mirror_corosync/exec/amfnode.c
2007-09-09 06:38:10 +00:00

798 lines
26 KiB
C

/** @file amfnode.c
*
* Copyright (c) 2006 Ericsson AB.
* Author: Hans Feldt, Anders Eriksson, Lars Holm
* - Constructors/destructors
* - Serializers/deserializers
*
* All rights reserved.
*
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* AMF Node Class Implementation
*
* This file contains functions for handling AMF nodes. It can be
* viewed as the implementation of the AMF Node class (called NODE)
* as described in SAI-Overview-B.02.01. The SA Forum specification
* SAI-AIS-AMF-B.02.01 has been used as specification of the behaviour
* and is referred to as 'the spec' below.
*
* The functions in this file are responsible for:
* - controlling the instantiation of the SUs hosted on current node and
* controlling the assigning of workload to them when a node joins the
* cluster (cluster start is controlled by the Cluster Class)
* - controlling node level recovery and repair functions
* - implementing error escallation level 2 and 3 (paragraph 3.12.2.2 and
* 3.12.2.3 in the spec)
* - handling run time attributes of the AMF NODE; cached
* attributes are stored as variables and sent to the IMM service (future)
* upon the changes described in the specification
*
* The node class contains the following state machines:
* - administrative state machine (ADSM)
* - operational state machine (OPSM)
* - availability control state machine (ACSM)
*
* The administrative state machine will be implemented in the future.
*
* The operational state machine is primarily used to report status of the
* node.
*
* The availability control state machine is used for control purposes.
* ACSM contains three states of which two are composite.
* Being a composite state means that the state contains substates.
* ACSM states are:
* - REPAIR_NEEDED
* - IDLE (ESCALATION_LEVEL_0, ESCALATION_LEVEL_2 and ESCALATION_LEVEL_3)
* - MANAGING_HOSTED_SERVICE_UNITS (
* . FAILING_FAST (REBOOTING_NODE and ACTIVATING_STANDBY_NODE)
* . FAILING_GRACEFULLY (SWITCHING_OVER, FAILING_OVER and REBOOTING_NODE)
* . LEAVING_SPONTANEOUSLY (SWITCHING_OVER, FAILING_OVER and
* WAITING_FOR_NODE_TO_JOIN)
* . JOINING (STARTING_APPLICATIONS and ASSIGNING_WORKLOAD)
*
* REPAIR_NEEDED indicates the node needs a manual repair and this state will be
* maintained until the administrative command REPAIRED is entered (implemented
* in the future)
*
* IDLE is a composite state where no actions are actually performed
* and used only to remember the escallation level. Substate LEVEL_0 indicates
* no escallation. LEVEL_2 indicates that so many component restarts have been
* executed recently that a new component restart request will escalate
* to service unit restart action. Node will request a service unit restart
* from SU.
* LEVEL_3 will be entered if either there are too many service unit restarts
* been made or a component failover recovery action is requested. On level 3
* the recovery action performed is service unit failover (paragraph 3.12.1.3).
*
* FAILING_FAST state executes a node re-boot and waits for the node to join
* the cluster again. (not implemented)
*
* FAILING_GRACEFULLY state requests all SGs which have SUs hosted on current
* node to switch or failover according to the procedures described in
* paragraphs 3.12.1.3 before re-boot is executed. Then the confirmation is
* awaited from all concerned SGs and finally a node re-boot is executed as
* the repair action (see paragraph 2.12.1.4).
*
* LEAVING_SPONTANEOUSLY state handles the spontaneous leave of a node.
*
* JOINING state handles the start of a node in all cases except cluster start,
* which is handled by the CLUSTER class.
