (conn_info, &res_lib_amf_readinessstateget, sizeof (struct res_lib_amf_readinessstateget));
return (0);
}
static void message_handler_req_lib_amf_stoppingcomplete (struct conn_info *conn_info_notused,
void *message)
{
struct req_lib_amf_stoppingcomplete *req_lib_amf_stoppingcomplete = (struct req_lib_amf_stoppingcomplete *)message;
log_printf (LOG_LEVEL_FROM_LIB, "Handle : message_handler_req_amf_protectiongrouptrackstart()\n");
amfProtectionGroup = protectiongroup_find (&req_amf_protectiongrouptrackstart->csiName);
if (amfProtectionGroup) {
log_printf (LOG_LEVEL_DEBUG, "protectiongrouptrackstart: Got valid track start on CSI: %s.\n", getSaNameT (&req_amf_protectiongrouptrackstart->csiName));
for (i = 0; i < conn_info->ais_ci.u.libamf_ci.trackEntries; i++) {
if (conn_info->ais_ci.u.libamf_ci.tracks[i].active == 0) {
track = &conn_info->ais_ci.u.libamf_ci.tracks[i];
break;
}
}
if (track == 0) {
grow_amf_track_table (conn_info, 1);
track = &conn_info->ais_ci.u.libamf_ci.tracks[i];
}
track->active = 1;
track->trackFlags = req_amf_protectiongrouptrackstart->trackFlags;
track->notificationBufferAddress = req_amf_protectiongrouptrackstart->notificationBufferAddress;
memcpy (&track->csiName,
&req_amf_protectiongrouptrackstart->csiName, sizeof (SaNameT));
conn_info->ais_ci.u.libamf_ci.trackActive += 1;
list_add (&conn_info->conn_list, &library_notification_send_listhead);
/*
* If SA_TRACK_CURRENT is specified, write out all current connections
*/
} else {
log_printf (LOG_LEVEL_DEBUG, "invalid track start, csi not registered with system.\n");
}
res_lib_amf_protectiongrouptrackstart.header.id = MESSAGE_RES_AMF_PROTECTIONGROUPTRACKSTART;
res_lib_amf_protectiongrouptrackstart.header.size = sizeof (struct res_lib_amf_protectiongrouptrackstart);
res_lib_amf_protectiongrouptrackstart.header.error = SA_ERR_NOT_EXIST;
if (amfProtectionGroup) {
res_lib_amf_protectiongrouptrackstart.header.error = SA_AIS_OK;
}
openais_conn_send_response (conn_info, &res_lib_amf_protectiongrouptrackstart,
sizeof (struct res_lib_amf_protectiongrouptrackstart));
if (amfProtectionGroup &&
req_amf_protectiongrouptrackstart->trackFlags & SA_TRACK_CURRENT) {
protectiongroup_notification_send (conn_info,
track->notificationBufferAddress,
amfProtectionGroup,
0,
0,
SA_TRACK_CHANGES_ONLY);
track->trackFlags &= ~SA_TRACK_CURRENT;
}
return (0);
}
static void message_handler_req_amf_protectiongrouptrackstop (struct conn_info *conn_info, void *message)
{
struct req_amf_protectiongrouptrackstop *req_amf_protectiongrouptrackstop = (struct req_amf_protectiongrouptrackstop *)message;
struct res_lib_amf_protectiongrouptrackstop res_lib_amf_protectiongrouptrackstop;
struct libamf_ci_trackentry *track = 0;
int i;
log_printf (LOG_LEVEL_FROM_LIB, "Handle : message_handler_req_amf_protectiongrouptrackstop()\n");
for (i = 0; i < conn_info->ais_ci.u.libamf_ci.trackEntries; i++) {
if (name_match (&req_amf_protectiongrouptrackstop->csiName,
&conn_info->ais_ci.u.libamf_ci.tracks[i].csiName)) {
track = &conn_info->ais_ci.u.libamf_ci.tracks[i];
}
}
if (track) {
log_printf (LOG_LEVEL_DEBUG, "protectiongrouptrackstop: Trackstop on CSI: %s\n", getSaNameT (&req_amf_protectiongrouptrackstop->csiName));
memset (track, 0, sizeof (struct libamf_ci_trackentry));
conn_info->ais_ci.u.libamf_ci.trackActive -= 1;
if (conn_info->ais_ci.u.libamf_ci.trackActive == 0) {
list_del (&conn_info->conn_list);
}
}
