mirror_corosync/exec/amfsi.c
2007-09-09 06:38:10 +00:00

1060 lines
30 KiB
C

/** @file amfsi.c
*
* Copyright (c) 2006 Ericsson AB.
* Author: Hans Feldt, Anders Eriksson, Lars Holm
* - Refactoring of code into several AMF files
* - Component/SU restart, SU failover
* - Constructors/destructors
* - Serializers/deserializers
*
* All rights reserved.
*
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* AMF Workload related classes Implementation
*
* This file contains functions for handling :
* - AMF service instances(SI)
* - AMF SI Dependency
* - AMF SI Ranked SU
* - AMF SI Assignment
* - AMF component service instances (CSI)
* - AMF CSI Assignment
* - AMF CSI Type
* - AMF CSI Attribute
* The file can be viewed as the implementation of the classes listed above
* as described in SAI-Overview-B.02.01. The SA Forum specification
* SAI-AIS-AMF-B.02.01 has been used as specification of the behaviour
* and is referred to as 'the spec' below.
*
* The functions in this file are responsible for:
* - calculating and storing an SI_dependency_level integer per SI
* - calculating and storing a csi_dependency_level integer per CSI
* - on request change HA state of an SI or CSI in such a way that the
* requirements regarding SI -> SI dependencies (paragraphs 3.9.1.1 and
* 3.9.1.2) and CSI -> CSI dependencies (paragraph 3.9.1.3) are fully
* respected
*
* The si_dependency_level is an attribute calculated at init (in the future
* also at reconfiguration) which indicates dependencies between SIs as
* an integer. The si_dependency level indicates to which extent an SI depends
* on other SIs such that an SI that depends on no other SI is on
* si_dependecy_level == 1, an SI that depends only on an SI on
* si_dependency_level == 1 is on si_dependency-level == 2.
* An SI that depends on several SIs gets a si_dependency_level that is one
* unit higher than the SI with the highest si_dependency_level it depends on.
*
* The csi_dependency_level attribute works the same way.
*
* According to paragraph 3.9.1 of the spec, a change to or from the ACTIVE
* HA state is not always allowed without first deactivate dependent SI and CSI
* assignments. Dependencies between CSIs are absolute while an SI that depends
* on another SI may tolerate that the SI on which it depends is inactive for a
* configurable time (the tolerance time). The consequence of this is that a
* request to change the SI state may require a sequence of requests to
* components to assume a new HA state for a CSI-assignment and to guarantee
* the dependency rules, the active response from the component has to be
* awaited before next HA state can be set.
*
* This file implements an SI state machine that fully implements these rules.
* This state machine is called SI Dependency Control State Machine (dcsm)
* and has the following states:
* - DEACTIVATED (there is no SI-assignment with active HA state)
* - ACTIVATING (a request to set the ACTIVE HA state has been received and
* setting ACTIVE HA states to the appropriate components are
* in progress)
* - ACTIVATED (there is at least one SI-assignment with the ACTIVE HA-state)
* - DEACTIVATING (a request to de-activate an SI or only a specific CSI
* within an SI has been received and setting the QUISCED
* HA states to the appropriate components are in progress)
* - DEPENDENCY_DEACTIVATING (the SI-SI dependency tolerance timer has expired
* and setting the QUISCED HA states to the
* appropriate components are in progress)
* - DEPENDENCY_DEACTIVATED (as state DEACTIVATED but will automatically
* transition to state ACTIVATING when the
* dependency problem is solved, i.e. the SI on
* which it depends has re-assumed the ACTIVE HA
* state)
* - SETTING (a request to change the HA state when neither the existing
* nor the requested state is ACTIVE)
*
* This file also implements:
* - SI: Assignment state (for report purposes)
* - SI Assignment: HA state
* - CSI Assignment: HA state
*
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include "amf.h"
#include "logsys.h"
#include "util.h"
#include "aispoll.h"
#include "main.h"
LOGSYS_DECLARE_SUBSYS ("AMF", LOG_INFO);
/**
* Check that all CSI assignments belonging to an SI assignment
* has been removed.
