mirror_corosync/exec/amf.c
2006-11-04 22:29:14 +00:00

2313 lines
64 KiB
C

/** @file exec/amf.c
*
* Copyright (c) 2002-2006 MontaVista Software, Inc.
* Author: Steven Dake (sdake@mvista.com)
*
* Copyright (c) 2006 Ericsson AB.
* Author: Hans Feldt, Anders Eriksson, Lars Holm
* Description:
* - Introduced AMF B.02 information model
* - Use DN in API and multicast messages
* - (Re-)Introduction of event based multicast messages
* - Refactoring of code into several AMF files
* - AMF Synchronisation Control State Machine
*
* All rights reserved.
*
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* AMF Main
*
* The functions in this file are responsible for:
* - starting the AMF service (amf_exec_init_fn)
* - build the information model from the configuration file or by
* synchronizing the state with an already started AMF node
* - receiving AMF library requests (message_handler_req_lib_*)
* - multicast AMF library requests to the cluster
* - receiving multicasts (message_handler_req_exec_*) and dispatch the
* requests to a component instance
* - send responses to the AMF library (return values for API calls)
* - handling EVS configuration change events (node leave/join)
* - handling node synchronisation events (amf_sync_*)
* - printing the AMF runtime attributes upon user request (USR2 signal)
*
* Some API requests are responded to directly in the lib message_handler.
* This is normally done when the API request parameters are wrong, e.g. a
* component cannot be found. In that case, the error handling must be taken
* care of in the lib message handler.
*
* 1. AMF Synchronization Control State Machine
* =========================================
*
* 1.1 State Transition Table
*
* State: Event: Action: New state:
* ===========================================================================
* - init[AMF disabled] UNCONFIGURED
* - init IDLE
* IDLE node_joined A0 PROBING-1
* PROBING-1 timer1 timeout A1 PROBING-2
* PROBING-1 SYNC_START A2 UPDATING_CLUSTER_MODEL
* PROBING-1 node_joined A7 PROBING-1
* PROBING-2 SYNC_START[From me] CREATING_CLUSTER_MODEL
* PROBING-2 SYNC_START[From other] UPDATING_CLUSTER_MODEL
* PROBING-2 node_joined A7 PROBING-2
* CREATING_CLUSTER_MODEL Model created A8 SYNCHRONIZING
* SYNCHRONIZING sync_activate A10 NORMAL_OPERATION
* SYNCHRONIZING node_left[sync_master] A5 SYNCHRONIZING
* SYNCHRONIZING node_joined[sync_master
* == me] A1 SYNCHRONIZING
* UPDATING_CLUSTER_MODEL SYNC_DATA A3 UPDATING_CLUSTER_MODEL
* UPDATING_CLUSTER_MODEL sync_activate A4 NORMAL_OPERATION
* UPDATING_CLUSTER_MODEL SYNC_START A5 UPDATING_CLUSTER_MODEL
* UPDATING_CLUSTER_MODEL node_left[sync_master] PROBING-1
* NORMAL_OPERATION sync_init SYNCHRONIZING
* NORMAL_OPERATION node_left[sync_master] A6 NORMAL_OPERATION
* NORMAL_OPERATION SYNC_REQUEST A8 NORMAL_OPERATION
* Any SYNC_REQUEST A9 No change
*
* 1.2 State Description
* =====================
* IDLE - Waiting to join cluster.
* PROBING-1 - Start timer1; wait for timer1 to expire or to get synchronised by
* another node.
* PROBING-2 - Waiting for SYNC_START
* CREATING_CLUSTER_MODEL - Read configuration file and create cluster model
* UPDATING_CLUSTER_MODEL - Save sync master node ID; receive SYNC_DATA,
* deserialize and save.
* SYNCHRONIZING - If sync master: multicast SYNC_START followed by encoded AMF
* objects as SYNC_DATA; multicast SYNC_READY
* NORMAL - Start cluster or node; wait for cluster changes
*
* 1.3 Action Description
* ======================
* A0 - Start timer1
* A1 - Multicast SYNC_START message
* A2 - Stop timer1
* A3 - Decode AMF object and save
* A4 - Create cluster model; cluster sync ready
* A5 - Free received SYNC_DATA
* A6 - Calculate new sync master
* A7 - Multicast SYNC_REQUEST message
* A8 - Update AMF node object(s) with CLM nodeid
* A9 - Save CLM nodeid & hostname
* A10- Delete CLM nodes; cluster sync ready
*/
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <signal.h>
#include <string.h>
#include <pthread.h>
#include <assert.h>
#include <netdb.h>
#include <sys/stat.h>
#include "../include/saAis.h"
#include "../include/saAmf.h"
#include "../include/ipc_gen.h"
#include "../include/ipc_amf.h"
#include "../include/list.h"
#include "../lcr/lcr_comp.h"
#include "totempg.h"
#include "mempool.h"
#include "util.h"
#include "amf.h"
#include "main.h"
#include "ipc.h"
#include "service.h"
#include "objdb.h"
#include "print.h"
#ifdef AMFTEST
#define static
#endif
#ifndef HOST_NAME_MAX
# define HOST_NAME_MAX 255
#endif
#define SYNCTRACE(format, args...) do { \
TRACE6(">%s: " format, __FUNCTION__, ##args); \
} while (0)
/*
* The time AMF will wait to get synchronised by another node
* before it assumes it is alone in the cluster or the first
* node to start.