res_lib_amf_protectiongrouptrackstop.header.id = MESSAGE_RES_AMF_PROTECTIONGROUPTRACKSTOP;
res_lib_amf_protectiongrouptrackstop.header.size = sizeof (struct res_lib_amf_protectiongrouptrackstop);
res_lib_amf_protectiongrouptrackstop.header.error = SA_ERR_NOT_EXIST;
if (track) {
res_lib_amf_protectiongrouptrackstop.header.error = SA_AIS_OK;
}
openais_conn_send_response (conn_info, &res_lib_amf_protectiongrouptrackstop,
sizeof (struct res_lib_amf_protectiongrouptrackstop));
return (0);
}
static void message_handler_req_amf_errorreport (struct conn_info *conn_info, void *message)
{
struct req_lib_amf_errorreport *req_lib_amf_errorreport = (struct req_lib_amf_errorreport *)message;
struct req_exec_amf_errorreport req_exec_amf_errorreport;
struct iovec iovec;
log_printf (LOG_LEVEL_FROM_LIB, "Handle : message_handler_req_amf_errorreport()\n");
req_exec_amf_errorreport.header.size = sizeof (struct req_exec_amf_errorreport);
req_exec_amf_errorreport.header.id = MESSAGE_REQ_EXEC_AMF_ERRORREPORT;
message_source_set (&req_exec_amf_errorreport.source, conn_info);
memcpy (&req_exec_amf_errorreport.req_lib_amf_errorreport,
req_lib_amf_errorreport,
sizeof (struct req_lib_amf_errorreport));
iovec.iov_base = (char *)&req_exec_amf_errorreport;
iovec.iov_len = sizeof (req_exec_amf_errorreport);
assert (totempg_groups_mcast_joined (openais_group_handle, &iovec, 1, TOTEMPG_AGREED) == 0);
return (0);
}
static void message_handler_req_amf_errorcancelall (struct conn_info *conn_info, void *message)
{
struct req_lib_amf_errorcancelall *req_lib_amf_errorcancelall = (struct req_lib_amf_errorcancelall *)message;
struct req_exec_amf_errorcancelall req_exec_amf_errorcancelall;
struct iovec iovec;
log_printf (LOG_LEVEL_FROM_LIB, "Handle : message_handler_req_amf_errorcancelall()\n");
req_exec_amf_errorcancelall.header.size = sizeof (struct req_exec_amf_errorcancelall);
req_exec_amf_errorcancelall.header.id = MESSAGE_REQ_EXEC_AMF_ERRORCANCELALL;
message_source_set (&req_exec_amf_errorcancelall.source, conn_info);
memcpy (&req_exec_amf_errorcancelall.req_lib_amf_errorcancelall,
req_lib_amf_errorcancelall,
sizeof (struct req_lib_amf_errorcancelall));
iovec.iov_base = (char *)&req_exec_amf_errorcancelall;
iovec.iov_len = sizeof (req_exec_amf_errorcancelall);
assert (totempg_groups_mcast_joined (openais_group_handle, iovec, 1, TOTEMPG_AGREED) == 0);
return (0);
}
static void message_handler_req_amf_stoppingcomplete (struct conn_info *conn_info_notused,
void *message)
{
struct req_amf_stoppingcomplete *req_amf_stoppingcomplete = (struct req_amf_stoppingcomplete *)message;
struct conn_info *inv_conn_info = NULL;
>>>>>>> .r872
int interface;
log_printf (LOG_LEVEL_FROM_LIB, "Handle : message_handler_req_lib_amf_stoppingcomplete()\n");
req_lib_amf_invocation_get_and_destroy (req_lib_amf_stoppingcomplete->invocation,
&interface, &inv_conn_info);
inv_conn_info->component->currentReadinessState = inv_conn_info->component->newReadinessState;
readiness_state_group_set (inv_conn_info->component, SA_AMF_STOPPING);
protectiongroup_notifications_send (inv_conn_info->component,SA_AMF_PROTECTION_GROUP_STATE_CHANGE);
return (0);
}
void response_handler_healthcheckcallback (struct conn_info *conn_info,
struct req_lib_amf_response *req_lib_amf_response) {
if (req_lib_amf_response->error == SA_AIS_OK) {
log_printf (LOG_LEVEL_DEBUG, "setting healthcheck ok\n");
conn_info->component->healthcheck_outstanding = 0;