* @param si_assignment
*
* @return int
*/
static int all_csi_assignments_removed (amf_si_assignment_t *si_assignment)
{
amf_csi_assignment_t *csi_assignment;
amf_csi_t *csi;
int all_removed = 1;
for (csi = si_assignment->si->csi_head; csi != NULL; csi = csi->next) {
for (csi_assignment = csi->assigned_csis; csi_assignment != NULL;
csi_assignment = csi_assignment->next) {
/*
* If the CSI assignment and the SI assignment belongs to the
* same SU, we have a match and can request the component to
* remove the CSI.
*/
if (name_match (&csi_assignment->comp->su->name,
&si_assignment->su->name)) {
if (csi_assignment->requested_ha_state !=
csi_assignment->saAmfCSICompHAState) {
all_removed = 0;
}
}
}
}
return all_removed;
}
/**
* Check if any CSI assignment belonging to SU has the requested
* state.
* @param su
* @param hastate
*
* @return int
*/
static int any_csi_has_hastate_in_su (struct amf_su *su, SaAmfHAStateT hastate)
{
struct amf_comp *component;
struct amf_csi_assignment *csi_assignment;
int exist = 0;
for (component = su->comp_head; component != NULL;
component = component->next) {
csi_assignment = amf_comp_get_next_csi_assignment (component, NULL);
while (csi_assignment != NULL) {
if (csi_assignment->saAmfCSICompHAState == hastate) {
exist = 1;
goto done;
}
csi_assignment =
amf_comp_get_next_csi_assignment (component, csi_assignment);
}
}
done:
return exist;
}
/**
* Check if all CSI assignments belonging to a
* an SI assignemnt has the requested state.
* @param su
* @param hastate
*
* @return int
*/
static int all_csi_has_hastate_for_si (
struct amf_si_assignment *si_assignment, SaAmfHAStateT hastate)
{
struct amf_comp *component;
struct amf_csi_assignment *tmp_csi_assignment;
int all = 1;
for (component = si_assignment->su->comp_head; component != NULL;
component = component->next) {
tmp_csi_assignment = amf_comp_get_next_csi_assignment (component, NULL);
while (tmp_csi_assignment != NULL) {
if ((tmp_csi_assignment->si_assignment == si_assignment) &&
(tmp_csi_assignment->saAmfCSICompHAState != hastate)) {
all = 0;
goto done;
}
tmp_csi_assignment =
amf_comp_get_next_csi_assignment (component, tmp_csi_assignment);
}
}
done:
return all;
}
/**
* Implements table 6 in 3.3.2.4
* TODO: active & standby is not correct calculated acc. to
* table. This knowledge is e.g. used in assign_si_assumed_cbfn
* (sg.c)
* @param csi_assignment
*/
static void set_si_ha_state (struct amf_csi_assignment *csi_assignment)
{
SaAmfHAStateT old_ha_state =
csi_assignment->si_assignment->saAmfSISUHAState;
SaAmfAssignmentStateT old_assigment_state =
amf_si_get_saAmfSIAssignmentState (csi_assignment->csi->si);
if (all_csi_has_hastate_for_si (
csi_assignment->si_assignment, SA_AMF_HA_ACTIVE)) {
csi_assignment->si_assignment->saAmfSISUHAState = SA_AMF_HA_ACTIVE;
}
if (all_csi_has_hastate_for_si (
csi_assignment->si_assignment, SA_AMF_HA_STANDBY)) {
csi_assignment->si_assignment->saAmfSISUHAState = SA_AMF_HA_STANDBY;
}
if (any_csi_has_hastate_in_su (
csi_assignment->comp->su, SA_AMF_HA_QUIESCING)) {
csi_assignment->si_assignment->saAmfSISUHAState = SA_AMF_HA_QUIESCING;
}
if (any_csi_has_hastate_in_su (
csi_assignment->comp->su, SA_AMF_HA_QUIESCED)) {
csi_assignment->si_assignment->saAmfSISUHAState = SA_AMF_HA_QUIESCED;
}
/* log changes to HA state */
if (old_ha_state != csi_assignment->si_assignment->saAmfSISUHAState) {
log_printf (LOG_NOTICE, "SU HA state changed to '%s' for:\n"