*
* 1. Node Availability Control State Machine
* ==========================================
*
* 1.1 State Transition Table
*
* State: Event: Action: New state:
* ============================================================================
* ESCALATION_LEVEL_X node_sync_ready A6 JOINING_STARTING_APPLS
* ESCALATION_LEVEL_X node_leave A9,A8 LEAVING_SP_FAILING_OVER
* ESCALATION_LEVEL_X failover A11 GRACEFULLY_FAILING_OVER
* ESCALATION_LEVEL_2 comp_restart_req [!C6]A13 ESCALATION_LEVEL_2
* ESCALATION_LEVEL_2 comp_restart_req [C6]A14 ESCALATION_LEVEL_3
* ESCALATION_LEVEL_3 comp_restart_req [!C7]A14 ESCALATION_LEVEL_3
* ESCALATION_LEVEL_3 comp_failover_req [!C7]A14 ESCALATION_LEVEL_3
* ESCALATION_LEVEL_3 comp_restart_req [C7]A15 ESCALATION_LEVEL_3
* ESCALATION_LEVEL_3 comp_failover_req [C7]A15 ESCALATION_LEVEL_3
* JOINING_STARTING_APPLS appl_started [C4] A7 JOINING_ASSIGNING_WL
* JOINING_ASSIGNING_WL appl_assigned [C5] ESCALATION_LEVEL_X
* LEAVING_SP_FAILING_OVER sg_failed_over [C1] LEAVING_SP_WAIT_FOR_JOIN
* LEAVING_SP_WAIT_FOR_JOIN node_sync_ready A6 JOINING_STARTING_APPLS
* GRACEFULLY_FAILING_OVER sg_failed_over [C1] A12 GRACEFULLY_REBOOTING
* GRACEFULLY_REBOOTING node_leave ESCALATION_LEVEL_X
*
* 1.2 State Description
* =====================
* ESCALATION_LEVEL_X - Node is synchronized and idle (X = 0,2 or 3).
* JOINING_STARTING_APPLS - JOINING_STARTING_APPLICATIONS
* Node has ordered all applications to start its SUs
* hosted on current node and is now waiting for them
* to acknowledge that they have started.
* GRACEFULLY_FAILING_OVER - FAILING_GRACEFULLY_FAILING_OVER
* Node has ordered all SGs in the cluster to
* failover all SUs that are hosted on a specific
* node and waits for the SGs to confirm the
* failover is completed.
* GRACEFULLY_REBOOTING - FAILING_GRACEFULLY_REBOOTING_NODE
* Node has ordered reboot and waits for the rebooted
* node to join the cluster again.
* JOINING_ASSIGNING_WL - JOINING_ASSIGNING_WORKLOAD
* Node has ordered all applications to assign workload
* to all its SUs which currently have no workload and
* is now waiting for the applications to acknowledge.
*
* LEAVING_SP_FAILING_OVER - LEAVING_SPONTANEOUSLY_FAILING_OVER
* Node has received an event telling that this node
* has left the cluster and has ordered all service
* groups to failover those of its SUs that were
* hosted on current node.
*
* LEAVING_SP_WAIT_FOR_JOIN - LEAVING_SPONTANEOUSLY_WAITING_FOR_NODE_TO_JOIN
* Node is waiting for current node to join again.
*
* 1.3 Actions
* ===========
* A1 -
* A2 -
* A3 -
* A4 -
* A5 -
* A6 - [foreach application in cluster]start application
* A7 - [foreach application in cluster]assign workload to application
* A8 - [foreach application in cluster]
* [foreach SG in application ]failover node
* A9 - [foreach application in cluster]
* [foreach SG in application ]
* [foreach SU in SG where the SU is hosted on current node]
* [foreach comp in such an SU]indicate that the node has left the cluster
* A10-
* A11- [foreach SG in cluster]failover node
* A12- reboot node
* A13- restart SU
* A14- failover SU
* A15- failover node
*
* 1.4 Guards
* ==========
* C1 - All SG availability control state machines (ACSM) == IDLE
* C2 -
* C3 -
* C4 - No applications are in ACSM state == STARTING_SGS
* C5 - All applications have ACSM state == WORKLOAD_ASSIGNED
* C6 - Specified number of SU restarts have been done.
* C7 - Specified number of SU failover actions have been done.
