mirror_corosync/exec/amfapp.c
2007-09-09 06:38:10 +00:00

552 lines
17 KiB
C

/** @file amfapp.c
*
* Copyright (c) 2006 Ericsson AB.
* Author: Hans Feldt, Anders Eriksson, Lars Holm
* - Refactoring of code into several AMF files
* - Constructors/destructors
* - Serializers/deserializers
*
* All rights reserved.
*
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* AMF Application Class implementation
*
* This file contains functions for handling the AMF Applications. It can
* be viewed as the implementation of the AMF Application class
* as described in SAI-Overview-B.02.01. The SA Forum specification
* SAI-AIS-AMF-B.02.01 has been used as specification of the behaviour
* and is referred to as 'the spec' below.
*
* The functions in this file are responsible for:
* - on request start the service groups it contains
* - on request order the service groups to assign workload to all
* service units contained in the service group, level by level
* - to handle administrative operation support for the application (FUTURE)
*
* The application class contains the following state machines:
* - administrative state machine (ADSM)
* - availability control state machine (ACSM)
*
* The administrative state machine will be implemented in the future.
*
* ACSM handles initial start of an Application. In the future it will also
* handle administrative commands on the application as described in paragraph
* 7.4 of the spec. ACSM includes two stable states (UNINSTANTIATED and
* WORKLOAD_ASSIGNED) and a number of states to control the transition between
* the stable states.
*
* The application is in state UNINSTANTIATED when the application starts.
* (In the future this state will also be assumed after the LOCK_INSTANTIATION
* administrative command.)
*
* State WORKLOAD_ASSIGNED is assumed when the Application has been initially
* started and will in the future be re-assumed after the administrative
* command RESTART have been executed.
*
* 1. AMF Application Availability Control State Machine
* =====================================================
*
* 1.1 State Transition Table
*
* State: Event: Action: New state:
* ===========================================================================
* UNINSTANTIATED start A6,A1 STARTING_SGS
* STARTING_SGS start [C4] A7
* STARTING_SGS sg_started [C1] A8,A9 STARTED
* STARTING_SGS assign_workload [C4] A3 ASSIGNING_WORKLOAD
* STARTED start A6,A1 STARTING_SGS
* STARTED start [!C4] A7 STARTED
* STARTED assign_workload A3 ASSIGNING_WORKLOAD
* ASSIGNING_WORKLOAD assign_workload A7 ASSIGNING_WORKLOAD
* ASSIGNING_WORKLOAD start A7 ASSIGNING_WORKLOAD
* ASSIGNING_WORKLOAD sg_assigned [C2] A10,A9 WORKLOAD_ASSIGNED
* WORKLOAD_ASSIGNED start A6,A1 STARTING_SGS
* WORKLOAD_ASSIGNED assign_workload A3 ASSIGNING_WORKLOAD
*
* 1.2 State Description
* =====================
* UNINSTANTIATED - No SUs within the SGs contained in the Application have been
* instantiated.
* STARTING_SGS - Waiting for the contained SGs to start.
* STARTED - No SUs within the SGs contained in the Application are in the
* process of beein instantiated. Either the SUs are instantiated or
* instantiation was not possible or instantiation has failed.
* ASSIGNING_WORKLOAD - Waiting for the contained SGs to indicate they have
* assigned workload to its SUs.
* WORKLOAD_ASSIGNED - at least some workload has been assigned to the SUs that
* are in-service.