*/
#ifndef AMF_SYNC_TIMEOUT
#define AMF_SYNC_TIMEOUT 3000
#endif
static void amf_confchg_fn (
enum totem_configuration_type configuration_type,
unsigned int *member_list, int member_list_entries,
unsigned int *left_list, int left_list_entries,
unsigned int *joined_list, int joined_list_entries,
struct memb_ring_id *ring_id);
static int amf_lib_exit_fn (void *conn);
static int amf_exec_init_fn (struct objdb_iface_ver0 *objdb);
static int amf_lib_init_fn (void *conn);
static void message_handler_req_lib_amf_componentregister (void *conn, void *msg);
static void message_handler_req_lib_amf_componentunregister (void *conn, void *msg);
static void message_handler_req_lib_amf_pmstart (void *conn, void *msg);
static void message_handler_req_lib_amf_pmstop (void *conn, void *msg);
static void message_handler_req_lib_amf_healthcheckstart (void *conn, void *msg);
static void message_handler_req_lib_amf_healthcheckconfirm (void *conn, void *msg);
static void message_handler_req_lib_amf_healthcheckstop (void *conn, void *msg);
static void message_handler_req_lib_amf_hastateget (void *conn, void *message);
static void message_handler_req_lib_amf_csiquiescingcomplete (void *conn, void *msg);
static void message_handler_req_lib_amf_protectiongrouptrack (void *conn, void *msg);
static void message_handler_req_lib_amf_protectiongrouptrackstop (void *conn, void *msg);
static void message_handler_req_lib_amf_componenterrorreport (void *conn, void *msg);
static void message_handler_req_lib_amf_componenterrorclear (void *conn, void *msg);
static void message_handler_req_lib_amf_response (void *conn, void *msg);
static void message_handler_req_exec_amf_comp_register (
void *message, unsigned int nodeid);
static void message_handler_req_exec_amf_comp_error_report (
void *message, unsigned int nodeid);
static void message_handler_req_exec_amf_comp_instantiate (
void *message, unsigned int nodeid);
static void message_handler_req_exec_amf_clc_cleanup_completed (
void *message, unsigned int nodeid);
static void message_handler_req_exec_amf_healthcheck_tmo (
void *message, unsigned int nodeid);
static void message_handler_req_exec_amf_response (
void *message, unsigned int nodeid);
static void message_handler_req_exec_amf_sync_start (
void *message, unsigned int nodeid);
static void message_handler_req_exec_amf_sync_data (
void *message, unsigned int nodeid);
static void message_handler_req_exec_amf_sync_ready (
void *message, unsigned int nodeid);
static void message_handler_req_exec_amf_cluster_start_tmo (
void *message, unsigned int nodeid);
static void message_handler_req_exec_amf_sync_request (
void *message, unsigned int nodeid);
static void message_handler_req_exec_amf_comp_instantiate_tmo(
void *message, unsigned int nodeid);
static void amf_dump_fn (void);
static void amf_sync_init (void);
static int amf_sync_process (void);
static void amf_sync_abort (void);
static void amf_sync_activate (void);
struct amf_pd {
struct amf_comp *comp;
struct list_head list;
};
/*
* Service Handler Definition
*/
static struct openais_lib_handler amf_lib_service[] =
{
{ /* 0 */
.lib_handler_fn = message_handler_req_lib_amf_componentregister,
.response_size = sizeof (struct res_lib_amf_componentregister),
.response_id = MESSAGE_RES_AMF_COMPONENTREGISTER,
.flow_control = OPENAIS_FLOW_CONTROL_REQUIRED
},
{ /* 1 */
.lib_handler_fn = message_handler_req_lib_amf_componentunregister,
.response_size = sizeof (struct res_lib_amf_componentunregister),
.response_id = MESSAGE_RES_AMF_COMPONENTUNREGISTER,
.flow_control = OPENAIS_FLOW_CONTROL_REQUIRED
},
{ /* 2 */
.lib_handler_fn = message_handler_req_lib_amf_pmstart,
.response_size = sizeof (struct res_lib_amf_pmstart),
.response_id = MESSAGE_RES_AMF_PMSTART,
