mirror_corosync/exec/amfsu.c
2007-09-09 06:38:10 +00:00

1803 lines
60 KiB
C

/** @file exec/amfsu.c
*
* Copyright (c) 2002-2006 MontaVista Software, Inc.
* Author: Steven Dake (sdake@mvista.com)
*
* Copyright (c) 2006 Ericsson AB.
* Author: Hans Feldt, Anders Eriksson, Lars Holm
* - Introduced AMF B.02 information model
* - Use DN in API and multicast messages
* - (Re-)Introduction of event based multicast messages
* - Refactoring of code into several AMF files
* - Component/SU restart, SU failover
* - Constructors/destructors
* - Serializers/deserializers
*
* All rights reserved.
*
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* AMF Service Unit Class Implementation
*
* This file contains functions for handling AMF-service units(SUs). It can be
* viewed as the implementation of the AMF Service Unit class (called SU)
* as described in SAI-Overview-B.02.01. The SA Forum specification
* SAI-AIS-AMF-B.02.01 has been used as specification of the behaviour
* and is referred to as 'the spec' below.
*
* The functions in this file are responsible for:
* - instantiating and terminating service units on request
* (considering the dependencies between components described in paragraph
* 3.9.2)
* - creating and deleting CSI-assignment objects between its components and
* CSI-objects upon request
* - receiving error reports from its components and forwarding them to
* appropriate handler (SU or SG or node or cluster)
* - implementing restart of itself and its components (paragraph 3.12.1.2)
* - implementing error escallation level 1 (paragraph 3.12.2.2 in the spec)
* - handling all run time attributes of the AMF SU; all cached
* attributes are stored as variables and sent to the IMM service
* upon the changes described in the specification.
*
* SU contains the following state machines:
* - presence state machine (PRSM)
* - administrative state machine (ADSM) (NOT IN THIS RELEASE)
* - operational state machine (OPSM)
* - readiness state machine (RESM)
* - ha state per service instance (SI)
* - restart control state machine (RCSM)
*
* The presence state machine orders intantiation of its components on request.
* It fully respects the dependency rules between components at instantiation
* such that it orders instantiation simultaneously only of components on the
* same instantiation level. The presence state machine is implemented with
* the states described in the spec and the state transitions are trigged by
* reported state transitions from its contained components according to
* paragraph 3.3.1.1.
*
* The operational state machine is not responsible for any control function.
* It assumes the DISABLED state if an incoming operational state change report
* from a component indicates the component has assumed the DISABLED state.
* Operational state changes are reported to IMM.
*
* The readiness state machine is not used for any control but is updated and
* reported to IMM when it is changed.
*
* The restart control state machine (RCSM) is used to implement level 1 of
* the error escallation policy described in chapter 3.12.2 of the spec. It also
* implements component restart and service unit restart as described in
* paragraph 3.12.1.2 and 3.12.1.3.
* RCSM contains three composite states.
* Being a composite state means that the state contains substates.
* RCSM composite states are:
* - IDLE (LEVEL_0, LEVEL_1 and LEVEL_2)
* - RESTARTING_COMPONENT (DEACTIVATING, RESTARTING, SETTING and ACTIVATING)
* - RESTARTING_SERVICE_UNIT (DEACTIVATING, TERMINATING, INSTANTIATING,
* and ACTIVATING)
*
* IDLE is a kind of state where no actions are performed and used only to
* remember the escallation level. Substate LEVEL_0 indicates no escallation.
* LEVEL_1 indicates that a component restart has been executed recently and the
* escallation timer is still running. At this level component restart requests
* will transition to RESTARTING_COMPONENT but if there are too many restart
* requests before the probation timer expires then a transition will be made to
* LEVEL_2 and the restart request will be forwarded to the node instance
* hosting this component. State RESTARTING_SERVICE_UNIT will only be assumed if
* the node explicitly requests the SU to execute a restart of itself (after
* having evaluated its part of the error escallation policy).
*
* 1. Service Unit Restart Control State Machine
* ============================================
*
* 1.1 State Transition Table
* ===========================
*
* State: Event: Action: New state:
* ===========================================================================
* IDLE_ESCALATION_x comp_restart A9 RS_COMP_RESTARTING
* IDLE_ESCALATION_x su_restart A20 RS_SU_TERMINATING
* IDLE_ESCALATION_0 error_suspected A1,A3 IDLE_ESCALATION_1
* IDLE_ESCALATION_1 error_suspected [!C3] A1,A3 IDLE_ESCALATION_1
* IDLE_ESCALATION_1 error_suspected [C3] A2,A5 IDLE_ESCALATION_2
* IDLE_ESCALATION_2 error_suspected A2 IDLE_ESCALATION_2
* RS_COMP_RESTARTING comp_instantiated A11 RS_COMP_SETTING
* RS_COMP_RESTARTING comp_inst_failed A14,A15 RS_COMP_T-ING_2
* RS_COMP_RESTARTING comp_term_failed A19 IDLE_ESCALATION_x
* RS_COMP_RESTARTING error_suspected A18 RS_COMP_RESTARTING
* RS_COMP_T-ING_2 comp_uninst..ed [C8] A16,A15 RS_COMP_T-ING_2
* RS_COMP_T-ING_2 comp_uninst..ed [C100] IDLE_ESCALATION_x
* RS_COMP_T-ING_2 comp_uninst..ed [C101] A25 IDLE_ESCALATION_x
* RS_COMP_T-ING_2 comp_uninst..ed [C102] A26 IDLE_ESCALATION_x
* RS_COMP_T-ING_2 comp_term_failed [C100] RS_COMP_T-ING_2
* RS_COMP_T-ING_2 error_suspected A18 RS_COMP_T-ING_2
* RS_COMP_SETTING ha_state_assumed [C7] A19 IDLE_ESCALATION_x
* RS_COMP_SETTING error_suspected A18 RS_COMP_SETTING
* RS_SU_TERMINATING comp_uninst..ed [C8] A16,A15 RS_SU_TERMINATING
* RS_SU_TERMINATING comp_uninst..ed [C103] A17,A23 RS_SU_INSTANTIATING
* RS_SU_TERMINATING comp_uninst..ed [C104] A19 IDLE_ESCALATION_x
* RS_SU_TERMINATING comp_term_failed [C104]A19 IDLE_ESCALATION_X
* RS_SU_TERMINATING error_suspected A18 RS_SU_TERMINATING
* RS_SU_INSTANTIATING comp_instantiated [C14]A21,A22 RS_SU_INSTANTIATING
* RS_SU_INSTANTIATING comp_instantiated [C105]A15 RS_SU_T-ING_2
* RS_SU_INSTANTIATING comp_instantiated [C106]A11 RS_SU_SETTING
* RS_SU_INSTANTIATING comp_inst_failed [C105]A15 RS_SU_T-ING_2
* RS_SU_INSTANTIATING error_suspected A18 RS_SU_INSTANTIATING
* RS_SU_T-ING_2 comp_uninst..ed [C8] A16,A15 RS_SU_T-ING_2
* RS_SU_T-ING_2 comp_uninst..ed [C100] IDLE_ESCALATION_x
* RS_SU_T-ING_2 comp_uninst..ed [C101] A25 IDLE_ESCALATION_x
* RS_SU_T-ING_2 comp_uninst..ed [C102] A26 IDLE_ESCALATION_x
* RS_SU_T-ING_2 comp_term_failed [C100] RS_SU_T-ING_2
* RS_SU_T-ING_2 error_suspected A18 RS_SU_T-ING_2
* RS_SU_SETTING ha_state_assumed [C10] A19 IDLE_ESCALATION_X
* RS_SU_SETTING error_suspected A18 RS_SU_SETTING
*
* 1.2 State Description
* =====================
* IDLE_ESCALATION_x - This is just an abbreviated notation for
* IDLE_ESCALATION_0, IDLE_ESCALATION_1 or IDLE_ESCALATION_2
* When leaving any of the idle states, a history state
* is used to save the (exact) state value. When returning
* to idle, the value of the history state is used to set
* the correct idle state.