*
* 1.3 Actions
* ===========
* A1 - [foreach SG in Application] sg_start
* A2 -
* A3 - [foreach SG in Application] sg_assign
* A4 -
* A5 -
* A6 - save value of received node parameter
* A7 - defer the event
* A8 - [node == NULL] cluster_application_started else node_application_started
* A9 - recall deferred events
* A10 - [node == NULL] cluster_application_assigned else
* node_application_assigned
*
* 1.4 Guards
* ==========
* C1 - No SU has presence state == INSTANTIATING
* C2 - All SGs have availability control state == IDLE
* C3 -
* C4 - Sender is Cluster
*/
#include <assert.h>
#include <stdlib.h>
#include "amf.h"
#include "logsys.h"
#include "util.h"
LOGSYS_DECLARE_SUBSYS ("AMF", LOG_INFO);
typedef struct application_event {
amf_application_event_type_t event_type;
amf_application_t *app;
amf_node_t *node;
} application_event_t;
/******************************************************************************
* Internal (static) utility functions
*****************************************************************************/
static int is_cluster_start(amf_node_t *node_to_start)
{
return node_to_start == NULL;
}
static void application_defer_event (
amf_application_event_type_t event_type, amf_application_t *app,
amf_node_t *node)
{
application_event_t app_event = {event_type, app, node};
ENTER("");
amf_fifo_put (event_type, &app->deferred_events,
sizeof (application_event_t), &app_event);
}
static void application_recall_deferred_events (amf_application_t *app)
{
application_event_t application_event;
if (amf_fifo_get (&app->deferred_events, &application_event)) {
switch (application_event.event_type) {
case APPLICATION_ASSIGN_WORKLOAD_EV: {
log_printf (LOG_NOTICE,
"Recall APPLICATION_ASSIGN_WORKLOAD_EV");
amf_application_assign_workload (
application_event.app,
application_event.node);
break;
}
case APPLICATION_START_EV: {
log_printf (LOG_NOTICE,
"Recall APPLICATION_START_EV");
amf_application_start (application_event.app,
application_event.node);
break;
}
default:
assert (0);
break;
}
}
}
static void timer_function_application_recall_deferred_events (void *data)
{
amf_application_t *app = (amf_application_t*)data;
ENTER ("");
application_recall_deferred_events (app);
}
static int no_su_is_instantiating (struct amf_application *app)
{
struct amf_sg *sg;
struct amf_su *su;
int all_su_instantiated = 1;
for (sg = app->sg_head; sg != NULL; sg = sg->next) {
for (su = sg->su_head; su != NULL; su = su->next) {
if (su->saAmfSUPresenceState == SA_AMF_PRESENCE_INSTANTIATING) {
all_su_instantiated = 0;
break;
}
}
}
return all_su_instantiated;
}
static int all_sg_assigned (struct amf_application *app)
{
struct amf_sg *sg;
int all_sg_assigned = 1;
for (sg = app->sg_head; sg != NULL; sg = sg->next) {
if (sg->avail_state != SG_AC_Idle) {
all_sg_assigned = 0;
break;
}
}
return all_sg_assigned;
}
static void start_all_sg_for_cluster (amf_application_t *app)
{
amf_sg_t *sg;
int su_to_instantiate = 0;
for (sg = app->sg_head; sg != NULL; sg = sg->next) {
su_to_instantiate += amf_sg_start (sg, NULL);
}
if (su_to_instantiate == 0) {
amf_cluster_application_started (app->cluster, app);
}
}
static void timer_function_cluster_application_started (void* app)
{
ENTER("");
amf_application_t *application = (amf_application_t*)app;
amf_cluster_application_started (application->cluster, application);
}
static void timer_function_node_application_started (void* app)
{
ENTER("");
amf_application_t *application = (amf_application_t*)app;
amf_node_application_started (application->node_to_start, application);
}
static void application_enter_starting_sgs (struct amf_application *app,
struct amf_node *node)
{
amf_sg_t *sg = 0;