*/
#include <stdlib.h>
#include <assert.h>
#include <unistd.h>
#include "amf.h"
#include "util.h"
#include "logsys.h"
#include "main.h"
LOGSYS_DECLARE_SUBSYS ("AMF", LOG_INFO)
/******************************************************************************
* Internal (static) utility functions
*****************************************************************************/
static void node_acsm_enter_leaving_spontaneously(struct amf_node *node)
{
ENTER("'%s'", node->name.value);
node->saAmfNodeOperState = SA_AMF_OPERATIONAL_DISABLED;
node->nodeid = 0;
}
static void node_acsm_enter_failing_over (struct amf_node *node)
{
struct amf_application *app;
struct amf_sg *sg;
struct amf_su *su;
struct amf_comp *component = NULL;
ENTER("'%s'", node->name.value);
node->acsm_state = NODE_ACSM_LEAVING_SPONTANEOUSLY_FAILING_OVER;
/*
* Indicate to each component object in the model that current
* node has left the cluster
*/
for (app = amf_cluster->application_head; app != NULL; app = app->next) {
for (sg = app->sg_head; sg != NULL; sg = sg->next) {
for (su = sg->su_head; su != NULL; su = su->next) {
if (name_match(&node->name, &su->saAmfSUHostedByNode)) {
for (component = su->comp_head; component != NULL;
component = component->next) {
amf_comp_node_left(component);
}
}
}
}
}
/*
* Let all service groups with service units hosted on current node failover
* its workload
*/
for (app = amf_cluster->application_head; app != NULL; app =
app->next) {
for (sg = app->sg_head; sg != NULL; sg =
sg->next) {
amf_sg_failover_node_req(sg, node);
}
}
}
static void failover_all_sg_on_node (amf_node_t *node)
{
amf_application_t *app;
amf_sg_t *sg;
amf_su_t *su;
for (app = amf_cluster->application_head; app != NULL; app = app->next) {
for (sg = app->sg_head; sg != NULL; sg = sg->next) {
for (su = sg->su_head; su != NULL; su = su->next) {
if (name_match(&su->saAmfSUHostedByNode, &node->name)) {
amf_sg_failover_node_req (sg, node);
break;
}
}
}
}
}
static void node_acsm_enter_failing_gracefully_failing_over (amf_node_t *node)
{
ENTER("");
node->acsm_state = NODE_ACSM_FAILING_GRACEFULLY_FAILING_OVER;
failover_all_sg_on_node (node);
}
static int has_all_sg_on_node_failed_over (amf_node_t *node)
{
amf_application_t *app;
amf_sg_t *sg;
amf_su_t *su;
int has_all_sg_on_node_failed_over = 1;
for (app = amf_cluster->application_head; app != NULL; app = app->next) {
for (sg = app->sg_head; sg != NULL; sg = sg->next) {
for (su = sg->su_head; su != NULL; su = su->next) {
if (name_match(&su->saAmfSUHostedByNode, &node->name)) {
if (sg->avail_state != SG_AC_Idle) {
TRACE1("%s %s",sg->name.value, su->name.value);
has_all_sg_on_node_failed_over = 0;
goto out;
}
break;
}
}
}
}
out:
return has_all_sg_on_node_failed_over;
}
static void repair_node (amf_node_t *node)
{
ENTER("");
char hostname[256];
gethostname (hostname, 256);
if (!strcmp (hostname, (const char*)node->saAmfNodeClmNode.value)) {
/* TODO if(saAmfAutoRepair == SA_TRUE) */
#ifdef DEBUG
exit (0);
#else
system ("reboot");
#endif
}
}
static void enter_failing_gracefully_rebooting_node (amf_node_t *node)
{
ENTER("");
node->acsm_state = NODE_ACSM_FAILING_GRACEFULLY_REBOOTING_NODE;
repair_node (node);
}
static void node_acsm_enter_idle (amf_node_t *node)
{
ENTER ("history_state=%d",node->history_state);
node->acsm_state = node->history_state;
}
static void node_acsm_enter_joining_assigning_workload (struct amf_node *node,
struct amf_application *app)
{
log_printf(LOG_NOTICE,
"Node=%s: all applications started, assigning workload.",
node->name.value);
ENTER("");
node->acsm_state = NODE_ACSM_JOINING_ASSIGNING_WORKLOAD;
for (app = app->cluster->application_head; app != NULL;
app = app->next) {
amf_application_assign_workload (app, node);
}
}
/******************************************************************************
* Event methods
*****************************************************************************/
/**
* This event indicates that a node has unexpectedly left the cluster. Node
* leave event is obtained from amf_confchg_fn.