*
* IDLE_ESCALATION_0 - SU_RC_IDLE_ESCALATION_LEVEL_0
* Service unit is idle and the restart probation timer is
* off.
*
* IDLE_ESCALATION_1 - SU_RC_IDLE_ESCALATION_LEVEL_1
* Service unit is idle and the restart probation timer is
* on. This indicates there has recently been an error
* detected on at least one of its components which has been
* recovered by a component restart but we are still in the
* probation period which follows every restart.
*
* IDLE_ESCALATION_2 - SU_RC_IDLE_ESCALATION_LEVEL_2
* Service unit is idle and handling on potential new error
* indications on any of its components has been delegated
* to the node object where the service unit is hosted.
*
* RS_COMP_DEACTIVATING - SU_RC_RESTART_COMP_DEACTIVATING
* Service unit is busy handling restart of one of its
* components. In this sub-state, the service unit is
* waiting for acknowledgements that all components which
* had csi-assignments that were dependent of csi-
* assignments associated to the restarting component
* have been de-activated. This is a neccesary step to
* take before the component to restart is terminated,
* to avoid that the csi or si dependency rules are
* violated.
*
* RS_COMP_RESTARTING - SU_RC_RESTART_COMP_RESTARTING
* Service unit is busy handling restart of one of its
* components. In this sub-state, the service unit has
* ordered one of its components to restart and waits for
* the component to indicate that the restart is done.
*
* RS_COMP_T-ING_2 - SU_RC_RESTART_COMP_TERMINATING_AFTER_INST_FAILED
* Service unit is busy handling restart of one of its
* components. In this sub-state, the restart of the component
* has failed and the rest of the components in the service
* unit has to be terminated.
*
* RS_COMP_SETTING - SU_RC_RESTART_COMP_SETTING
* Service unit is busy handling restart of one of its
* components. In this sub-state, the service unit has ordered
* the component that just have been restarted to re-assume
* the HA-states it had before, provided none of the states
* were ACTIVE. It waits for an acknowledgement that the
* setting of the HA-states are done.
*
* RS_COMP_ACTIVATING - SU_RC_RESTART_COMP_ACTIVATING
* Service unit is busy handling restart of one of its
* components. In this sub-state, the service unit has
* ordered the component that just have been restarted to
* re-assume the active HA-states it had before and also
* to activate the csi-assignments that possibly were
* de-activated because of this restart. The service unit
* waits in this state for an acknowledgement of the
* activation.
*
* RS_SU_DEACTIVATING - SU_RC_RESTART_SU_DEACTIVATING
* Service unit is busy handling restart of all of its
* components. In this sub-state, the service unit is
* waiting for acknowledgements that all components which
* had csi-assignments that were dependent of si-
* assignments associated to this service unit
* have been de-activated. This is a neccesary step to
* take before all components of the service unit are
* terminated, to avoid that the csi or si dependency rules
* are violated.
*
* RS_SU_TERMINATING - SU_RC_RESTART_SU_TERMINATING
* Service unit is busy handling restart of all of its
* components. In this sub-state, the service unit has
* ordered all its components to terminate and is waiting
* for an acknowledgement that all components are done with
* the termination.
*
* RS_SU_INSTANTIATING - SU_RC_RESTART_SU_INSTANTIATING
* Service unit is busy handling restart of all of its
* components. In this sub-state, the service unit has
* ordered all components to instantiate and is waiting
* for an acknowledgement that all components are done with
* the instantiation.
*
* RS_SU_T-ING_2 - SU_RC_RESTART_SU_TERMINATING_AFTER_INST_FAILED
* Service unit is busy handling restart of all of its
* components. In this sub-state, the instantiation at least
* one component has failed and the rest of the components in
* the service unit has to be terminated.
*
* RS_SU_SETTING - SU_RC_RESTART_SU_SETTING
* Service unit is busy handling restart of all of its
* components. In this sub-state, the service unit has ordered
* all components that just have been restarted to re-assume
* the HA-states they had before, provided none of the states
* were ACTIVE. The service unit waits for an acknowledgement
* that the setting of the HA-states are done.
*
* RS_SU_ACTIVATING - SU_RC_RESTART_SU_ACTIVATING
* Service unit is busy handling restart of all of its
* components. In this sub-state, the service unit has
* ordered all components that just have been restarted to
* re-assume the active HA-states they had before and also
* to activate the csi-assignments that possibly were
* de-activated because of this restart. The service unit
* waits in this state for an acknowledgement of the
* activation.
*
* 1.3 Actions
* ===========
* A1 - generate event comp_restart
* A2 - forward component restart request to the node which hosts current su
* A3 - start probation timer (SaAmfSGCompRestartProb)
* A4 - [foreach component in su]/ cnt += SaAmfSGCompRestartCount
* A5 - stop probation timer
* A6 - restart ??
* A7 - set restarting_comp = component
* A8 - [foreach csi-assignment assigned to component] SI deactivate csi
* A9 - order component to restart
* A10 - set restarting_comp == ALL
* A11 - initiate setting of the same HA-state as was set before the restart
* A12 - SI activate
* A13 - [foreach si-assignment assigned to su] SI deactivate
* A14 - set current instantiation level = highest level
* A15 - [foreach component on current instantiation level]/terminate component
* A16 - current instantiation level is decremented
* A17 - request the presence state state machine to instantiate the su
* A18 - defer the event
* A19 - recall deferred event
* A20 - restart all components contained in current su
* A21 - current instantiation level is incremented
* A22 - [foreach component on current instantiation level]/instantiate
* component
* A23 - set current instantiation level = lowest level
* A24 - order SG to do component failover
* A25 - order Node to do node failover
* A26 - order SG to do SU failover
*
* 1.4 Guards
* ==========
* C1 - disableRestart == False
* C2 - the component has been restarted less than SaAmfSGCompRestartMax times
* C3 - the component has been restarted SaAmfSGCompRestartMax number of times
* C4 - all si-assignments have confirmed-ha-state == QUIESCED or the
* operation failed flag set.
* C5 - for each si-assignment related to the restarting component where
* requested-ha-state != confirmed-ha-state and requested-ha-state !=
* ACTIVE
* C6 - - for each si-assignment related to the restarting component where
* requested-ha-state != confirmed-ha-state and requested-ha-state ==
* ACTIVE
* C7 - all si-assignments related to the restarting component have
* requested-ha-state == confirmed-ha-state or has the operation failed
* flag set
* C8 - all components on current instantiation level == UNINSTANTIATED
* C9 - current instantiation level < lowest instantiation level
* C10 - all si-assignments related to current service unit have
* requested-ha-state == confirmed-ha-state or the operation failed
* flag set.