}
}
static void message_handler_req_lib_amf_componentcapabilitymodelget (struct conn_info *conn_info, void *message)
{
struct req_lib_amf_componentcapabilitymodelget *req_lib_amf_componentcapabilitymodelget = (struct req_lib_amf_componentcapabilitymodelget *)message;
struct res_lib_amf_componentcapabilitymodelget res_lib_amf_componentcapabilitymodelget;
struct amf_comp *component;
SaAisErrorT error = SA_AIS_OK;
log_printf (LOG_LEVEL_FROM_LIB, "Handle : message_handler_req_lib_amf_componentcapabilitymodelget()\n");
memset( &res_lib_amf_componentcapabilitymodelget,0,sizeof(res_lib_amf_componentcapabilitymodelget));
log_printf (LOG_LEVEL_DEBUG, "componentcapabilitymodelget: Retrieve name %s.\n", getSaNameT (&req_lib_amf_componentcapabilitymodelget->compName));
component = find_comp (&req_lib_amf_componentcapabilitymodelget->compName);
if (component && component->registered) {
memcpy (&res_lib_amf_componentcapabilitymodelget.componentCapabilityModel,
&component->componentCapabilityModel, sizeof (SaAmfComponentCapabilityModelT));
} else {
error = SA_ERR_NOT_EXIST;
}
res_lib_amf_componentcapabilitymodelget.header.size = sizeof (struct res_lib_amf_componentcapabilitymodelget);
res_lib_amf_componentcapabilitymodelget.header.id = MESSAGE_RES_AMF_COMPONENTCAPABILITYMODELGET;
res_lib_amf_componentcapabilitymodelget.header.error = error;
openais_conn_send_response (conn_info, &res_lib_amf_componentcapabilitymodelget,
sizeof (struct res_lib_amf_componentcapabilitymodelget));
return (0);
}
static char disabled_unlocked_state_text[6][64] = {
"AMF_DISABLED_UNLOCKED_REGISTEREDORERRORCANCEL",
"AMF_DISABLED_UNLOCKED_FAILED",
"AMF_DISABLED_UNLOCKED_QUIESCED_REQUESTED",
"AMF_DISABLED_UNLOCKED_QUIESCED_COMPLETED",
"AMF_DISABLED_UNLOCKED_OUT_OF_SERVICE_REQUESTED",
"AMF_DISABLED_UNLOCKED_OUT_OF_SERVICE_COMPLETED"
};
static char *disabledunlockedstate_ntoa (int state)
{
static char str[64];
if (state >= 0 && state < 6) {
sprintf (str, "%s(%d)", disabled_unlocked_state_text[state], state);
}else{
sprintf (str, "Unknown(%d)", state);
}
return (str);
}
static char enabled_unlocked_state_text[7][64] = {
"AMF_ENABLED_UNLOCKED_INITIAL",
"AMF_ENABLED_UNLOCKED_IN_SERVICE_REQUESTED",
"AMF_ENABLED_UNLOCKED_IN_SERVICE_COMPLETED",
"AMF_ENABLED_UNLOCKED_ACTIVE_REQUESTED",
"AMF_ENABLED_UNLOCKED_ACTIVE_COMPLETED",
"AMF_ENABLED_UNLOCKED_STANDBY_REQUESTED",
"AMF_ENABLED_UNLOCKED_STANDBY_COMPLETED"
};
static char *enabledunlockedstate_ntoa (int state)
{
static char str[64];
if (state >= 0 && state < 7) {
sprintf (str, "%s(%d)", enabled_unlocked_state_text[state], state);
}else{
sprintf (str, "Unknown(%d)", state);
}
return (str);
}
#endif
static char presence_state_text[8][32] = {
"unknown",
"uninstantiated",
"instantiating",
"instantiated",
"terminating",
"restarting",
"instantion_failed",
"terminiation_failed"
};
static char *presencestate_ntoa (SaAmfPresenceStateT state)
{
static char str[32];
if (state > 0 && state < 9) {
sprintf (str, "%s(%d)", presence_state_text[state], state);
}else{
sprintf (str, "Unknown(%d)", state);
}
return (str);
}
static char operational_state_text[4][64] = {
"Unknown",
"enabled",
"disabled"
};
static char *operationalstate_ntoa (SaAmfOperationalStateT state)
{
static char str[32];
if (state > 0 && state < 3) {
sprintf (str, "%s(%d)", operational_state_text[state], state);
}else{
sprintf (str, "Unknown(%d)", state);