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
{ /* 3 */
.lib_handler_fn = message_handler_req_lib_amf_pmstop,
.response_size = sizeof (struct res_lib_amf_pmstop),
.response_id = MESSAGE_RES_AMF_PMSTOP,
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
{ /* 4 */
.lib_handler_fn = message_handler_req_lib_amf_healthcheckstart,
.response_size = sizeof (struct res_lib_amf_healthcheckstart),
.response_id = MESSAGE_RES_AMF_HEALTHCHECKSTART,
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
{ /* 5 */
.lib_handler_fn = message_handler_req_lib_amf_healthcheckconfirm,
.response_size = sizeof (struct res_lib_amf_healthcheckconfirm),
.response_id = MESSAGE_RES_AMF_HEALTHCHECKCONFIRM,
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
{ /* 6 */
.lib_handler_fn = message_handler_req_lib_amf_healthcheckstop,
.response_size = sizeof (struct res_lib_amf_healthcheckstop),
.response_id = MESSAGE_RES_AMF_HEALTHCHECKSTOP,
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
{ /* 7 */
.lib_handler_fn = message_handler_req_lib_amf_hastateget,
.response_size = sizeof (struct res_lib_amf_hastateget),
.response_id = MESSAGE_RES_AMF_HASTATEGET,
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
{ /* 8 */
.lib_handler_fn = message_handler_req_lib_amf_csiquiescingcomplete,
.response_size = sizeof (struct res_lib_amf_csiquiescingcomplete),
.response_id = MESSAGE_RES_AMF_CSIQUIESCINGCOMPLETE,
.flow_control = OPENAIS_FLOW_CONTROL_REQUIRED
},
{ /* 9 */
.lib_handler_fn = message_handler_req_lib_amf_protectiongrouptrack,
.response_size = sizeof (struct res_lib_amf_protectiongrouptrack),
.response_id = MESSAGE_RES_AMF_PROTECTIONGROUPTRACK,
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
{ /* 10 */
.lib_handler_fn = message_handler_req_lib_amf_protectiongrouptrackstop,
.response_size = sizeof (struct res_lib_amf_protectiongrouptrackstop),
.response_id = MESSAGE_RES_AMF_PROTECTIONGROUPTRACKSTOP,
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
{ /* 11 */
.lib_handler_fn = message_handler_req_lib_amf_componenterrorreport,
.response_size = sizeof (struct res_lib_amf_componenterrorreport),
.response_id = MESSAGE_RES_AMF_COMPONENTERRORREPORT,
.flow_control = OPENAIS_FLOW_CONTROL_REQUIRED
},
{ /* 12 */
.lib_handler_fn = message_handler_req_lib_amf_componenterrorclear,
.response_size = sizeof (struct res_lib_amf_componenterrorclear),
.response_id = MESSAGE_RES_AMF_COMPONENTERRORCLEAR,
.flow_control = OPENAIS_FLOW_CONTROL_REQUIRED
},
{ /* 13 */
.lib_handler_fn = message_handler_req_lib_amf_response,
.response_size = sizeof (struct res_lib_amf_response),
.response_id = MESSAGE_RES_AMF_RESPONSE,
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED
},
};
/*
* Multicast message handlers
*/
static struct openais_exec_handler amf_exec_service[] = {
{
.exec_handler_fn = message_handler_req_exec_amf_comp_register,
},
{
.exec_handler_fn = message_handler_req_exec_amf_comp_error_report,
},
{
.exec_handler_fn = message_handler_req_exec_amf_comp_instantiate,
},
{
.exec_handler_fn = message_handler_req_exec_amf_clc_cleanup_completed,
},
{
.exec_handler_fn = message_handler_req_exec_amf_healthcheck_tmo,
},
{
.exec_handler_fn = message_handler_req_exec_amf_response,
},
{
.exec_handler_fn = message_handler_req_exec_amf_sync_start,
},
{
.exec_handler_fn = message_handler_req_exec_amf_sync_data,
},
{
.exec_handler_fn = message_handler_req_exec_amf_sync_ready,
},
{
.exec_handler_fn = message_handler_req_exec_amf_cluster_start_tmo,
},
{
.exec_handler_fn = message_handler_req_exec_amf_sync_request,
},
{
.exec_handler_fn = message_handler_req_exec_amf_comp_instantiate_tmo,
},
};
/*
* Exports the interface for the service
*/
static struct openais_service_handler amf_service_handler = {