* C11 - for each si-assignment related to current su where
* requested-ha-state != confirmed-ha-state and requested-ha-state ==
* ACTIVE
* C12 - for each si-assignment related to current su where
* requested-ha-state != confirmed-ha-state and requested-ha-state ==
* STANDBY
* C13 - at least one component has presence state == TERMINATION_FAILED
* C14 - all components on current instantiation level == INSTANTIATED,
* INSTANTIATION_FAILED or INSTANTIATION_FAILED_REBOOT_NODE
* C15 - current instantiation level is highest
* C16 - all components has presence state == INSTANTIATED
* C17 - at least one component has presence state == INSTANTIATION_FAILED and
* it is not allowed to reboot the node because of this problem
* C18 - at least one component has presence state == INSTANTIATION_FAILED and
* it is allowed to reboot the node to recover from this problem
* C19 - all components in the SU permit restart
*
* 1.4.2 Composed Guards
* =====================
*
* C100 - C9 & C13
* C101 - C9 & C18
* C102 - C9 & C17
* C103 - C8 & C9 & !C13
* C104 - C8 & C9 & C13
* C105 - C14 & (C17 | C18)
* C106 - C14 & C15 & C16
*
* 1.5 Events
* ==========
*
* E1 - component restart request
* E2 - restart
* E3 - probation timer expired
* E4 - escalation reverted
* E5 - operation failed
* E6 - deactivated
* E7 - comp_state(prsm, INSTANTIATED)
* E8 - comp_state(prsm, INSTANTIATION_FAILED)
* E9 - comp_state(prsm, TERMINATION_FAILED)
* E10 - si_state(ha-state)
* E11 - activated
* E12 - comp_state(prsm, UNINSTANTIATED)
* E13 -
* E14 -
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <errno.h>
#include "amf.h"
#include "util.h"
#include "logsys.h"
#include "main.h"
LOGSYS_DECLARE_SUBSYS ("AMF", LOG_INFO);
static int terminate_all_components_in_level (struct amf_su *su,
SaUint32T current_instantiation_level);
static int are_all_comps_in_level_uninst_or_term_failed (struct amf_su *su);
static int are_all_comps_in_level_instantiated (struct amf_su *su);
static int instantiate_all_components_in_level (struct amf_su *su,
SaUint32T current_instantiation_level);
static SaUint32T su_lowest_comp_instantiation_level_set (struct amf_su *su);
static void si_ha_state_assumed_cbfn (
struct amf_si_assignment *si_assignment, int result);
static int is_any_component_instantiating (amf_su_t *su);
typedef struct su_event {
amf_su_event_type_t event_type;
amf_su_t *su;
amf_comp_t *comp;
SaAmfRecommendedRecoveryT recommended_recovery;
} su_event_t;
/******************************************************************************
* Internal (static) utility functions
*****************************************************************************/
static void su_event_set(struct amf_su *su, struct amf_comp *comp,
SaAmfRecommendedRecoveryT recommended_recovery,
su_event_t *su_event, amf_su_event_type_t event_type)
{
su_event->event_type = event_type;
su_event->comp = comp;
su_event->su = su;
su_event->recommended_recovery = recommended_recovery;
}
static void su_defer_event (amf_su_t *su, amf_comp_t *comp,
SaAmfRecommendedRecoveryT recommended_recovery,
amf_su_event_type_t su_event_type)
{
su_event_t event;
su_event_set(su, comp, recommended_recovery,&event, su_event_type);
ENTER("event_type = %d", event.event_type);
amf_fifo_put (event.event_type, &event.su->deferred_events,
sizeof (su_event_t), &event);
}
static void su_recall_deferred_events (amf_su_t *su)
{
su_event_t su_event;
ENTER ("%s", su->name.value);
if (amf_fifo_get (&su->deferred_events, &su_event)) {
switch (su_event.event_type) {
case SU_COMP_ERROR_SUSPECTED_EV:
amf_su_comp_error_suspected (su_event.su,su_event.comp,
su_event.recommended_recovery);
break;
default:
dprintf("event_type = %d", su_event.event_type);
break;
}
}
}
static int has_component_restarted_max_times (amf_comp_t *comp, amf_su_t *su)
{
return comp->saAmfCompRestartCount >= su->sg->saAmfSGCompRestartMax;
}
#ifdef COMPILE_OUT
static int has_su_restarted_max_times (amf_su_t *su)
{
return su->saAmfSURestartCount >= su->sg->saAmfSGSuRestartMax;
}
#endif
/**
* This function only logs since the readiness state is runtime
* calculated.
* @param su
* @param amf_readiness_state
*/
static void su_readiness_state_set (struct amf_su *su,
SaAmfReadinessStateT readiness_state)
{
log_printf (LOG_NOTICE, "Setting SU '%s' readiness state: %s\n",
su->name.value, amf_readiness_state (readiness_state));
}
static void clear_ha_state (
struct amf_su *su, struct amf_si_assignment *si_assignment)
{
ENTER ("");
si_assignment->saAmfSISUHAState = 0;
}
/**
* This function sets presence state to the specified value. It also has the
* following intentional side effects:
* - sets HA-state to unknown when presence state is set to UNINSTANTIATED
* - reports the change of presence state to the sg in which su is contained
* when the new state is 'stable'
* @param su
* @param presence_state - new value of presence state
*/
static void su_presence_state_set (struct amf_su *su,
SaAmfPresenceStateT presence_state)
{
/*
* Set all SI's confirmed HA state to unknown if uninstantiated
*/
if (su->saAmfSUPresenceState == SA_AMF_PRESENCE_UNINSTANTIATED) {
amf_su_foreach_si_assignment (su, clear_ha_state);
}
su->saAmfSUPresenceState = presence_state;
log_printf (LOG_NOTICE, "Setting SU '%s' presence state: %s\n",
su->name.value, amf_presence_state (presence_state));
if (su->restart_control_state != SU_RC_RESTART_SU_SETTING &&
su->restart_control_state != SU_RC_RESTART_COMP_RESTARTING) {
amf_sg_su_state_changed (su->sg, su, SA_AMF_PRESENCE_STATE,
presence_state);
}
}
static void enter_idle (struct amf_su *su)
{
su->restart_control_state = su->escalation_level_history_state;
}
static void enter_idle_with_recall (struct amf_su *su)
{
su->restart_control_state = su->escalation_level_history_state;
su_recall_deferred_events (su);
}
/**
* This function sets operational state to the specified value. It also has the
* following side effects:
* - sets the readiness state for su
* - sets the readiness state for all components contained in the su
* @param su
* @param oper_state - new value of operational state
*/
void amf_su_operational_state_set (struct amf_su *su,
SaAmfOperationalStateT oper_state)
{
struct amf_comp* comp;
su->saAmfSUOperState = oper_state;
log_printf (LOG_NOTICE, "Setting SU '%s' operational state: %s\n",
su->name.value, amf_op_state (oper_state));
if (oper_state == SA_AMF_OPERATIONAL_ENABLED) {
su_readiness_state_set (su, SA_AMF_READINESS_IN_SERVICE);
for (comp = su->comp_head; comp; comp = comp->next) {
amf_comp_readiness_state_set (comp, SA_AMF_READINESS_IN_SERVICE);
}
} else if (oper_state == SA_AMF_OPERATIONAL_DISABLED) {
su_readiness_state_set (su, SA_AMF_READINESS_OUT_OF_SERVICE);
for (comp = su->comp_head; comp; comp = comp->next) {
amf_comp_readiness_state_set (comp, SA_AMF_READINESS_OUT_OF_SERVICE);
}
}
}
/**
* This function creates a new csi-assignment object and initializes it. The
* function also links the new csi-assignment object to the list of assignments
* held by the specified csi object, sets a pointer to the specified component
* and a pointer to the specified si-assignment.