}
return (str);
}
static char readiness_state_text[4][32] = {
"Unknown",
"out of service",
"in service",
"quiesced",
};
static char *readinessstate_ntoa (int state)
{
static char str[32];
if (state > 0 && state < 4) {
sprintf (str, "%s(%d)", readiness_state_text[state], state);
}else{
sprintf (str, "Unknown(%d)", state);
}
return (str);
}
static char ha_state_text[4][32] = {
"Unknown",
"active",
"standby",
"quiesced",
};
static char *hastate_ntoa (SaAmfHAStateT state)
{
static char str[32];
if (state > 0 && state < 4) {
sprintf (str, "%s(%d)", ha_state_text[state], state);
}else{
sprintf (str, "Unknown(%d)", state);
}
return (str);
}
static void amf_dump_comp (struct amf_comp *component ,void *data)
{
char name[64];
int level = LOG_LEVEL_NOTICE;
data = NULL;
struct list_head* type_name_list;
struct amf_comp_csi_type_name* type_name;
log_printf (level, "----------------\n" );
log_printf (level, "registered = %d\n" ,component->registered);
log_printf (level, "local = %d\n" ,component->local );
log_printf (level, "source_addr = %s\n" ,inet_ntoa (component->source_addr));
memset (name, 0 , sizeof(name));
memcpy (name, component->name.value, component->name.length);
log_printf (level, "name = %s\n" ,name );
#if 1
log_printf (level, "csi type names\n");
for (type_name_list = component->csi_type_name_head.next;
type_name_list != &component->csi_type_name_head;
type_name_list = type_name_list->next) {
type_name = list_entry (type_name_list,
struct amf_comp_csi_type_name, list);
log_printf (level, " name = %s\n" , type_name->name);
}
#endif
#if COMPILE_OUT
/*
* TODO Change to correct state syntax and implement new ...state_ntoa
*/
log_printf (level, "currentReadinessState = %s\n" ,readinessstate_ntoa (component->currentReadinessState));
log_printf (level, "newReadinessState = %s\n" ,readinessstate_ntoa (component->newReadinessState));
log_printf (level, "currentHAState = %s\n" ,hastate_ntoa (component->currentHAState));
log_printf (level, "newHAState = %s\n" ,hastate_ntoa (component->newHAState));
log_printf (level, "enabledUnlockedState = %s\n" ,enabledunlockedstate_ntoa (component->enabledUnlockedState));
log_printf (level, "disabledUnlockedState = %s\n" ,disabledunlockedstate_ntoa (component->disabledUnlockedState));
log_printf (level, "probableCause = %d\n" ,component->probableCause );
#endif
}
void enumerate_components (
void (*function)(struct amf_comp *, void *data),
void *data)
{
struct list_head *AmfGroupList;
struct list_head *AmfUnitList;
struct list_head *AmfComponentList;
struct amf_group *saAmfGroup;
struct amf_unit *AmfUnit;
struct amf_comp *AmfComponent;
/*
* Search all groups
*/
for (AmfGroupList = amf_groupHead.next;
AmfGroupList != &amf_groupHead;
AmfGroupList = AmfGroupList->next) {
saAmfGroup = list_entry (AmfGroupList,
struct amf_group, group_list);
/*
* Search all units
*/
for (AmfUnitList = saAmfGroup->unit_head.next;
AmfUnitList != &saAmfGroup->unit_head;
AmfUnitList = AmfUnitList->next) {
AmfUnit = list_entry (AmfUnitList,
struct amf_unit, unit_list);
/*
* Search all components
*/
for (AmfComponentList = AmfUnit->comp_head.next;
AmfComponentList != &AmfUnit->comp_head;
AmfComponentList = AmfComponentList->next) {
AmfComponent = list_entry (AmfComponentList,
struct amf_comp, comp_list);
function (AmfComponent, data);
}
}
}
}
void amf_dump ( )
{
enumerate_components (amf_dump_comp, NULL);
fflush (stderr);
return;
}