*
* @param node
*/
void amf_node_leave (struct amf_node *node)
{
assert (node != NULL);
ENTER("'%s', CLM node '%s'", node->name.value,
node->saAmfNodeClmNode.value);
switch (node->acsm_state) {
case NODE_ACSM_IDLE_ESCALLATION_LEVEL_0:
case NODE_ACSM_IDLE_ESCALLATION_LEVEL_2:
case NODE_ACSM_IDLE_ESCALLATION_LEVEL_3:
node_acsm_enter_leaving_spontaneously(node);
node_acsm_enter_failing_over (node);
break;
case NODE_ACSM_REPAIR_NEEDED:
break;
case NODE_ACSM_FAILING_GRACEFULLY_REBOOTING_NODE:
node->saAmfNodeOperState = SA_AMF_OPERATIONAL_ENABLED;
node_acsm_enter_idle (node);
break;
default:
log_printf (LOG_LEVEL_ERROR, "amf_node_leave called in state = %d"
" (should have been deferred)", node->acsm_state);
openais_exit_error (AIS_DONE_FATAL_ERR);
break;
}
}
/**
* This function handles a detected error that by a pre-analysis executed
* elsewhere has been decided to be recovered by a node fail over.
* @param node
*/
void amf_node_failover (struct amf_node *node)
{
assert (node != NULL);
ENTER("'%s', CLM node '%s'", node->name.value,
node->saAmfNodeClmNode.value);
switch (node->acsm_state) {
case NODE_ACSM_IDLE_ESCALLATION_LEVEL_0:
case NODE_ACSM_IDLE_ESCALLATION_LEVEL_2:
case NODE_ACSM_IDLE_ESCALLATION_LEVEL_3:
node_acsm_enter_failing_gracefully_failing_over (node);
break;
case NODE_ACSM_REPAIR_NEEDED:
break;
default:
log_printf (LOG_LEVEL_ERROR, "amf_node_leave()called in state = %d"
" (should have been deferred)", node->acsm_state);
openais_exit_error (AIS_DONE_FATAL_ERR);
break;
}
}
/**
*
* @param node
*/
void amf_node_switchover (struct amf_node *node)
{
}
/**
*
* @param node
*/
void amf_node_failfast (struct amf_node *node)
{
}
/**
* This event is a request to restart a component which has been escalated,
* because the component has already been restarted the number of times
* specified by the configuration.
* This function evaluates which recovery measure shall now be
* taken and initiates the action which result from the evaluation.