* @param comp
* @param csi
* @param si_assignment
* @param ha_state - new value of ha-state
*/
static void comp_assign_csi (struct amf_comp *comp, struct amf_csi *csi,
struct amf_si_assignment *si_assignment, SaAmfHAStateT ha_state)
{
struct amf_csi_assignment *csi_assignment;
dprintf (" Creating CSI '%s' to comp '%s' with hastate %s\n",
getSaNameT (&csi->name), getSaNameT (&comp->name),
amf_ha_state (ha_state));
csi_assignment = amf_malloc (sizeof (struct amf_csi_assignment));
csi_assignment->next = csi->assigned_csis;
csi->assigned_csis = csi_assignment;
amf_comp_dn_make (comp, &csi_assignment->name);
csi_assignment->comp = comp;
csi_assignment->csi = csi;
csi_assignment->saAmfCSICompHAState = 0; /* undefined confirmed HA state */
csi_assignment->requested_ha_state = ha_state;
csi_assignment->si_assignment = si_assignment;
}
static void comp_restart (struct amf_comp *comp)
{
SaNameT dn;
ENTER ("'%s'", comp->name.value);
amf_comp_dn_make (comp, &dn);
log_printf (LOG_NOTICE, "Error detected for '%s', recovery "
"action: Component restart", dn.value);
comp->su->restart_control_state = SU_RC_RESTART_COMP_DEACTIVATING;
comp->su->restart_control_state = SU_RC_RESTART_COMP_RESTARTING;
comp->su->escalation_level_history_state = SU_RC_IDLE_ESCALATION_LEVEL_1;
amf_comp_restart (comp);
}
/**
* Set the same HA-state as the before the restart to the SI-assignments
* associated with current SU. As a side effect, this HA-state will also be set
* to all components which are associated with the csi-assignments associated to
* the specified su via its csi and si objects.
* @param su
* @param current_instantiation_level
*
* @return - 1 if there were no components on the specified instantiation level
*/
static void reassume_ha_state(struct amf_su *su)
{
struct amf_si_assignment *si_assignment;
ENTER ("");
si_assignment = amf_su_get_next_si_assignment(su, NULL);
while (si_assignment != NULL) {
si_assignment->saAmfSISUHAState = 0; /* unknown */
amf_si_ha_state_assume (si_assignment, si_ha_state_assumed_cbfn);
si_assignment = amf_su_get_next_si_assignment(su, si_assignment);
}
}
static int is_any_component_instantiating (amf_su_t *su)
{
amf_comp_t *component;
int any_component_instantiating = 0;
for (component = su->comp_head; component != NULL;
component = component->next) {
if (component->saAmfCompPresenceState ==
SA_AMF_PRESENCE_INSTANTIATING) {
any_component_instantiating = 1;
break;
}
}
return any_component_instantiating;
}
static int is_any_component_terminating (amf_su_t *su)
{
amf_comp_t *component;
int any_component_terminating = 0;
for (component = su->comp_head; component != NULL;
component = component->next) {
if (component->saAmfCompPresenceState ==
SA_AMF_PRESENCE_TERMINATING) {
any_component_terminating = 1;
break;
}
}
return any_component_terminating;
}
static int is_any_comp_instantiation_failed (amf_su_t *su)
{
amf_comp_t *comp_;
int comp_instantiation_failed = 0;
for (comp_ = su->comp_head; comp_ != NULL; comp_ = comp_->next) {
if (comp_->saAmfCompPresenceState ==
SA_AMF_PRESENCE_INSTANTIATION_FAILED) {
comp_instantiation_failed = 1;
break;
}
}
return comp_instantiation_failed;
}
static int is_any_comp_termination_failed (amf_su_t *su)
{
amf_comp_t *comp_;
int comp_instantiation_failed = 0;
for (comp_ = su->comp_head; comp_ != NULL; comp_ = comp_->next) {
if (comp_->saAmfCompPresenceState ==
SA_AMF_PRESENCE_TERMINATION_FAILED) {
comp_instantiation_failed = 1;
break;
}
}
return comp_instantiation_failed;
}
/**
* Finds the component within the specified su that has the highest value of it
* presence state. With current definition of values the highest value can also
* be regarded as the 'worst' in the sence of capability to be assigned
* workload. In the 'best' presence state (INSTANTIATED) the component is
* immediately available to take workload while in the 'worst' state
* (TERMINATION_FAILED) it can not take any workload before it has been manually
* repaired.
* @param su
*
* @return - worst presence state
*/
static SaAmfPresenceStateT get_worst_comps_presence_state_in_su (amf_su_t *su)
{
amf_comp_t *component;
SaAmfPresenceStateT worst_presence_state = 0;
for (component = su->comp_head; component != NULL;
component = component->next) {
if (component->saAmfCompPresenceState > worst_presence_state) {
worst_presence_state = component->saAmfCompPresenceState;
}
}
return worst_presence_state;
}
/**
*
* @param su
*/
void su_history_state_set(struct amf_su *su, SaAmfPresenceStateT state)
{
su->restart_control_state = su->escalation_level_history_state;
su->saAmfSUPresenceState = state;
}
/**
* A component notifies its parent su that its presence state has changed.
* @param su
* @param comp - component which has changed its presence state
* @param state - new value of presence state
*/
static void su_comp_presence_state_changed (struct amf_su *su,
struct amf_comp *comp, int state)
{
ENTER ("'%s', '%s' %d %d", su->name.value, comp->name.value, state,
su->restart_control_state);
amf_node_t *node = amf_node_find (&comp->su->saAmfSUHostedByNode);
switch (state) {
case SA_AMF_PRESENCE_INSTANTIATED:
switch (su->restart_control_state) {
case SU_RC_IDLE_ESCALATION_LEVEL_1:
case SU_RC_IDLE_ESCALATION_LEVEL_2:
case SU_RC_IDLE_ESCALATION_LEVEL_0:
if (!is_any_component_instantiating (su)) {
if (are_all_comps_in_level_instantiated (su)) {
if (instantiate_all_components_in_level (su,
++comp->su->current_comp_instantiation_level)) {
/* All levels of instantiation is done */
su_presence_state_set (comp->su,
SA_AMF_PRESENCE_INSTANTIATED);
}
} else {
if (is_any_comp_instantiation_failed (su)) {
su_presence_state_set (su,
SA_AMF_PRESENCE_INSTANTIATION_FAILED);
} else {
assert (0);
}
}
}
break;
case SU_RC_RESTART_COMP_RESTARTING:
su->restart_control_state = SU_RC_RESTART_COMP_SETTING;
reassume_ha_state (comp->su);
break;
case SU_RC_RESTART_SU_INSTANTIATING:
if (!is_any_component_instantiating(su)) {
if (are_all_comps_in_level_instantiated (su)) {
if (instantiate_all_components_in_level (su,
++comp->su->current_comp_instantiation_level)) {
su->restart_control_state = SU_RC_RESTART_SU_SETTING;
su_presence_state_set (comp->su,
SA_AMF_PRESENCE_INSTANTIATED);
reassume_ha_state (comp->su);
}
} else if (is_any_comp_instantiation_failed (su)) {
su->restart_control_state =
SU_RC_TERMINATING_AFTER_INSTANTIATION_FAILED;
terminate_all_components_in_level (su,
su->current_comp_instantiation_level);
} else {
assert (0);
}
}
break;
default:
dprintf ("state %d", su->restart_control_state);
assert (0);
break;
}
break;
case SA_AMF_PRESENCE_UNINSTANTIATED:
switch (su->restart_control_state) {
case SU_RC_IDLE_ESCALATION_LEVEL_0:
case SU_RC_IDLE_ESCALATION_LEVEL_1:
case SU_RC_IDLE_ESCALATION_LEVEL_2:
if (!is_any_component_terminating (su)) {
if (are_all_comps_in_level_uninst_or_term_failed (su)) {
if (terminate_all_components_in_level (su,
--su->current_comp_instantiation_level)) {
su_presence_state_set (su,
get_worst_comps_presence_state_in_su (su));
} else {
if (is_any_comp_termination_failed (su)) {
su_presence_state_set (comp->su,
SA_AMF_PRESENCE_TERMINATION_FAILED);
} else {
assert (0);
}
}
}
}
break;
case SU_RC_RESTART_SU_INSTANTIATING:
break;
case SU_RC_RESTART_COMP_RESTARTING:
break;
case SU_RC_TERMINATING_AFTER_INSTANTIATION_FAILED:
if (!is_any_component_terminating (su)) {
if (terminate_all_components_in_level (su,
--su->current_comp_instantiation_level)) {
if (!is_any_comp_termination_failed (su)) {
su_presence_state_set (su,
SA_AMF_PRESENCE_INSTANTIATION_FAILED);
if (node->saAmfNodeRebootOnInstantiationFailure) {
amf_node_failover(node);
} else {
amf_node_comp_failover_req(node, comp);
}
enter_idle (su);
} else {
if (!node->saAmfNodeRebootOnTerminationFailure) {
su_presence_state_set (su,
get_worst_comps_presence_state_in_su (su));
} else {
/* TODO Implement and request Node Failed Fast */
;
}
enter_idle_with_recall (su);
}
}
}
break;
case SU_RC_RESTART_SU_TERMINATING:
if (!is_any_component_terminating (su)) {
if (terminate_all_components_in_level (su,
--su->current_comp_instantiation_level)) {
if (!is_any_comp_termination_failed (su)) {
su->restart_control_state =
SU_RC_RESTART_SU_INSTANTIATING;
instantiate_all_components_in_level (su,
su_lowest_comp_instantiation_level_set (
su));
} else {
if (!node->saAmfNodeRebootOnTerminationFailure) {
su_presence_state_set (su,
get_worst_comps_presence_state_in_su (su));
} else {
/* TODO Implement and request Node Failed Fast */
;
}
enter_idle_with_recall (su);
}
}
}
break;
default:
dprintf ("state %d", su->restart_control_state);
assert (0);
break;
}
break;
case SA_AMF_PRESENCE_INSTANTIATING:
su_presence_state_set (comp->su,SA_AMF_PRESENCE_INSTANTIATING);
break;
case SA_AMF_PRESENCE_RESTARTING:
if (amf_su_are_all_comps_in_su (su, SA_AMF_PRESENCE_RESTARTING)) {
su_presence_state_set (comp->su, SA_AMF_PRESENCE_RESTARTING);
}
break;
case SA_AMF_PRESENCE_TERMINATING:
su_presence_state_set (comp->su, SA_AMF_PRESENCE_TERMINATING);
break;
case SA_AMF_PRESENCE_INSTANTIATION_FAILED:
switch (su->restart_control_state) {
case SU_RC_IDLE_ESCALATION_LEVEL_0:
case SU_RC_IDLE_ESCALATION_LEVEL_1:
case SU_RC_IDLE_ESCALATION_LEVEL_2:
if (!is_any_component_instantiating (su)) {
su_presence_state_set (su,
SA_AMF_PRESENCE_INSTANTIATION_FAILED);
}
break;
case SU_RC_RESTART_COMP_RESTARTING:
su->restart_control_state =
SU_RC_TERMINATING_AFTER_INSTANTIATION_FAILED;
amf_su_terminate (su);
break;
case SU_RC_RESTART_SU_INSTANTIATING:
if (!is_any_component_instantiating (su)) {
su->restart_control_state =
SU_RC_TERMINATING_AFTER_INSTANTIATION_FAILED;
su_presence_state_set (su,
SA_AMF_PRESENCE_INSTANTIATION_FAILED);
terminate_all_components_in_level (su,
su->current_comp_instantiation_level);
}
break;
default:
dprintf ("state %d", su->restart_control_state);
assert (0);
break;
}
break;
case SA_AMF_PRESENCE_TERMINATION_FAILED:
switch (su->restart_control_state) {
case SU_RC_IDLE_ESCALATION_LEVEL_0:
case SU_RC_IDLE_ESCALATION_LEVEL_1:
case SU_RC_IDLE_ESCALATION_LEVEL_2:
break;
case SU_RC_RESTART_COMP_RESTARTING:
if (!node->saAmfNodeRebootOnTerminationFailure) {
su_presence_state_set (su,
SA_AMF_PRESENCE_TERMINATION_FAILED);
enter_idle_with_recall (su);
} else {
/* TODO Implement and request Node Failed Fast */
;
}
break;
case SU_RC_TERMINATING_AFTER_INSTANTIATION_FAILED:
case SU_RC_RESTART_SU_TERMINATING:
if (!is_any_component_terminating (su)) {
if (terminate_all_components_in_level (su,
--su->current_comp_instantiation_level)) {
if (!node->saAmfNodeRebootOnTerminationFailure) {
su_presence_state_set (su,
get_worst_comps_presence_state_in_su (su));
enter_idle_with_recall (su);
} else {
/* TODO Implement and request Node Failed Fast */
;
}
}
}
break;
default:
log_printf (LOG_LEVEL_NOTICE,"%s %d",su->name.value,
su->restart_control_state);
dprintf ("state %d", su->restart_control_state);
assert (0);
break;
}
break;
default:
assert (0);
break;
}
}
/**
* A component notifies its parent su that its operational state has changed.
* @param su
* @param comp - component which has changed its operational state
* @param state - new value of operational state
*/
static void su_comp_op_state_changed (
struct amf_su *su, struct amf_comp *comp, int state)
{
ENTER ("'%s', '%s' %d", su->name.value, comp->name.value, state);
switch (state) {
case SA_AMF_OPERATIONAL_ENABLED:
{
struct amf_comp *comp_compare;
int all_set = 1;
for (comp_compare = comp->su->comp_head;
comp_compare != NULL; comp_compare = comp_compare->next) {
if (comp_compare->saAmfCompOperState !=
SA_AMF_OPERATIONAL_ENABLED) {
all_set = 0;
break;
}
}
if (all_set) {
amf_su_operational_state_set (comp->su,
SA_AMF_OPERATIONAL_ENABLED);
} else {
amf_su_operational_state_set (comp->su,
SA_AMF_OPERATIONAL_DISABLED);
}
break;
}
case SA_AMF_OPERATIONAL_DISABLED:
amf_su_operational_state_set (comp->su, SA_AMF_OPERATIONAL_DISABLED);
break;
default:
assert (0);
break;
}
return;
}
/**
* Instantiates all components on specified instantiation level.
* @param su
* @param current_instantiation_level
*
* @return - 1 if there were no components on the specified instantiation level
*/
static int instantiate_all_components_in_level (struct amf_su *su,
SaUint32T current_instantiation_level)
{
amf_comp_t *comp;
SaUint32T all_components_instantiated = 1;
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
if (su->current_comp_instantiation_level ==
comp->saAmfCompInstantiationLevel) {
all_components_instantiated = 0;
amf_comp_instantiate (comp);
}
}
return all_components_instantiated;
}
static int are_all_comps_in_level_instantiated (struct amf_su *su)
{
SaUint32T level = su->current_comp_instantiation_level;
amf_comp_t *comp;
int all = 1;
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
if (level == comp->saAmfCompInstantiationLevel) {
if (comp->saAmfCompPresenceState != SA_AMF_PRESENCE_INSTANTIATED) {
all = 0;
break;
}
}
}
return all;
}
static int are_all_comps_in_level_uninst_or_term_failed(
struct amf_su *su)
{
SaUint32T level = su->current_comp_instantiation_level;
amf_comp_t *comp;
int all = 1;
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
if (level == comp->saAmfCompInstantiationLevel) {
if (comp->saAmfCompPresenceState != SA_AMF_PRESENCE_UNINSTANTIATED &&
comp->saAmfCompPresenceState != SA_AMF_PRESENCE_TERMINATION_FAILED) {
all = 0;
break;
}
}
}
return all;
}
static void su_rc_enter_idle_escalation_level_1 (amf_comp_t *component,
SaAmfRecommendedRecoveryT recommended_recovery)
{
ENTER("");
component->su->restart_control_state = SU_RC_IDLE_ESCALATION_LEVEL_1;
if (has_component_restarted_max_times (component, component->su)) {
component->su->restart_control_state = SU_RC_IDLE_ESCALATION_LEVEL_2;
amf_su_comp_error_suspected (component->su, component, recommended_recovery);
} else {
comp_restart (component);
}
}
static void su_rc_enter_idle_escalation_level_2 (amf_comp_t *component,
SaAmfRecommendedRecoveryT recommended_recovery)
{
ENTER("");
component->su->restart_control_state = SU_RC_IDLE_ESCALATION_LEVEL_2;
amf_node_t *node = amf_node_find (&component->su->saAmfSUHostedByNode);
amf_node_comp_restart_req (node, component);
}
static int get_instantiation_max_level (amf_su_t *su)
{
amf_comp_t *comp;
int instantiation_level = 0;
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
if (comp->saAmfCompInstantiationLevel > instantiation_level) {
instantiation_level = comp->saAmfCompInstantiationLevel;
}
}
return instantiation_level;
}
/**
* Initiates the termination of all components which have the specified
* instantiation level.