int su_to_instantiate = 0;
app->node_to_start = node;
app->acsm_state = APP_AC_STARTING_SGS;
ENTER ("%s",app->name.value);
for (sg = app->sg_head; sg != NULL; sg = sg->next) {
su_to_instantiate += amf_sg_start (sg, node);
}
if (su_to_instantiate == 0) {
app->acsm_state = APP_AC_STARTED;
if (is_cluster_start (app->node_to_start)) {
amf_call_function_asynchronous (
timer_function_cluster_application_started, app);
} else {
amf_call_function_asynchronous (
timer_function_node_application_started, app);
}
}
}
static void application_enter_assigning_workload (amf_application_t *app)
{
amf_sg_t *sg = 0;
int posible_to_assign_si = 0;
ENTER ("%s",app->name.value);
app->acsm_state = APP_AC_ASSIGNING_WORKLOAD;
for (sg = app->sg_head; sg != NULL; sg = sg->next) {
if (amf_sg_assign_si_req (sg, 0)) {
posible_to_assign_si = 1;
}
}
if (posible_to_assign_si == 0) {
app->acsm_state = APP_AC_WORKLOAD_ASSIGNED;
}
}
static void application_enter_workload_assigned (amf_application_t *app)
{
ENTER ("%s", app->name.value);
if (all_sg_assigned (app)){
app->acsm_state = APP_AC_WORKLOAD_ASSIGNED;
if (app->node_to_start == NULL){
amf_cluster_application_workload_assigned (
app->cluster, app);
} else {
TRACE1("%s",app->node_to_start->name.value);
amf_node_application_workload_assigned(
app->node_to_start, app);
}
amf_call_function_asynchronous (
timer_function_application_recall_deferred_events, app);
}
}
/******************************************************************************
* Event methods
*****************************************************************************/
void amf_application_start (
struct amf_application *app, struct amf_node *node)
{
ENTER ("'%s'", app->name.value);
assert (app != NULL);
switch (app->acsm_state) {
case APP_AC_UNINSTANTIATED:
application_enter_starting_sgs (app, node);
break;
case APP_AC_STARTING_SGS:
if (is_cluster_start (app->node_to_start)) {
start_all_sg_for_cluster (app);
} else { /*is_not_cluster_start*/
application_defer_event (APPLICATION_START_EV, app , node);
}
break;
case APP_AC_STARTED:
if (is_cluster_start (app->node_to_start)) {
app->acsm_state = APP_AC_STARTING_SGS;
start_all_sg_for_cluster (app);
} else { /*is_not_cluster_start*/
application_defer_event (APPLICATION_START_EV, app , node);
}
break;
case APP_AC_ASSIGNING_WORKLOAD:
log_printf (LOG_LEVEL_ERROR, "Request to start application"
" =%s in state APP_AC_ASSIGNING_WORKLOAD(should be deferred)",
app->name.value);
application_defer_event (APPLICATION_START_EV, app , node);
break;
case APP_AC_WORKLOAD_ASSIGNED:
application_enter_starting_sgs (app, node);
break;
default:
assert (0);
break;
}
}
void amf_application_assign_workload (struct amf_application *app,
struct amf_node *node)
{
/*
* TODO: dependency level ignored. Each dependency level should
* be looped and amf_sg_assign_si called several times.
*/
assert (app != NULL);
app->node_to_start = node;
ENTER("app->acsm_state = %d",app->acsm_state);
switch (app->acsm_state) {
case APP_AC_STARTING_SGS:
if (is_cluster_start (node)) {
application_enter_assigning_workload (app);
}
break;
case APP_AC_WORKLOAD_ASSIGNED:
application_enter_assigning_workload (app);
break;
case APP_AC_STARTED:
application_enter_assigning_workload (app);
break;
case APP_AC_ASSIGNING_WORKLOAD:
if (app->node_to_start == node) {
/*
* Calling object has violated the contract !
*/
assert (0);
} else {
log_printf (LOG_LEVEL_ERROR, "Request to assign workload to"
" application =%s in state APP_AC_ASSIGNING_WORKLOAD "
"(should be deferred)", app->name.value);
application_defer_event (APPLICATION_ASSIGN_WORKLOAD_EV, app,
node);
}
break;
default:
/*
* Calling object has violated the contract !