"\t\tSI '%s', SU '%s'",
amf_ha_state (csi_assignment->si_assignment->saAmfSISUHAState),
csi_assignment->si_assignment->si->name.value,
csi_assignment->si_assignment->name.value);
}
/* log changes to assignment state */
if (old_assigment_state !=
amf_si_get_saAmfSIAssignmentState (csi_assignment->csi->si)) {
log_printf (LOG_NOTICE, "SI Assignment state changed to '%s' for:\n"
"\t\tSI '%s', SU '%s'",
amf_assignment_state (
amf_si_get_saAmfSIAssignmentState (csi_assignment->csi->si)),
csi_assignment->si_assignment->si->name.value,
csi_assignment->si_assignment->name.value);
}
}
char *amf_csi_dn_make (struct amf_csi *csi, SaNameT *name)
{
int i = snprintf((char*) name->value, SA_MAX_NAME_LENGTH,
"safCsi=%s,safSi=%s,safApp=%s",
csi->name.value, csi->si->name.value,
csi->si->application->name.value);
assert (i <= SA_MAX_NAME_LENGTH);
name->length = i;
return(char *)name->value;
}
void amf_si_comp_set_ha_state_done (
struct amf_si *si, struct amf_csi_assignment *csi_assignment)
{
ENTER ("'%s', '%s'", si->name.value, csi_assignment->csi->name.value);
set_si_ha_state (csi_assignment);
assert (csi_assignment->si_assignment->assumed_callback_fn != NULL);
/*
* Report to caller when the requested SI assignment state is
* confirmed.
*/
if (csi_assignment->si_assignment->requested_ha_state ==
csi_assignment->si_assignment->saAmfSISUHAState) {
TRACE1("'%s', '%s'", si->name.value, csi_assignment->csi->name.value);
csi_assignment->si_assignment->assumed_callback_fn (
csi_assignment->si_assignment, 0);
csi_assignment->si_assignment->assumed_callback_fn = NULL;
}
}
void amf_si_activate (
struct amf_si *si,
void (*activated_callback_fn)(struct amf_si *si, int result))
{
struct amf_csi *csi;
ENTER ("'%s'", si->name.value);
for (csi = si->csi_head; csi != NULL; csi = csi->next) {
struct amf_csi_assignment *csi_assignment;
for (csi_assignment = csi->assigned_csis; csi_assignment != NULL;
csi_assignment = csi_assignment->next) {
csi_assignment->si_assignment->requested_ha_state =
SA_AMF_HA_ACTIVE;
/*
* TODO: only active assignments should be set when dependency
* levels are used.
*/
csi_assignment->requested_ha_state = SA_AMF_HA_ACTIVE;
amf_comp_hastate_set (csi_assignment->comp, csi_assignment);
}
}
}
void amf_si_comp_set_ha_state_failed (
struct amf_si *si, struct amf_csi_assignment *csi_assignment)
{
ENTER ("");
assert (0);
}
static void timer_function_ha_state_assumed (void *_si_assignment)
{
struct amf_si_assignment *si_assignment = _si_assignment;
ENTER ("");
si_assignment->saAmfSISUHAState = si_assignment->requested_ha_state;
si_assignment->assumed_callback_fn (si_assignment, 0);
}
void amf_si_ha_state_assume (
struct amf_si_assignment *si_assignment,
void (*assumed_ha_state_callback_fn)(struct amf_si_assignment *si_assignment,
int result))
{
struct amf_csi_assignment *csi_assignment;
struct amf_csi *csi;
int csi_assignment_cnt = 0;
int hastate_set_done_cnt = 0;
ENTER ("SI '%s' SU '%s' state %s", si_assignment->si->name.value,
si_assignment->su->name.value,
amf_ha_state (si_assignment->requested_ha_state));
si_assignment->assumed_callback_fn = assumed_ha_state_callback_fn;
for (csi = si_assignment->si->csi_head; csi != NULL; csi = csi->next) {
for (csi_assignment = csi->assigned_csis; csi_assignment != NULL;
csi_assignment = csi_assignment->next) {
/*
* If the CSI assignment and the SI assignment belongs to the
* same SU, we have a match and can request the component to
* change HA state.