* @param su
* @param current_instantiation_level
*
* @return int -1 if no component has the specified instantiation level
*/
static int terminate_all_components_in_level (struct amf_su *su,
SaUint32T current_instantiation_level)
{
amf_comp_t *comp;
int all_components_in_level = 1;
TRACE8("terminate comp->saAmfCompInstantiationLevel=%u",
current_instantiation_level);
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
/*
* Terminate all components in instantiation level in SU
* abruptly.
*/
if (comp->saAmfCompInstantiationLevel == current_instantiation_level) {
amf_comp_error_suspected_set (comp);
amf_comp_terminate (comp);
all_components_in_level = 0;
}
}
return all_components_in_level;
}
/**
* su_current_instantiation_level_init
* @param su
*
* @return SaUint32T - the value of the instantiation level which has been set
*/
static SaUint32T su_lowest_comp_instantiation_level_set (struct amf_su *su)
{
amf_comp_t *component = su->comp_head;
int comp_instantiation_level = component->saAmfCompInstantiationLevel;
for (; component != NULL; component = component->next) {
TRACE1("component->saAmfCompInstantiationLevel=%d",
component->saAmfCompInstantiationLevel);
if (component->saAmfCompInstantiationLevel <
comp_instantiation_level) {
comp_instantiation_level =
component->saAmfCompInstantiationLevel;
}
}
su->current_comp_instantiation_level = comp_instantiation_level;
return comp_instantiation_level;
}
/**
* An order to SU to instantiate its components.
* @param su
*
* @return int - 1 if its state allows it to request its contained components to
* instantiate or its state indicates that its components are in
* the process of instantiation.
*/
int amf_su_instantiate (struct amf_su *su)
{
int is_instantiating = 1;
ENTER ("'%s %d'", su->name.value, su->saAmfSUPresenceState);
switch (su->saAmfSUPresenceState) {
case SA_AMF_PRESENCE_UNINSTANTIATED:
instantiate_all_components_in_level(su,
su_lowest_comp_instantiation_level_set (su));
break;
case SA_AMF_PRESENCE_RESTARTING:
case SA_AMF_PRESENCE_INSTANTIATING:
break;
case SA_AMF_PRESENCE_INSTANTIATED:
case SA_AMF_PRESENCE_TERMINATING:
case SA_AMF_PRESENCE_INSTANTIATION_FAILED:
case SA_AMF_PRESENCE_TERMINATION_FAILED:
is_instantiating = 0;
break;
default:
assert (0);
break;
}
return is_instantiating;
}
/**
* An order to SU to terminate its components.
* @param su
*/
void amf_su_terminate (struct amf_su *su)
{
ENTER ("'%s'", su->name.value);
su->current_comp_instantiation_level = get_instantiation_max_level (su);
terminate_all_components_in_level (su, su->current_comp_instantiation_level);
}
/**
* Called by a component to report a suspected error on a component
* @param su
* @param comp
* @param recommended_recovery
*/
void amf_su_comp_error_suspected (
struct amf_su *su,
struct amf_comp *comp,
SaAmfRecommendedRecoveryT recommended_recovery)
{
ENTER ("Comp '%s', SU '%s' %d", comp->name.value, su->name.value,
su->restart_control_state);
switch (su->restart_control_state) {
case SU_RC_IDLE_ESCALATION_LEVEL_0:
su_rc_enter_idle_escalation_level_1 (comp,
recommended_recovery);
break;
case SU_RC_IDLE_ESCALATION_LEVEL_1:
if (has_component_restarted_max_times (comp, su)) {
su_rc_enter_idle_escalation_level_2 (comp,
recommended_recovery);
} else {
comp_restart (comp);
}
break;
case SU_RC_IDLE_ESCALATION_LEVEL_2: {
amf_node_t *node = amf_node_find (&comp->su->saAmfSUHostedByNode);
amf_node_comp_restart_req (node, comp);
#ifdef COMPILE_OUT
if (su->saAmfSURestartCount >= su->sg->saAmfSGSuRestartMax) {
/*
* TODO: delegate to node
*/
SaNameT dn;
amf_comp_operational_state_set (comp,
SA_AMF_OPERATIONAL_DISABLED);
amf_su_operational_state_set (su,
SA_AMF_OPERATIONAL_DISABLED);
amf_comp_dn_make (comp, &dn);
log_printf (LOG_NOTICE, "Error detected for '%s', recovery "
"action:\n\t\tSU failover", dn.value);
amf_sg_failover_su_req (comp->su->sg, comp->su, this_amf_node);
return;
} else {
su_restart (comp->su);
}
#endif
break;
}
case SU_RC_RESTART_SU_SETTING:
case SU_RC_RESTART_COMP_RESTARTING:
case SU_RC_RESTART_COMP_SETTING:
/* TODO: Complete the implementation of SU defer event */
su_defer_event (su, comp, recommended_recovery,
SU_COMP_ERROR_SUSPECTED_EV);
break;
default:
dprintf ("restart_control_state = %d",su->restart_control_state);
break;
}
}
/**
* An order to SU to unconditionally restart itself.
* @param su
*/
void amf_su_restart (struct amf_su *su)
{
SaNameT dn;
ENTER ("'%s'", su->name.value);
amf_su_dn_make (su, &dn);
log_printf (LOG_NOTICE, "Error detected for '%s', recovery "
"action: SU restart", dn.value);
su->restart_control_state = SU_RC_RESTART_SU_DEACTIVATING;
su->restart_control_state = SU_RC_RESTART_SU_TERMINATING;
su->escalation_level_history_state = SU_RC_IDLE_ESCALATION_LEVEL_2;
su->current_comp_instantiation_level = get_instantiation_max_level (su);
su->saAmfSURestartCount += 1;
terminate_all_components_in_level(su, su->current_comp_instantiation_level);
}
/******************************************************************************
* Event response methods
*****************************************************************************/
/**
* Used by a component to report a state change event
* @param su
* @param comp
* @param type type of state
* @param state new state
*/
void amf_su_comp_state_changed (
struct amf_su *su, struct amf_comp *comp, SaAmfStateT type, int state)
{
switch (type) {
case SA_AMF_PRESENCE_STATE:
su_comp_presence_state_changed (su, comp, state);
break;
case SA_AMF_OP_STATE:
su_comp_op_state_changed (su, comp, state);
break;
default:
assert (0);
break;
}
}
static void si_ha_state_assumed_cbfn (
struct amf_si_assignment *si_assignment, int result)
{
struct amf_si_assignment *tmp_si_assignment;
struct amf_comp *comp;
struct amf_csi_assignment *csi_assignment;
int all_confirmed = 1;
ENTER ("");
tmp_si_assignment = amf_su_get_next_si_assignment(si_assignment->su, NULL);
while (tmp_si_assignment != NULL) {
for (comp = tmp_si_assignment->su->comp_head; comp != NULL;
comp = comp->next) {
csi_assignment = amf_comp_get_next_csi_assignment(comp, NULL);
while (csi_assignment != NULL) {
if (csi_assignment->requested_ha_state !=
csi_assignment->saAmfCSICompHAState) {
all_confirmed = 0;
}
csi_assignment = amf_comp_get_next_csi_assignment(
comp, csi_assignment);
}
}
tmp_si_assignment = amf_su_get_next_si_assignment(
si_assignment->su, tmp_si_assignment);
}
if (all_confirmed) {
switch (si_assignment->su->restart_control_state) {
case SU_RC_RESTART_COMP_SETTING:
log_printf (LOG_NOTICE, "Component restart recovery finished");
break;
case SU_RC_RESTART_SU_SETTING:
log_printf (LOG_NOTICE, "SU restart recovery finished");
break;
default:
assert (0);
break;
}
enter_idle_with_recall (si_assignment->su);
}
}
/******************************************************************************
* General methods
*****************************************************************************/
/**
* Constructor for SU objects. Adds SU last in the ordered
* list owned by the specified SG. Always returns a
* valid SU object, out-of-memory problems are handled here.