* @param node
* @param comp
*/
void amf_node_comp_restart_req (struct amf_node *node, struct amf_comp *comp)
{
amf_su_t *su = comp->su;
ENTER("");
switch (node->acsm_state) {
case NODE_ACSM_IDLE_ESCALLATION_LEVEL_0:
node->acsm_state = NODE_ACSM_IDLE_ESCALLATION_LEVEL_2;
amf_node_comp_restart_req (node, comp);
break;
case NODE_ACSM_IDLE_ESCALLATION_LEVEL_2:
if (su->saAmfSURestartCount >= su->sg->saAmfSGSuRestartMax) {
SaNameT dn;
node->acsm_state = NODE_ACSM_IDLE_ESCALLATION_LEVEL_3;
amf_comp_operational_state_set (comp, SA_AMF_OPERATIONAL_DISABLED);
amf_su_operational_state_set (su, SA_AMF_OPERATIONAL_DISABLED);
amf_comp_dn_make (comp, &dn);
log_printf (LOG_NOTICE, "Error detected for '%s', recovery "
"action:\n\t\tSU failover", dn.value);
amf_sg_failover_su_req (su->sg, su, node);
} else {
amf_su_restart (su);
}
break;
case NODE_ACSM_IDLE_ESCALLATION_LEVEL_3:
if (su->su_failover_cnt < node->saAmfNodeSuFailoverMax) {
SaNameT dn;
amf_comp_operational_state_set (comp, SA_AMF_OPERATIONAL_DISABLED);
amf_su_operational_state_set (su, SA_AMF_OPERATIONAL_DISABLED);
amf_comp_dn_make (comp, &dn);
log_printf (LOG_NOTICE, "Error detected for '%s', recovery "
"action:\n\t\tSU failover", dn.value);
amf_sg_failover_su_req (su->sg, su, node);
return;
} else {
node->history_state = NODE_ACSM_IDLE_ESCALLATION_LEVEL_0;
amf_node_failover (node);
}
break;
default:
dprintf("%d",node->acsm_state);
assert (0);
break;
}
}
/**
* This event is a request to failover the specified component.
* This function evaluates which recovery measure shall actually be
* taken considering the escalation policy and initiates the action
* which result from the evaluation.
* @param node
* @param comp
*/
void amf_node_comp_failover_req (amf_node_t *node, amf_comp_t *comp)
{
ENTER("");
switch (node->acsm_state) {
case NODE_ACSM_IDLE_ESCALLATION_LEVEL_0:
case NODE_ACSM_IDLE_ESCALLATION_LEVEL_2:
if (comp->su->saAmfSUFailover) {
/* SU failover */
amf_sg_failover_su_req (comp->su->sg,comp->su, node);
}
break;
case NODE_ACSM_IDLE_ESCALLATION_LEVEL_3:
if (comp->su->su_failover_cnt < node->saAmfNodeSuFailoverMax) {
if (comp->su->saAmfSUFailover) {
/* SU failover */
amf_sg_failover_su_req (comp->su->sg,comp->su, node);
}
} else {
node->history_state = NODE_ACSM_IDLE_ESCALLATION_LEVEL_0;
amf_node_failover (node);
}
break;
default:
dprintf("%d",node->acsm_state);
assert (0);
break;
}
}
/**
* This event indicates that current node has joined and its cluster model has
* been synchronized with the other nodes cluster models.
*
* @param node
*/
void amf_node_sync_ready (struct amf_node *node)
{
struct amf_application *app;
assert (node != NULL);
log_printf(LOG_NOTICE, "Node=%s: sync ready, starting hosted SUs.",
node->name.value);
node->saAmfNodeOperState = SA_AMF_OPERATIONAL_ENABLED;
switch (node->acsm_state) {
case NODE_ACSM_IDLE_ESCALLATION_LEVEL_0:
case NODE_ACSM_IDLE_ESCALLATION_LEVEL_2:
case NODE_ACSM_IDLE_ESCALLATION_LEVEL_3:
case NODE_ACSM_LEAVING_SPONTANEOUSLY_WAITING_FOR_NODE_TO_JOIN:
node->acsm_state = NODE_ACSM_JOINING_STARTING_APPLICATIONS;
for (app = amf_cluster->application_head; app != NULL; app = app->next) {
amf_application_start (app, node);
}
break;
case NODE_ACSM_REPAIR_NEEDED:
break;
default:
log_printf (LOG_LEVEL_ERROR, "amf_node_sync_ready() was called in "
"state = %d (should have been deferred)",
node->acsm_state);
openais_exit_error (AIS_DONE_FATAL_ERR);
break;
}
}
/******************************************************************************
* Event response methods
*****************************************************************************/
/**
* This event indicates that an application has started. Started in this context
* means that none of its contained service units is in an -ING state with other
* words successfully instantiated, instantiation has failed or instantiation
* was not possible (due to the node on which the SU was to be hosted is not
* operational).