*/
if (name_match (&csi_assignment->comp->su->name,
&si_assignment->su->name) &&
(csi_assignment->saAmfCSICompHAState !=
si_assignment->requested_ha_state)) {
csi_assignment_cnt++;
csi_assignment->requested_ha_state =
si_assignment->requested_ha_state;
amf_comp_hastate_set (csi_assignment->comp, csi_assignment);
if (csi_assignment->saAmfCSICompHAState ==
csi_assignment->requested_ha_state) {
hastate_set_done_cnt++;
}
}
}
}
/*
* If the SU has only one component which is the faulty one, we
* will not get an asynchronous response from the component.
* This response (amf_si_comp_set_ha_state_done) is used to do
* the next state transition. The asynchronous response is
* simulated using a timeout instead.
*/
if (csi_assignment_cnt == hastate_set_done_cnt) {
poll_timer_handle handle;
poll_timer_add (aisexec_poll_handle, 0, si_assignment,
timer_function_ha_state_assumed, &handle);
}
}
/**
* Get number of active assignments for the specified SI
* @param si
*
* @return int
*/
int amf_si_get_saAmfSINumCurrActiveAssignments (struct amf_si *si)
{
int cnt = 0;
struct amf_si_assignment *si_assignment;
for (si_assignment = si->assigned_sis; si_assignment != NULL;
si_assignment = si_assignment->next) {
if (si_assignment->saAmfSISUHAState == SA_AMF_HA_ACTIVE) {
cnt++;
}
}
return cnt;
}
int amf_si_su_get_saAmfSINumCurrActiveAssignments (struct amf_si *si,
struct amf_su *su)
{
int cnt = 0;
struct amf_si_assignment *si_assignment;
for (si_assignment = si->assigned_sis; si_assignment != NULL;
si_assignment = si_assignment->next) {
if (si_assignment->su == su &&
si_assignment->saAmfSISUHAState == SA_AMF_HA_ACTIVE) {
cnt++;
}
}
return cnt;
}
int amf_si_get_saAmfSINumCurrStandbyAssignments (struct amf_si *si)
{
int cnt = 0;
struct amf_si_assignment *si_assignment;
for (si_assignment = si->assigned_sis; si_assignment != NULL;
si_assignment = si_assignment->next) {
if (si_assignment->saAmfSISUHAState == SA_AMF_HA_STANDBY) {
cnt++;
}
}
return cnt;
}
int amf_si_su_get_saAmfSINumCurrStandbyAssignments (struct amf_si *si,
struct amf_su *su)
{
int cnt = 0;
struct amf_si_assignment *si_assignment;
for (si_assignment = si->assigned_sis; si_assignment != NULL;
si_assignment = si_assignment->next) {
if (si_assignment->su == su &&
si_assignment->saAmfSISUHAState == SA_AMF_HA_STANDBY) {
cnt++;
}
}
return cnt;
}
SaAmfAssignmentStateT amf_si_get_saAmfSIAssignmentState (struct amf_si *si)
{
if ((amf_si_get_saAmfSINumCurrActiveAssignments (si) ==
si->saAmfSIPrefActiveAssignments) &&
(amf_si_get_saAmfSINumCurrStandbyAssignments (si) ==
si->saAmfSIPrefStandbyAssignments)) {
return SA_AMF_ASSIGNMENT_FULLY_ASSIGNED;
} else if (amf_si_get_saAmfSINumCurrActiveAssignments (si) == 0) {
return SA_AMF_ASSIGNMENT_UNASSIGNED;
} else {
return SA_AMF_ASSIGNMENT_PARTIALLY_ASSIGNED;
}
}
void amf_csi_delete_assignments (struct amf_csi *csi, struct amf_su *su)
{
struct amf_csi_assignment *csi_assignment;
ENTER ("'%s'", su->name.value);
struct amf_csi_assignment **prev = &csi->assigned_csis;
for (csi_assignment = csi->assigned_csis; csi_assignment != NULL;
csi_assignment = csi_assignment->next) {
if (csi_assignment->comp->su == su) {
struct amf_csi_assignment *tmp = csi_assignment;
*prev = csi_assignment->next;
dprintf ("CSI assignment %s unlinked", tmp->name.value);
free (tmp);
} else {
prev = &csi_assignment->next;
}
}
}
/**
* Constructor for SI objects. Adds SI last in the ordered
* list owned by the specified application. Always returns a
* valid SI object, out-of-memory problems are handled here.