* Default values are initialized.
* @param sg
* @param name
*
* @return struct amf_su*
*/
struct amf_su *amf_su_new (struct amf_sg *sg, char *name)
{
struct amf_su *tail = sg->su_head;
struct amf_su *su = amf_calloc (1, sizeof (struct amf_su));
while (tail != NULL) {
if (tail->next == NULL) {
break;
}
tail = tail->next;
}
if (tail == NULL) {
sg->su_head = su;
} else {
tail->next = su;
}
su->sg = sg;
/* setup default values from spec. */
su->saAmfSURank = 0;
su->saAmfSUIsExternal = 0;
su->saAmfSUFailover = 1;
su->saAmfSUAdminState = SA_AMF_ADMIN_UNLOCKED;
su->saAmfSUOperState = SA_AMF_OPERATIONAL_DISABLED;
su->saAmfSUPresenceState = SA_AMF_PRESENCE_UNINSTANTIATED;
su->restart_control_state = SU_RC_IDLE_ESCALATION_LEVEL_0;
su->current_comp_instantiation_level = 0;
setSaNameT (&su->name, name);
return su;
}
void amf_su_delete (struct amf_su *su)
{
struct amf_comp *comp;
for (comp = su->comp_head; comp != NULL;) {
struct amf_comp *tmp = comp;
comp = comp->next;
amf_comp_delete (tmp);
}
free (su);
}
void *amf_su_serialize (struct amf_su *su, int *len)
{
char *buf = NULL;
int offset = 0, size = 0;
TRACE8 ("%s", su->name.value);
buf = amf_serialize_SaNameT (buf, &size, &offset, &su->name);
buf = amf_serialize_SaUint32T (buf, &size, &offset, su->saAmfSURank);
buf = amf_serialize_SaUint32T (
buf, &size, &offset, su->saAmfSUNumComponents);
buf = amf_serialize_SaUint32T (
buf, &size, &offset, su->saAmfSUIsExternal);
buf = amf_serialize_SaUint32T (
buf, &size, &offset, su->saAmfSUFailover);
buf = amf_serialize_SaUint32T (
buf, &size, &offset, su->saAmfSUPreInstantiable);
buf = amf_serialize_SaUint32T (
buf, &size, &offset, su->saAmfSUOperState);
buf = amf_serialize_SaUint32T (
buf, &size, &offset, su->saAmfSUAdminState);
buf = amf_serialize_SaUint32T (
buf, &size, &offset, su->saAmfSUPresenceState);
buf = amf_serialize_SaNameT (buf, &size, &offset, &su->saAmfSUHostedByNode);
buf = amf_serialize_SaUint32T (
buf, &size, &offset, su->saAmfSURestartCount);
buf = amf_serialize_SaUint32T (
buf, &size, &offset, su->restart_control_state);
buf = amf_serialize_SaUint32T (
buf, &size, &offset, su->escalation_level_history_state);
buf = amf_serialize_SaStringT (
buf, &size, &offset, su->clccli_path);
buf = amf_serialize_SaUint32T (
buf, &size, &offset, su->su_failover_cnt);
buf = amf_serialize_SaUint32T (
buf, &size, &offset, su->current_comp_instantiation_level);
*len = offset;
return buf;
}
struct amf_su *amf_su_deserialize (struct amf_sg *sg, char *buf)
{
char *tmp = buf;
struct amf_su *su = amf_su_new (sg, "");
tmp = amf_deserialize_SaNameT (tmp, &su->name);
tmp = amf_deserialize_SaUint32T (tmp, &su->saAmfSURank);
tmp = amf_deserialize_SaUint32T (tmp, &su->saAmfSUNumComponents);
tmp = amf_deserialize_SaUint32T (tmp, &su->saAmfSUIsExternal);
tmp = amf_deserialize_SaUint32T (tmp, &su->saAmfSUFailover);
tmp = amf_deserialize_SaUint32T (tmp, &su->saAmfSUPreInstantiable);
tmp = amf_deserialize_SaUint32T (tmp, &su->saAmfSUOperState);
tmp = amf_deserialize_SaUint32T (tmp, &su->saAmfSUAdminState);
tmp = amf_deserialize_SaUint32T (tmp, &su->saAmfSUPresenceState);
tmp = amf_deserialize_SaNameT (tmp, &su->saAmfSUHostedByNode);
tmp = amf_deserialize_SaUint32T (tmp, &su->saAmfSURestartCount);
tmp = amf_deserialize_SaUint32T (tmp, &su->restart_control_state);
tmp = amf_deserialize_SaUint32T (tmp, &su->escalation_level_history_state);
tmp = amf_deserialize_SaStringT (tmp, &su->clccli_path);
tmp = amf_deserialize_SaUint32T (tmp, &su->su_failover_cnt);
tmp = amf_deserialize_SaUint32T (tmp, &su->current_comp_instantiation_level);
return su;
}
struct amf_su *amf_su_find (struct amf_cluster *cluster, SaNameT *name)
{
struct amf_application *app;
struct amf_sg *sg;
struct amf_su *su = NULL;
char *app_name;
char *sg_name;
char *su_name;
char *ptrptr;
char *buf;
assert (cluster != NULL && name != NULL);
/* malloc new buffer since strtok_r writes to its first argument */
buf = amf_malloc (name->length + 1);
memcpy (buf, name->value, name->length + 1);
su_name = strtok_r(buf, ",", &ptrptr);
sg_name = strtok_r(NULL, ",", &ptrptr);
app_name = strtok_r(NULL, ",", &ptrptr);
if (su_name == NULL || sg_name == NULL || app_name == NULL) {
goto end;
}
su_name += 6;
sg_name += 6;
app_name += 7;
app = amf_application_find (cluster, app_name);
if (app == NULL) {
goto end;
}
for (sg = app->sg_head; sg != NULL; sg = sg->next) {
if (strncmp (sg_name, (char*)sg->name.value,
sg->name.length) == 0) {
for (su = sg->su_head; su != NULL; su = su->next) {
if (su->name.length == strlen(su_name) &&
strncmp (su_name, (char*)su->name.value,
su->name.length) == 0) {
goto end;
}
}
}
}
end:
free (buf);
return su;
}
/**
* This function makes a distinguished name for specified su object.