.name = (unsigned char *)"openais availability management framework B.01.01",
.id = AMF_SERVICE,
.private_data_size = sizeof (struct amf_pd),
.flow_control = OPENAIS_FLOW_CONTROL_NOT_REQUIRED,
.lib_init_fn = amf_lib_init_fn,
.lib_exit_fn = amf_lib_exit_fn,
.lib_service = amf_lib_service,
.lib_service_count = sizeof (amf_lib_service) / sizeof (struct openais_lib_handler),
.exec_init_fn = amf_exec_init_fn,
.exec_service = amf_exec_service,
.exec_service_count = sizeof (amf_exec_service) / sizeof (struct openais_exec_handler),
.confchg_fn = amf_confchg_fn,
.exec_dump_fn = amf_dump_fn,
.sync_init = amf_sync_init,
.sync_process = amf_sync_process,
.sync_activate = amf_sync_activate,
.sync_abort = amf_sync_abort,
};
struct amf_node *this_amf_node;
struct amf_cluster *amf_cluster;
static struct openais_service_handler *amf_get_handler_ver0 (void);
static struct openais_service_handler_iface_ver0 amf_service_handler_iface = {
.openais_get_service_handler_ver0 = amf_get_handler_ver0
};
static struct lcr_iface openais_amf_ver0[1] = {
{
.name = "openais_amf",
.version = 0,
.versions_replace = 0,
.versions_replace_count = 0,
.dependencies = 0,
.dependency_count = 0,
.constructor = NULL,
.destructor = NULL,
.interfaces = NULL
}
};
static struct lcr_comp amf_comp_ver0 = {
.iface_count = 1,
.ifaces = openais_amf_ver0
};
static struct openais_service_handler *amf_get_handler_ver0 (void)
{
return (&amf_service_handler);
}
__attribute__ ((constructor)) static void register_this_component (void)
{
lcr_interfaces_set (&openais_amf_ver0[0], &amf_service_handler_iface);
lcr_component_register (&amf_comp_ver0);
}
struct req_exec_amf_comp_register {
mar_req_header_t header;
SaNameT compName;
SaNameT proxyCompName;
};
struct req_exec_amf_comp_error_report {
mar_req_header_t header;
SaNameT reportingComponent;
SaNameT erroneousComponent;
SaTimeT errorDetectionTime;
SaAmfRecommendedRecoveryT recommendedRecovery;
SaNtfIdentifierT ntfIdentifier;
};
struct req_exec_amf_response {
mar_req_header_t header;
SaUint32T interface;
SaNameT dn;
SaAisErrorT error;
};
struct req_exec_amf_sync_data {
mar_req_header_t header;
SaUint32T protocol_version;
SaUint32T object_type;
};
struct req_exec_amf_sync_request {
mar_req_header_t header;
SaUint32T protocol_version;
char hostname[HOST_NAME_MAX + 1];
};
static const char *scsm_state_names[] = {
"Unknown",
"IDLE",
"PROBING-1",
"PROBING-2",
"CREATING_CLUSTER_MODEL",
"SYNCHRONIZING",
"NORMAL_OPERATION",
"UPDATING_CLUSTER_MODEL",
"UNCONFIGURED"
};
/**
* Storage for AMF Synchronisation Control State Machine (SCSM).
*/
static struct scsm_descriptor scsm;
typedef struct clm_node {
unsigned int nodeid;
char hostname[HOST_NAME_MAX + 1];
struct clm_node *next;
} clm_node_t;
static char hostname[HOST_NAME_MAX + 1];
/*
* Nodes in the cluster, only used for initial start
* since before the AMF node object exist, we don't
* have storage for the information received in
* SYNC_REQUEST msg.
*/
static clm_node_t *clm_nodes;
/******************************************************************************
* Internal (static) utility functions
*****************************************************************************/
/**
* Find a CLM node object using nodeid as query. Allocate and
* return new object if not found.
*
* @param nodeid
*
* @return clm_node_t*
*/
static clm_node_t *clm_node_find_by_nodeid (unsigned int nodeid)
{
clm_node_t *clm_node;
for (clm_node = clm_nodes; clm_node != NULL; clm_node = clm_node->next) {
if (clm_node->nodeid == nodeid) {
return clm_node;
}
}
clm_node = amf_malloc (sizeof (clm_node_t));
clm_node->nodeid = nodeid;
clm_node->next = clm_nodes;
clm_nodes = clm_node;
return clm_node;
}
/**
* Init nodeids in the AMF node objects using information in the
* CLM node objects.