* Default values are initialized.
* @param app
*
* @return struct amf_si*
*/
struct amf_si *amf_si_new (struct amf_application *app, char *name)
{
struct amf_si *tail = app->si_head;
struct amf_si *si = amf_calloc (1, sizeof (struct amf_si));
while (tail != NULL) {
if (tail->next == NULL) {
break;
}
tail = tail->next;
}
if (tail == NULL) {
app->si_head = si;
} else {
tail->next = si;
}
si->application = app;
/* setup default values from spec. */
si->saAmfSIAdminState = SA_AMF_ADMIN_UNLOCKED;
si->saAmfSIRank = 0;
si->saAmfSIPrefActiveAssignments = 1;
si->saAmfSIPrefStandbyAssignments = 1;
si->assigned_sis = NULL;
si->csi_head = NULL;
setSaNameT (&si->name, name);
return si;
}
void amf_si_delete (struct amf_si *si)
{
struct amf_si_assignment *si_assignment;
struct amf_csi *csi;
for (csi = si->csi_head; csi != NULL;) {
struct amf_csi *tmp = csi;
csi = csi->next;
amf_csi_delete (tmp);
}
for (si_assignment = si->assigned_sis; si_assignment != NULL;) {
struct amf_si_assignment *tmp = si_assignment;
si_assignment = si_assignment->next;
free (tmp);
}
free (si);
}
void *amf_si_serialize (struct amf_si *si, int *len)
{
char *buf = NULL;
int offset = 0, size = 0;
TRACE8 ("%s", si->name.value);
buf = amf_serialize_SaNameT (buf, &size, &offset, &si->name);
buf = amf_serialize_SaNameT (buf, &size, &offset,
&si->saAmfSIProtectedbySG);
buf = amf_serialize_SaUint32T (buf, &size, &offset, si->saAmfSIRank);
buf = amf_serialize_SaUint32T (buf, &size, &offset, si->saAmfSINumCSIs);
buf = amf_serialize_SaUint32T (buf, &size, &offset,
si->saAmfSIPrefActiveAssignments);
buf = amf_serialize_SaUint32T (buf, &size, &offset,
si->saAmfSIPrefStandbyAssignments);
buf = amf_serialize_SaUint32T (buf, &size, &offset,
si->saAmfSIAdminState);
*len = offset;
return buf;
}
struct amf_si *amf_si_deserialize (struct amf_application *app, char *buf)
{
char *tmp = buf;
struct amf_si *si = amf_si_new (app, "");
tmp = amf_deserialize_SaNameT (tmp, &si->name);
tmp = amf_deserialize_SaNameT (tmp, &si->saAmfSIProtectedbySG);
tmp = amf_deserialize_SaUint32T (tmp, &si->saAmfSIRank);
tmp = amf_deserialize_SaUint32T (tmp, &si->saAmfSINumCSIs);
tmp = amf_deserialize_SaUint32T (tmp, &si->saAmfSIPrefActiveAssignments);
tmp = amf_deserialize_SaUint32T (tmp, &si->saAmfSIPrefStandbyAssignments);
tmp = amf_deserialize_SaUint32T (tmp, &si->saAmfSIAdminState);
return si;
}
/*****************************************************************************
* SI Assignment class implementation *
****************************************************************************/
struct amf_si_assignment *amf_si_assignment_new (struct amf_si *si)
{
struct amf_si_assignment *si_assignment =
amf_calloc (1, sizeof (struct amf_si_assignment));
si_assignment->si = si;
si_assignment->next = si->assigned_sis;
si->assigned_sis = si_assignment;
return si_assignment;
}
void *amf_si_assignment_serialize (
amf_si_assignment_t *si_assignment, int *len)
{
char *buf = NULL;
int offset = 0, size = 0;
TRACE8 ("%s", si_assignment->name.value);
buf = amf_serialize_SaNameT (buf, &size, &offset, &si_assignment->name);
buf = amf_serialize_SaUint32T (buf, &size, &offset,
si_assignment->saAmfSISUHAState);
buf = amf_serialize_SaUint32T (buf, &size, &offset,
si_assignment->requested_ha_state);
*len = offset;