* @param su
* @param name -[out] pointer to where the distinguished name shall be stored
*
* @return SaNameT* - distinguished name
*/
char *amf_su_dn_make (struct amf_su *su, SaNameT *name)
{
int i;
assert (su != NULL);
i = snprintf((char*) name->value, SA_MAX_NAME_LENGTH,
"safSu=%s,safSg=%s,safApp=%s",
su->name.value, su->sg->name.value, su->sg->application->name.value);
assert (i <= SA_MAX_NAME_LENGTH);
name->length = i;
return (char *)name->value;
}
/**
* An order to SU to create an si-assignment object with a specified HA-state
* between it self and a specified si. The created si-assignment is initialized
* and linked to list of assignments held by the specified si.
* This function also orders creation of all csi-assignments required
* considering the cs-types specified for the components and csi objects
* respectively.
* @param su
* @param si
* @param ha_state
*
* @return amf_si_assignment_t*
*/
amf_si_assignment_t *amf_su_assign_si (struct amf_su *su, struct amf_si *si,
SaAmfHAStateT ha_state)
{
struct amf_si_assignment *si_assignment;
dprintf ("Creating SI '%s' to SU '%s' with hastate %s\n",
getSaNameT (&si->name), getSaNameT (&su->name),
amf_ha_state (ha_state));
si_assignment = amf_malloc (sizeof (struct amf_si_assignment));
amf_su_dn_make (su, &si_assignment->name);
si_assignment->saAmfSISUHAState = 0; /* undefined confirmed HA state */
si_assignment->requested_ha_state = ha_state;
si_assignment->next = si->assigned_sis;
si->assigned_sis = si_assignment;
si_assignment->si = si;
si_assignment->su = su;
{
struct amf_csi *csi;
struct amf_comp *comp;
SaNameT *cs_type;
int i;
/*
** for each component in SU, find a CSI in the SI with the same type
*/
for (comp = su->comp_head; comp != NULL; comp = comp->next) {
int no_of_cs_types = 0;
for (i = 0; comp->saAmfCompCsTypes[i]; i++) {
cs_type = comp->saAmfCompCsTypes[i];
no_of_cs_types++;
int no_of_assignments = 0;
for (csi = si->csi_head; csi != NULL; csi = csi->next) {
if (!memcmp(csi->saAmfCSTypeName.value, cs_type->value,
cs_type->length)) {
comp_assign_csi (comp, csi, si_assignment, ha_state);
no_of_assignments++;
}
}
if (no_of_assignments == 0) {
log_printf (
LOG_WARNING, "\t No CSIs of type %s configured?!!\n",
getSaNameT (cs_type));
}
}
if (no_of_cs_types == 0) {
log_printf (LOG_LEVEL_ERROR,
"\t No CS types configured for comp %s ?!!\n",
getSaNameT (&comp->name));
}
}
}
return si_assignment;
}
struct amf_si_assignment *amf_su_get_next_si_assignment (
struct amf_su *su, const struct amf_si_assignment *si_assignment)
{
struct amf_si *si;
struct amf_si_assignment *tmp_si_assignment;
SaNameT dn;
amf_su_dn_make (su, &dn);
if (si_assignment == NULL) {
assert (su->sg);
assert (su->sg->application);
assert (su->sg->application->si_head);
si = su->sg->application->si_head;
tmp_si_assignment = si->assigned_sis;
} else {
tmp_si_assignment = si_assignment->next;
if (tmp_si_assignment == NULL) {
si = si_assignment->si->next;
if (si == NULL) {
return NULL;
} else {
tmp_si_assignment = si->assigned_sis;
}
} else {
si = tmp_si_assignment->si;
}
}
for (; si != NULL; si = si->next) {
if (tmp_si_assignment == NULL && si != NULL) {
tmp_si_assignment = si->assigned_sis;
}
for (; tmp_si_assignment != NULL;
tmp_si_assignment = tmp_si_assignment->next) {
if (name_match (&tmp_si_assignment->name, &dn)) {
return tmp_si_assignment;
}
}
}
return NULL;
}
void amf_su_foreach_si_assignment (
struct amf_su *su,
void (*foreach_fn)(struct amf_su *su,
struct amf_si_assignment *si_assignment))
{
struct amf_si_assignment *si_assignment;
assert (foreach_fn != NULL);
si_assignment = amf_su_get_next_si_assignment (su, NULL);
while (si_assignment != NULL) {
foreach_fn (su, si_assignment);
si_assignment = amf_su_get_next_si_assignment (su, si_assignment);
}
}
/**
* This function calculates the number of si-assignments with active HA-state
* which currently are associated with the specified su.
* TODO: Split into two functions and remove dependency to sg's avail_state
* @param su
*
* @return int
*/
int amf_su_get_saAmfSUNumCurrActiveSIs(struct amf_su *su)
{
int cnt = 0;
struct amf_si_assignment *si_assignment;
si_assignment = amf_su_get_next_si_assignment (su, NULL);
while (si_assignment != NULL) {
if (su->sg->avail_state == SG_AC_AssigningOnRequest &&
si_assignment->requested_ha_state == SA_AMF_HA_ACTIVE) {
cnt++;
} else {
if (si_assignment->saAmfSISUHAState == SA_AMF_HA_ACTIVE) {
cnt++;
}
}
si_assignment = amf_su_get_next_si_assignment (su, si_assignment);
}
return cnt;
}
/**
* This function calculates the number of si-assignments with standby HA-state
* which currently are associated with the specified su.
* TODO: Split into two functions and remove dependency to sg's avail_state
* @param su
*
* @return int
*/
int amf_su_get_saAmfSUNumCurrStandbySIs(struct amf_su *su)
{
int cnt = 0;
struct amf_si_assignment *si_assignment;
si_assignment = amf_su_get_next_si_assignment (su, NULL);
while (si_assignment != NULL) {
if (su->sg->avail_state == SG_AC_AssigningOnRequest &&
si_assignment->requested_ha_state == SA_AMF_HA_STANDBY) {
cnt++;
} else {
if (si_assignment->saAmfSISUHAState == SA_AMF_HA_STANDBY) {
cnt++;
}
}
si_assignment = amf_su_get_next_si_assignment (su, si_assignment);
}
return cnt;
}
/**
* This function calculates the readiness state for specified su
* @param su
*
* @return SaAmfReadinessStateT
*/
SaAmfReadinessStateT amf_su_get_saAmfSUReadinessState (struct amf_su *su)
{
if ((su->saAmfSUOperState == SA_AMF_OPERATIONAL_ENABLED) &&
((su->saAmfSUPresenceState == SA_AMF_PRESENCE_INSTANTIATED) ||
(su->saAmfSUPresenceState == SA_AMF_PRESENCE_RESTARTING))) {
return SA_AMF_READINESS_IN_SERVICE;
} else if (su->saAmfSUOperState == SA_AMF_OPERATIONAL_ENABLED) {
return SA_AMF_READINESS_STOPPING;
} else {
return SA_AMF_READINESS_OUT_OF_SERVICE;
}
}
/**
* Determine if the SU is hosted on the local node.
* @param su
*
* @return int
*/
int amf_su_is_local (struct amf_su *su)
{
if (name_match (&this_amf_node->name, &su->saAmfSUHostedByNode)) {
return 1;
} else {
return 0;
}
}
/**
* Determine if all components have the specified HA-state.
* @param su
* @param state -specified HA-state
*
* @return int - return 0 if not all components have the specified HA-state
*/
int amf_su_are_all_comps_in_su (struct amf_su *su,
SaAmfPresenceStateT state)
{
int all_comps_in_su_are_set = 1;
amf_comp_t *component;
for (component = su->comp_head; component != NULL;
component = component->next) {
if (component->saAmfCompPresenceState != state) {
all_comps_in_su_are_set = 0;
}
}
return all_comps_in_su_are_set;
}