*/
static void nodeids_init (void)
{
amf_node_t *amf_node;
clm_node_t *clm_node;
ENTER ("");
for (clm_node = clm_nodes; clm_node != NULL; clm_node = clm_node->next) {
/*
* Iterate all AMF nodes if several AMF nodes are mapped to this
* particular CLM node.*
*/
for (amf_node = amf_cluster->node_head; amf_node != NULL;
amf_node = amf_node->next) {
if (strcmp ((char*)amf_node->saAmfNodeClmNode.value,
clm_node->hostname) == 0) {
dprintf ("%s id set to %u", amf_node->name.value, clm_node->nodeid);
amf_node->nodeid = clm_node->nodeid;
}
}
}
}
/**
* Return pointer to this node object.
*
* @param cluster
*
* @return struct amf_node*
*/
static struct amf_node *get_this_node_obj (void)
{
char hostname[HOST_NAME_MAX + 1];
if (gethostname (hostname, sizeof(hostname)) == -1) {
log_printf (LOG_LEVEL_ERROR, "gethostname failed: %d", errno);
openais_exit_error (AIS_DONE_FATAL_ERR);
}
return amf_node_find_by_hostname (hostname);
}
/**
* Prints old and new sync state, sets new state
* @param state
*/
static void sync_state_set (enum scsm_states state)
{
SYNCTRACE ("changing sync ctrl state from %s to %s",
scsm_state_names[scsm.state], scsm_state_names[state]);
scsm.state = state;
}
/**
* Multicast SYNC_DATA message containing a model object.
*
* @param buf
* @param len
* @param object_type
*
* @return int
*/
static int mcast_sync_data (
void *buf, int len, amf_object_type_t object_type)
{
struct req_exec_amf_sync_data req_exec;
struct iovec iov[2];
int res;
req_exec.header.size = sizeof (struct req_exec_amf_sync_data) + len;
SYNCTRACE ("%d bytes, type %u", req_exec.header.size , object_type);
req_exec.header.id =
SERVICE_ID_MAKE (AMF_SERVICE, MESSAGE_REQ_EXEC_AMF_SYNC_DATA);
req_exec.protocol_version = AMF_PROTOCOL_VERSION;
req_exec.object_type = object_type;
iov[0].iov_base = &req_exec;
iov[0].iov_len = sizeof (struct req_exec_amf_sync_data);
iov[1].iov_base = buf;
iov[1].iov_len = len;
res = totempg_groups_mcast_joined (
openais_group_handle, iov, 2, TOTEMPG_AGREED);
if (res != 0) {
dprintf("Unable to send %d bytes of sync data\n", req_exec.header.size);
}
return res;
}
/**
* Timer callback function. The time waiting for external
* synchronisation has expired, start competing with other
* nodes to determine who should read config file.
* @param data
*/
static void timer_function_scsm_timer1_tmo (void *data)
{
SYNCTRACE ("");
amf_msg_mcast (MESSAGE_REQ_EXEC_AMF_SYNC_START, NULL, 0);
sync_state_set (PROBING_2);
}
/**
* Execute synchronisation upon request. Should be implemented
* by the SYNC service. Can only be used during initial start
* since no deferral of lib or timer events is performed.
*/
static void sync_request (void)
{
int res;
SYNCTRACE ("");
assert (amf_cluster->acsm_state == CLUSTER_AC_UNINSTANTIATED);
amf_sync_init ();
do {
res = amf_sync_process ();
if (res == 1) {
/* cannot handle this now, should be implemented using totem
callbacks... */
openais_exit_error (AIS_DONE_FATAL_ERR);
}
} while (res != 0);
amf_msg_mcast (MESSAGE_REQ_EXEC_AMF_SYNC_READY, NULL, 0);
}
/**
* Read the configuration file and create cluster model.
*/
static int create_cluster_model (void)
{
char *error_string;
SYNCTRACE("");
amf_cluster = amf_config_read (&error_string);
if (amf_cluster == NULL) {
log_printf (LOG_LEVEL_ERROR, error_string);
openais_exit_error (AIS_DONE_AMFCONFIGREAD);
}
this_amf_node = get_this_node_obj ();
if (this_amf_node == NULL) {
log_printf (LOG_LEVEL_INFO,
"Info: This node is not configured as an AMF node, disabling.");
return -1;
}
this_amf_node->nodeid = this_ip->nodeid;
return 0;
}
/**
* Calculate a sync master (has the lowest node ID) from the
* members in the cluster. Possibly excluding some members.