return buf;
}
struct amf_si_assignment *amf_si_assignment_deserialize (
struct amf_si *si, char *buf)
{
char *tmp = buf;
struct amf_si_assignment *si_assignment = amf_si_assignment_new (si);
tmp = amf_deserialize_SaNameT (tmp, &si_assignment->name);
tmp = amf_deserialize_SaUint32T (tmp, &si_assignment->saAmfSISUHAState);
tmp = amf_deserialize_SaUint32T (tmp, &si_assignment->requested_ha_state);
si_assignment->su = amf_su_find (si->application->cluster,
&si_assignment->name);
return si_assignment;
}
struct amf_si *amf_si_find (struct amf_application *app, char *name)
{
struct amf_si *si;
for (si = app->si_head; si != NULL; si = si->next) {
if (si->name.length == strlen(name) &&
strncmp (name, (char*)si->name.value, si->name.length) == 0) {
break;
}
}
if (si == NULL) {
dprintf ("SI %s not found!", name);
}
return si;
}
/*****************************************************************************
* CSI class implementation *
****************************************************************************/
struct amf_csi *amf_csi_new (struct amf_si *si)
{
struct amf_csi *csi = amf_calloc (1, sizeof (struct amf_csi));
csi->si = si;
csi->next = si->csi_head;
si->csi_head = csi;
return csi;
}
void amf_csi_delete (struct amf_csi *csi)
{
struct amf_csi_assignment *csi_assignment;
for (csi_assignment = csi->assigned_csis; csi_assignment != NULL;) {
struct amf_csi_assignment *tmp = csi_assignment;
csi_assignment = csi_assignment->next;
free (tmp);
}
free (csi);
}
void *amf_csi_serialize (struct amf_csi *csi, int *len)
{
char *buf = NULL;
int offset = 0, size = 0;
TRACE8 ("%s", csi->name.value);
buf = amf_serialize_SaNameT (buf, &size, &offset, &csi->name);
buf = amf_serialize_SaNameT (buf, &size, &offset, &csi->saAmfCSTypeName);
*len = offset;
return buf;
}
struct amf_csi *amf_csi_deserialize (struct amf_si *si, char *buf)
{
char *tmp = buf;
struct amf_csi *csi = amf_csi_new (si);
tmp = amf_deserialize_SaNameT (tmp, &csi->name);
tmp = amf_deserialize_SaNameT (tmp, &csi->saAmfCSTypeName);
return csi;
}
struct amf_csi *amf_csi_find (struct amf_si *si, char *name)
{
struct amf_csi *csi;
for (csi = si->csi_head; csi != NULL; csi = csi->next) {
if (csi->name.length == strlen(name) &&
strncmp (name, (char*)csi->name.value, csi->name.length) == 0) {
break;
}
}
if (csi == NULL) {
dprintf ("CSI %s not found!", name);
}
return csi;
}
/*****************************************************************************
* CSI Assignment class implementation *
****************************************************************************/
struct amf_csi_assignment *amf_csi_assignment_new (struct amf_csi *csi)
{
struct amf_csi_assignment *csi_assignment =
amf_calloc (1, sizeof (struct amf_csi_assignment));
csi_assignment->csi = csi;
csi_assignment->next = csi->assigned_csis;
csi->assigned_csis = csi_assignment;
return csi_assignment;
}
void *amf_csi_assignment_serialize (
struct amf_csi_assignment *csi_assignment, int *len)
{
char *buf = NULL;
int offset = 0, size = 0;
TRACE8 ("%s", csi_assignment->name.value);
buf = amf_serialize_SaNameT (buf, &size, &offset, &csi_assignment->name);
buf = amf_serialize_SaUint32T (buf, &size, &offset,
csi_assignment->saAmfCSICompHAState);
buf = amf_serialize_SaUint32T (buf, &size, &offset,