*
* @param node
* @param application which has been started
*/
void amf_node_application_started (struct amf_node *node,
struct amf_application *app)
{
assert (node != NULL && app != NULL );
ENTER ("Node=%s: application '%s' started", node->name.value,
app->name.value);
switch (node->acsm_state) {
case NODE_ACSM_JOINING_STARTING_APPLICATIONS:
if (amf_cluster_applications_started_with_no_starting_sgs(
app->cluster)) {
node_acsm_enter_joining_assigning_workload(node, app);
}
break;
default:
log_printf (LOG_LEVEL_ERROR, "amf_node_application_started()"
"called in state = %d (unexpected !!)", node->acsm_state);
openais_exit_error (AIS_DONE_FATAL_ERR);
break;
}
}
/**
* This event indicates that an application has been assigned workload.
*
* @param node
* @param app - Application which has been assigned workload
*/
void amf_node_application_workload_assigned (struct amf_node *node,
struct amf_application *app)
{
assert (node != NULL && app != NULL );
ENTER ("Node=%s: application '%s' started", node->name.value,
app->name.value);
switch (node->acsm_state) {
case NODE_ACSM_JOINING_ASSIGNING_WORKLOAD:
if (amf_cluster_applications_assigned (amf_cluster)) {
log_printf(LOG_NOTICE, "Node=%s: all workload assigned",
node->name.value);
node_acsm_enter_idle (node);
}
break;
default:
log_printf (LOG_LEVEL_ERROR, "amf_node_application_workload_assigned()"
"called in state = %d (unexpected !!)", node->acsm_state);
openais_exit_error (AIS_DONE_FATAL_ERR);
break;
}
}
/**
* This event indicates that an SG has failed over its workload after a node
* failure.
*
* @param node
* @param sg_in SG which is now ready with its failover
*/
void amf_node_sg_failed_over (struct amf_node *node, struct amf_sg *sg_in)
{
assert (node != NULL);
ENTER ("Node=%s: SG '%s' started %d", node->name.value,
sg_in->name.value,node->acsm_state);
switch (node->acsm_state) {
case NODE_ACSM_LEAVING_SPONTANEOUSLY_FAILING_OVER:
if (has_all_sg_on_node_failed_over (node)) { /*C2*/
node->acsm_state =
NODE_ACSM_LEAVING_SPONTANEOUSLY_WAITING_FOR_NODE_TO_JOIN;
}
break;
case NODE_ACSM_LEAVING_SPONTANEOUSLY_WAITING_FOR_NODE_TO_JOIN:
/* Accept reports of failed over sg that has completed. */
break;
case NODE_ACSM_FAILING_GRACEFULLY_FAILING_OVER:
if (has_all_sg_on_node_failed_over (node)) { /*C2*/
enter_failing_gracefully_rebooting_node (node);
}
break;
default:
log_printf (LOG_LEVEL_ERROR, "amf_node_sg_failed_over()"
"called in state = %d (unexpected !!)", node->acsm_state);
openais_exit_error (AIS_DONE_FATAL_ERR);
break;
}
}
/******************************************************************************
* General methods
*****************************************************************************/
/**
* Node constructor
* @param cluster
* @param name - RDN of node
*/
struct amf_node *amf_node_new (struct amf_cluster *cluster, char *name) {
struct amf_node *node = amf_calloc (1, sizeof (struct amf_node));
setSaNameT (&node->name, name);
node->saAmfNodeAdminState = SA_AMF_ADMIN_UNLOCKED;
node->saAmfNodeOperState = SA_AMF_OPERATIONAL_ENABLED;
node->saAmfNodeAutoRepair = SA_TRUE;
node->saAmfNodeSuFailOverProb = -1;
node->saAmfNodeSuFailoverMax = ~0;
node->cluster = cluster;
node->next = cluster->node_head;
cluster->node_head = node;