*
* @param member_list
* @param member_list_entries
* @param exclude_list
* @param exclude_list_entries
*
* @return int - node ID of new sync master
*/
static unsigned int calc_sync_master (
unsigned int *member_list, int member_list_entries,
unsigned int *exclude_list, int exclude_list_entries)
{
int i, j, exclude;
unsigned int master = this_ip->nodeid; /* assume this node is master */
for (i = 0; i < member_list_entries; i++) {
if (member_list[i] < master) {
exclude = 0;
for (j = 0; j < exclude_list_entries; j++) {
if (member_list[i] == exclude_list[j]) {
exclude = 1;
break;
}
}
if (exclude) {
continue;
}
master = member_list[i];
}
}
return master;
}
static void free_synced_data (void)
{
struct amf_node *node;
struct amf_application *app;
SYNCTRACE ("state %s", scsm_state_names[scsm.state]);
if (scsm.cluster) {
for (node = scsm.cluster->node_head; node != NULL;) {
struct amf_node *tmp = node;
node = node->next;
free (tmp);
}
for (app = scsm.cluster->application_head; app != NULL;) {
struct amf_application *tmp = app;
app = app->next;
amf_application_delete (tmp);
}
free (scsm.cluster);
scsm.cluster = NULL;
}
}
static int healthcheck_sync (struct amf_healthcheck *healthcheck)
{
char *buf;
int len, res;
SYNCTRACE ("%s", healthcheck->safHealthcheckKey.key);
buf = amf_healthcheck_serialize (healthcheck, &len);
res = mcast_sync_data (buf, len, AMF_HEALTHCHECK);
free (buf);
if (res != 0) {
return 1; /* try again later */
}
return 0;
}
static int comp_sync (struct amf_comp *comp)
{
char *buf;
int len, res;
SYNCTRACE ("%s", comp->name.value);
if (!scsm.comp_sync_completed) {
buf = amf_comp_serialize (comp, &len);
res = mcast_sync_data (buf, len, AMF_COMP);
free (buf);
if (res != 0) {
return 1; /* try again later */
}
scsm.comp_sync_completed = 1;
}
if (scsm.healthcheck == NULL) {
scsm.healthcheck = scsm.comp->healthcheck_head;
}
for (; scsm.healthcheck != NULL; scsm.healthcheck = scsm.healthcheck->next) {
if (healthcheck_sync (scsm.healthcheck) != 0) {
return 1; /* try again later */
}
}
scsm.comp_sync_completed = 0;
return 0;
}
static int su_sync (struct amf_su *su)
{
char *buf;
int len, res;
SYNCTRACE ("%s", su->name.value);
if (!scsm.su_sync_completed) {
buf = amf_su_serialize (su, &len);
res = mcast_sync_data (buf, len, AMF_SU);
free (buf);
if (res != 0) {
return 1; /* try again later */
}
scsm.su_sync_completed = 1;
}
if (scsm.comp == NULL) {
scsm.comp = scsm.su->comp_head;
}
for (; scsm.comp != NULL; scsm.comp = scsm.comp->next) {
if (comp_sync (scsm.comp) != 0) {
return 1; /* try again later */
}
}
scsm.su_sync_completed = 0;
return 0;
}
static int sg_sync (struct amf_sg *sg)
{
char *buf;
int len, res;
SYNCTRACE ("%s", sg->name.value);
if (!scsm.sg_sync_completed) {
buf = amf_sg_serialize (sg, &len);
res = mcast_sync_data (buf, len, AMF_SG);
free (buf);
if (res != 0) {
return 1; /* try again later */
}
scsm.sg_sync_completed = 1;
}
if (scsm.su == NULL) {
scsm.su = scsm.sg->su_head;
}
for (; scsm.su != NULL; scsm.su = scsm.su->next) {
if (su_sync (scsm.su) != 0) {
return 1; /* try again later */
}
}
scsm.sg_sync_completed = 0;
return 0;
}
static int csi_assignment_sync (struct amf_csi_assignment *csi_assignment)
{
char *buf;
int len, res;
SYNCTRACE ("%s", csi_assignment->name.value);
buf = amf_csi_assignment_serialize (csi_assignment, &len);
res = mcast_sync_data (buf, len, AMF_CSI_ASSIGNMENT);
free (buf);
if (res != 0) {
return 1; /* try again later */
}
return 0;
}
static int csi_attribute_sync (struct amf_csi_attribute *csi_attribute)
{
char *buf;
int len, res;
SYNCTRACE ("%s", csi_attribute->name);
buf = amf_csi_attribute_serialize (csi_attribute, &len);