csi_assignment->requested_ha_state);
*len = offset;
return buf;
}
struct amf_si_assignment *si_assignment_find (
struct amf_csi_assignment *csi_assignment)
{
struct amf_comp *component;
struct amf_si_assignment *si_assignment = NULL;
component = amf_comp_find(csi_assignment->csi->si->application->cluster,
&csi_assignment->name);
for (si_assignment = csi_assignment->csi->si->assigned_sis;
si_assignment != NULL; si_assignment = si_assignment->next) {
SaNameT su_name;
amf_su_dn_make (component->su,&su_name);
if (name_match(&su_name, &si_assignment->name)) {
break;
}
}
return si_assignment;
}
struct amf_csi_assignment *amf_csi_assignment_deserialize (
struct amf_csi *csi, char *buf)
{
char *tmp = buf;
struct amf_csi_assignment *csi_assignment = amf_csi_assignment_new (csi);
tmp = amf_deserialize_SaNameT (tmp, &csi_assignment->name);
tmp = amf_deserialize_SaUint32T (tmp,
&csi_assignment->saAmfCSICompHAState);
tmp = amf_deserialize_SaUint32T (tmp, &csi_assignment->requested_ha_state);
csi_assignment->comp = amf_comp_find (csi->si->application->cluster,
&csi_assignment->name);
assert (csi_assignment->comp != NULL);
csi_assignment->si_assignment = si_assignment_find(csi_assignment);
return csi_assignment;
}
char *amf_csi_assignment_dn_make (
struct amf_csi_assignment *csi_assignment, SaNameT *name)
{
SaNameT comp_name;
struct amf_csi *csi = csi_assignment->csi;
int i;
amf_comp_dn_make (csi_assignment->comp, &comp_name);
i = snprintf((char*) name->value, SA_MAX_NAME_LENGTH,
"safCSIComp=%s,safCsi=%s,safSi=%s,safApp=%s",
comp_name.value,
csi->name.value, csi->si->name.value,
csi->si->application->name.value);
assert (i <= SA_MAX_NAME_LENGTH);
name->length = i;
return(char *)name->value;
}
struct amf_csi_assignment *amf_csi_assignment_find (
struct amf_cluster *cluster, SaNameT *name)
{
struct amf_application *app;
struct amf_si *si;
struct amf_csi *csi;
struct amf_csi_assignment *csi_assignment = NULL;
char *app_name;
char *si_name;
char *csi_name;
char *csi_assignment_name;
char *buf;
/* malloc new buffer since we need to write to the buffer */
buf = amf_malloc (name->length + 1);
memcpy (buf, name->value, name->length + 1);
csi_assignment_name = strstr (buf, "safCSIComp=");
csi_name = strstr (buf, "safCsi=");
si_name = strstr (buf, "safSi=");
app_name = strstr (buf, "safApp=");
app_name++;
app_name = strstr (app_name, "safApp=");
if (csi_assignment_name == NULL || csi_name == NULL || si_name == NULL ||
app_name == NULL) {
goto end;
}
*(csi_name - 1) = '\0';
*(si_name - 1) = '\0';
*(app_name - 1) = '\0';
/* jump to value */
csi_assignment_name += 11;
csi_name += 7;
si_name += 6;
app_name += 7;
app = amf_application_find (cluster, app_name);
if (app == NULL) {
goto end;
}
si = amf_si_find (app, si_name);
if (si == NULL) {
goto end;
}
csi = amf_csi_find (si, csi_name);
if (csi == NULL) {
goto end;
}
for (csi_assignment = csi->assigned_csis; csi_assignment != NULL;
csi_assignment = csi_assignment->next) {
if (csi_assignment->name.length == strlen(csi_assignment_name) &&
strncmp (csi_assignment_name,
(char*)csi_assignment->name.value,
csi_assignment->name.length) == 0) {
goto end;
}
}
end:
assert(csi_assignment);
free (buf);
return csi_assignment;
}
struct amf_csi_attribute *amf_csi_attribute_new (struct amf_csi *csi)
{