*/
dprintf ("acsm_state = %d",app->acsm_state);
assert (0);
break;
}
}
/******************************************************************************
* Event response methods
*****************************************************************************/
void amf_application_sg_started (struct amf_application *app, struct amf_sg *sg,
struct amf_node *node)
{
ENTER ("'%s %s'", app->name.value, sg->name.value);
assert (app != NULL);
switch (app->acsm_state) {
case APP_AC_STARTING_SGS:
if (no_su_is_instantiating (app)) {
app->acsm_state = APP_AC_STARTED;
if (app->node_to_start == NULL) {
amf_cluster_application_started (app->cluster, app);
} else {
amf_node_application_started (app->node_to_start, app);
}
}
break;
default:
log_printf (LOG_LEVEL_ERROR, "amf_application_sg_started()"
" called in state = %d", app->acsm_state);
openais_exit_error (AIS_DONE_FATAL_ERR);
break;
}
}
void amf_application_sg_assigned (
struct amf_application *app, struct amf_sg *sg)
{
ENTER ("'%s'", app->name.value);
assert (app != NULL);
switch (app->acsm_state) {
case APP_AC_ASSIGNING_WORKLOAD:
application_enter_workload_assigned (app);
break;
default:
log_printf (LOG_LEVEL_ERROR,
"amf_application_sg_assigned()"
" called in state = %d", app->acsm_state);
openais_exit_error (AIS_DONE_FATAL_ERR);
break;
}
}
/******************************************************************************
* General methods
*****************************************************************************/
struct amf_application *amf_application_new (struct amf_cluster *cluster) {
struct amf_application *app = amf_calloc (1,
sizeof (struct amf_application));
app->cluster = cluster;
app->next = cluster->application_head;
cluster->application_head = app;
app->acsm_state = APP_AC_UNINSTANTIATED;
app->node_to_start = NULL;
return app;
}
void amf_application_delete (struct amf_application *app)
{
struct amf_sg *sg;
struct amf_si *si;
assert (app != NULL);
for (sg = app->sg_head; sg != NULL;) {
struct amf_sg *tmp = sg;
sg = sg->next;
amf_sg_delete (tmp);
}
for (si = app->si_head; si != NULL;) {
struct amf_si *tmp = si;
si = si->next;
amf_si_delete (tmp);
}
free (app);
}
void *amf_application_serialize (
struct amf_application *app, int *len)
{
char *buf = NULL;
int offset = 0, size = 0;
assert (app != NULL);
TRACE8 ("%s", app->name.value);
buf = amf_serialize_SaNameT (buf, &size, &offset, &app->name);
buf = amf_serialize_SaUint32T (
buf, &size, &offset, app->saAmfApplicationAdminState);
buf = amf_serialize_SaUint32T (
buf, &size, &offset, app->saAmfApplicationCurrNumSG);
buf = amf_serialize_SaStringT (
buf, &size, &offset, app->clccli_path);
buf = amf_serialize_SaUint32T (
buf, &size, &offset, app->acsm_state);
*len = offset;
return buf;
}
struct amf_application *amf_application_deserialize (
struct amf_cluster *cluster, char *buf)
{
char *tmp = buf;
struct amf_application *app = amf_application_new (cluster);
tmp = amf_deserialize_SaNameT (tmp, &app->name);
tmp = amf_deserialize_SaUint32T (tmp, &app->saAmfApplicationAdminState);
tmp = amf_deserialize_SaUint32T (tmp, &app->saAmfApplicationCurrNumSG);
tmp = amf_deserialize_SaStringT (tmp, &app->clccli_path);
tmp = amf_deserialize_SaUint32T (tmp, &app->acsm_state);
return app;
}
struct amf_application *amf_application_find (
struct amf_cluster *cluster, char *name)
{
struct amf_application *app;
assert (cluster != NULL);
for (app = cluster->application_head; app != NULL; app = app->next) {
if (app->name.length == strlen(name) &&
strncmp (name, (char*)app->name.value, app->name.length)
== 0) {
break;
}
}
if (app == NULL) {
dprintf ("App %s not found!", name);
}
return app;
}