res = mcast_sync_data (buf, len, AMF_CSI_ATTRIBUTE);
free (buf);
if (res != 0) {
return 1; /* try again later */
}
return 0;
}
static int csi_sync (struct amf_csi *csi)
{
char *buf;
int len, res;
SYNCTRACE ("%s", csi->name.value);
if (!scsm.csi_sync_completed) {
buf = amf_csi_serialize (csi, &len);
res = mcast_sync_data (buf, len, AMF_CSI);
free (buf);
if (res != 0) {
return 1; /* try again later */
}
scsm.csi_sync_completed = 1;
}
if (scsm.csi_assignment == NULL && scsm.csi_attribute == NULL) {
scsm.csi_assignment = scsm.csi->assigned_csis;
}
for (; scsm.csi_assignment != NULL;
scsm.csi_assignment = scsm.csi_assignment->next) {
if (csi_assignment_sync (scsm.csi_assignment) != 0) {
return 1; /* try again later */
}
}
if (scsm.csi_attribute == NULL) {
scsm.csi_attribute = scsm.csi->attributes_head;
}
for (; scsm.csi_attribute != NULL; scsm.csi_attribute = scsm.csi_attribute->next) {
if (csi_attribute_sync (scsm.csi_attribute) != 0) {
return 1; /* try again later */
}
}
scsm.csi_sync_completed = 0;
return 0;
}
static int si_assignment_sync (struct amf_si_assignment *si_assignment)
{
char *buf;
int len, res;
SYNCTRACE ("%s", si_assignment->name.value);
buf = amf_si_assignment_serialize (si_assignment, &len);
res = mcast_sync_data (buf, len, AMF_SI_ASSIGNMENT);
free (buf);
if (res != 0) {
return 1; /* try again later */
}
return 0;
}
static int si_sync (struct amf_si *si)
{
char *buf;
int len, res;
SYNCTRACE ("%s", si->name.value);
if (!scsm.si_sync_completed) {
buf = amf_si_serialize (si, &len);
res = mcast_sync_data (buf, len, AMF_SI);
free (buf);
if (res != 0) {
return 1; /* try again later */
}
scsm.si_sync_completed = 1;
}
if (scsm.si_assignment == NULL && scsm.csi == NULL) {
scsm.si_assignment = scsm.si->assigned_sis;
}
for (; scsm.si_assignment != NULL; scsm.si_assignment = scsm.si_assignment->next) {
if (si_assignment_sync (scsm.si_assignment) != 0) {
return 1; /* try again later */
}
}
if (scsm.csi == NULL) {
scsm.csi = scsm.si->csi_head;
}
for (; scsm.csi != NULL; scsm.csi = scsm.csi->next) {
if (csi_sync (scsm.csi) != 0) {
return 1; /* try again later */
}
}
scsm.si_sync_completed = 0;
return 0;
}
static int application_sync (struct amf_application *app)
{
char *buf;
int len, res;
SYNCTRACE ("%s", app->name.value);
if (!scsm.app_sync_completed) {
buf = amf_application_serialize (app, &len);
res = mcast_sync_data (buf, len, AMF_APPLICATION);
free (buf);
if (res != 0) {
return 1; /* try again later */
}
scsm.app_sync_completed = 1;
}
if (scsm.sg == NULL && scsm.si == NULL) {
scsm.sg = scsm.app->sg_head;
}
for (; scsm.sg != NULL; scsm.sg = scsm.sg->next) {
if (sg_sync (scsm.sg) != 0) {
return 1; /* try again later */
}
}
if (scsm.si == NULL) {
scsm.si = scsm.app->si_head;
}
for (; scsm.si != NULL; scsm.si = scsm.si->next) {
if (si_sync (scsm.si) != 0) {
return 1; /* try again later */
}
}
scsm.app_sync_completed = 0;
return 0;
}
static int node_sync (struct amf_node *node)
{
char *buf;
int len, res;
SYNCTRACE ("%s", node->name.value);
buf = amf_node_serialize (node, &len);
res = mcast_sync_data (buf, len, AMF_NODE);
free (buf);
if (res != 0) {
return 1; /* try again later */
}
return 0;
}
static int cluster_sync (struct amf_cluster *cluster)
{
char *buf;
int len, res;
SYNCTRACE ("%s", cluster->name.value);
buf = amf_cluster_serialize (cluster, &len);
res = mcast_sync_data (buf, len, AMF_CLUSTER);
free (buf);
if (res != 0) {
return 1; /* try again later */
}
return 0;
}
/**
* Returns true (1) if the nodeid is a member of the list
* @param nodeid
* @param list
* @param entries
*
* @return int
*/
static int is_member (