struct amf_csi_attribute *csi_attribute =
amf_calloc (1, sizeof (struct amf_csi_assignment));
csi_attribute->next = csi->attributes_head;
csi->attributes_head = csi_attribute;
return csi_attribute;
}
void *amf_csi_attribute_serialize (
struct amf_csi_attribute *csi_attribute, int *len)
{
char *buf = NULL;
int i, offset = 0, size = 0;
TRACE8 ("%s", csi_attribute->name);
buf = amf_serialize_SaStringT (buf, &size, &offset, csi_attribute->name);
/* count value and write to buf */
for (i = 0; csi_attribute->value &&
csi_attribute->value[i] != NULL; i++);
buf = amf_serialize_SaUint32T (buf, &size, &offset, i);
for (i = 0; csi_attribute->value &&
csi_attribute->value[i] != NULL; i++) {
buf = amf_serialize_SaStringT (
buf, &size, &offset, csi_attribute->value[i]);
}
*len = offset;
return buf;
}
struct amf_csi_attribute *amf_csi_attribute_deserialize (
struct amf_csi *csi, char *buf)
{
char *tmp = buf;
struct amf_csi_attribute *csi_attribute;
int i;
SaUint32T cnt;
csi_attribute = amf_csi_attribute_new (csi);
tmp = amf_deserialize_SaStringT (tmp, &csi_attribute->name);
tmp = amf_deserialize_SaUint32T (tmp, &cnt);
csi_attribute->value = amf_malloc ((cnt + 1) * sizeof (SaStringT*));
for (i = 0; i < cnt; i++) {
tmp = amf_deserialize_SaStringT (tmp, &csi_attribute->value[i]);
}
csi_attribute->value[i] = NULL;
return csi_attribute;
}
void amf_si_assignment_remove (amf_si_assignment_t *si_assignment,
async_func_t async_func)
{
struct amf_csi_assignment *csi_assignment;
struct amf_csi *csi;
int csi_assignment_cnt = 0;
ENTER ("SI '%s' SU '%s' state %s", si_assignment->si->name.value,
si_assignment->su->name.value,
amf_ha_state (si_assignment->requested_ha_state));
si_assignment->requested_ha_state = USR_AMF_HA_STATE_REMOVED;
si_assignment->removed_callback_fn = async_func;
for (csi = si_assignment->si->csi_head; csi != NULL; csi = csi->next) {
for (csi_assignment = csi->assigned_csis; csi_assignment != NULL;
csi_assignment = csi_assignment->next) {
/*
* If the CSI assignment and the SI assignment belongs to the
* same SU, we have a match and can request the component to
* remove the CSI.
*/
if (name_match (&csi_assignment->comp->su->name,
&si_assignment->su->name)) {
csi_assignment_cnt++;
csi_assignment->requested_ha_state = USR_AMF_HA_STATE_REMOVED;
amf_comp_csi_remove (csi_assignment->comp, csi_assignment);
}
}
}
/*
* If the SU has only one component which is the faulty one, we
* will not get an asynchronous response from the component.
* This response (amf_si_comp_set_ha_state_done) is used to do
* the next state transition. The asynchronous response is
* simulated using a timeout instead.
*/
if (csi_assignment_cnt == 0) {
amf_call_function_asynchronous (async_func, si_assignment);
}
}
void amf_si_comp_csi_removed (
struct amf_si *si, struct amf_csi_assignment *csi_assignment,
SaAisErrorT error)
{
ENTER ("'%s', '%s'", si->name.value, csi_assignment->csi->name.value);
assert (csi_assignment->si_assignment->removed_callback_fn != NULL);
csi_assignment->saAmfCSICompHAState = USR_AMF_HA_STATE_REMOVED;
/*
* Report to caller when all requested CSI assignments has
* been removed.
*/
if (all_csi_assignments_removed(csi_assignment->si_assignment)) {
csi_assignment->si_assignment->removed_callback_fn (
csi_assignment->si_assignment);
}
}