node->acsm_state = NODE_ACSM_IDLE_ESCALLATION_LEVEL_0;
node->history_state = NODE_ACSM_IDLE_ESCALLATION_LEVEL_0;
return node;
}
void *amf_node_serialize (struct amf_node *node, int *len)
{
char *buf = NULL;
int offset = 0, size = 0;
TRACE8 ("%s", node->name.value);
buf = amf_serialize_SaNameT (buf, &size, &offset, &node->name);
buf = amf_serialize_SaNameT (buf, &size, &offset, &node->saAmfNodeClmNode);
buf = amf_serialize_SaUint32T (buf, &size, &offset,
node->saAmfNodeSuFailOverProb);
buf = amf_serialize_SaUint32T (buf, &size, &offset,
node->saAmfNodeSuFailoverMax);
buf = amf_serialize_SaUint32T (buf, &size, &offset,
node->saAmfNodeAutoRepair);
buf = amf_serialize_SaUint32T (buf, &size, &offset,
node->saAmfNodeRebootOnInstantiationFailure);
buf = amf_serialize_SaUint32T (buf, &size, &offset,
node->saAmfNodeRebootOnTerminationFailure);
buf = amf_serialize_SaUint32T (buf, &size, &offset,
node->saAmfNodeAdminState);
buf = amf_serialize_SaUint32T (buf, &size, &offset,
node->saAmfNodeOperState);
buf = amf_serialize_SaUint32T (buf, &size, &offset,
node->nodeid);
buf = amf_serialize_SaUint32T (buf, &size, &offset,
node->acsm_state);
buf = amf_serialize_SaUint32T (buf, &size, &offset,
node->history_state);
*len = offset;
return buf;
}
struct amf_node *amf_node_deserialize (struct amf_cluster *cluster, char *buf) {
char *tmp = buf;
struct amf_node *node = amf_node_new (cluster, "");
tmp = amf_deserialize_SaNameT (tmp, &node->name);
tmp = amf_deserialize_SaNameT (tmp, &node->saAmfNodeClmNode);
tmp = amf_deserialize_SaUint32T (tmp, &node->saAmfNodeSuFailOverProb);
tmp = amf_deserialize_SaUint32T (tmp, &node->saAmfNodeSuFailoverMax);
tmp = amf_deserialize_SaUint32T (tmp, &node->saAmfNodeAutoRepair);
tmp = amf_deserialize_SaUint32T (tmp, &node->saAmfNodeRebootOnInstantiationFailure);
tmp = amf_deserialize_SaUint32T (tmp, &node->saAmfNodeRebootOnTerminationFailure);
tmp = amf_deserialize_SaUint32T (tmp, &node->saAmfNodeAdminState);
tmp = amf_deserialize_SaUint32T (tmp, &node->saAmfNodeOperState);
tmp = amf_deserialize_SaUint32T (tmp, &node->nodeid);
tmp = amf_deserialize_SaUint32T (tmp, &node->acsm_state);
tmp = amf_deserialize_SaUint32T (tmp, &node->history_state);
return node;
}
struct amf_node *amf_node_find (SaNameT *name) {
struct amf_node *node;
assert (name != NULL && amf_cluster != NULL);
for (node = amf_cluster->node_head; node != NULL; node = node->next) {
if (name_match (&node->name, name)) {
return node;
}
}
dprintf ("node %s not found in configuration!", name->value);
return NULL;
}
struct amf_node *amf_node_find_by_nodeid (unsigned int nodeid) {
struct amf_node *node;
assert (amf_cluster != NULL);
for (node = amf_cluster->node_head; node != NULL; node = node->next) {
if (node->nodeid == nodeid) {
return node;
}
}
dprintf ("node %u not found in configuration!", nodeid);
return NULL;
}
struct amf_node *amf_node_find_by_hostname (const char *hostname) {
struct amf_node *node;
assert (hostname != NULL && amf_cluster != NULL);
for (node = amf_cluster->node_head; node != NULL; node = node->next) {
if (strcmp ((char*)node->saAmfNodeClmNode.value, hostname) == 0) {
return node;
}
}
dprintf ("node %s not found in configuration!", hostname);
return NULL;
}