unsigned int nodeid, unsigned int *list, unsigned int entries)
{
int i;
for (i = 0; i < entries; i++) {
if (list[i] == nodeid) {
return 1;
}
}
return 0;
}
/**
* Start the AMF nodes that has joined
*/
static void cluster_joined_nodes_start (void)
{
int i;
struct amf_node *node;
for (i = 0; i < scsm.joined_list_entries; i++) {
node = amf_node_find_by_nodeid (scsm.joined_list[i]);
if (node != NULL) {
amf_cluster_sync_ready (amf_cluster, node);
} else {
log_printf (LOG_LEVEL_INFO,
"Info: Node %u is not configured as an AMF node", scsm.joined_list[i]);
}
}
}
/******************************************************************************
* AMF Framework callback implementation *
*****************************************************************************/
static void amf_sync_init (void)
{
SYNCTRACE ("state %s", scsm_state_names[scsm.state]);
switch (scsm.state) {
case UNCONFIGURED:
case PROBING_1:
case PROBING_2:
case SYNCHRONIZING:
break;
case NORMAL_OPERATION:
if (scsm.joined_list_entries > 0) {
sync_state_set (SYNCHRONIZING);
}
break;
default:
dprintf ("unknown state: %u", scsm.state);;
assert (0);
break;
}
if (scsm.state == SYNCHRONIZING && scsm.sync_master == this_ip->nodeid) {
amf_msg_mcast (MESSAGE_REQ_EXEC_AMF_SYNC_START, NULL, 0);
assert (amf_cluster != NULL);
nodeids_init ();
scsm.cluster = amf_cluster;
scsm.node = amf_cluster->node_head;
scsm.app = amf_cluster->application_head;
scsm.app_sync_completed = 0;
scsm.sg = NULL;
scsm.sg_sync_completed = 0;
scsm.su = NULL;
scsm.su_sync_completed = 0;
scsm.comp = NULL;
scsm.comp_sync_completed = 0;
scsm.healthcheck = NULL;
scsm.si = NULL;
scsm.si_sync_completed = 0;
scsm.si_assignment = NULL;
scsm.csi = NULL;
scsm.csi_sync_completed = 0;
scsm.csi_assignment = NULL;
scsm.csi_attribute = NULL;
}
}
/**
* SCSM state SYNCHRONIZING processing function. If in correct
* state, encode and send each object in the information model
* as a SYNC_DATA message. Depth first traversal to preserve
* parent/child relations.
*
* @return int
*/
static int amf_sync_process (void)
{
SYNCTRACE ("state %s", scsm_state_names[scsm.state]);
if (scsm.state != SYNCHRONIZING || scsm.sync_master != this_ip->nodeid) {
return 0;
}
if (scsm.cluster) {
if (cluster_sync (scsm.cluster) != 0) {
return 1; /* try again later */
}
scsm.cluster = NULL; /* done with cluster object */
}
for (; scsm.node != NULL; scsm.node = scsm.node->next) {
if (node_sync (scsm.node) != 0) {
return 1; /* try again later */
}
}
#ifdef AMFTEST
{
/*
* Test code to generate the event "sync master died" in the
* middle of synchronization.
*/
struct stat buf;
if (stat ("/tmp/amf_sync_master_crash", &buf) == 0) {
printf("bye...\n");
*((int*)NULL) = 0xbad;
}
}
#endif
for (; scsm.app != NULL; scsm.app = scsm.app->next) {
if (application_sync (scsm.app) != 0) {
return 1; /* try again later */
}
}
SYNCTRACE ("ready");
return 0; /* ready */
}
/**
* SCSM abnormal exit function for state SYNCHRONIZING
*/
static void amf_sync_abort (void)
{
SYNCTRACE ("state %s", scsm_state_names[scsm.state]);
memset (&scsm, 0, sizeof (scsm));
assert (0); /* not ready... */
}
/**
* SCSM normal exit function for states SYNCHRONIZING &
* UPDATING_CLUSTER_MODEL. All synced objects are now
* commited, start node/cluster.
*/
static void amf_sync_activate (void)
{
clm_node_t *clm_node = clm_nodes;
SYNCTRACE ("state %s", scsm_state_names[scsm.state]);
switch (scsm.state) {
case SYNCHRONIZING:
/* Delete all CLM nodes, not needed any longer. */
while (clm_node != NULL) {
clm_node_t *tmp = clm_node;
clm_node = clm_node->next;
free (tmp);
}
clm_nodes = NULL;
sync_state_set (NORMAL_OPERATION);
cluster_joined_nodes_start ();
break;
case UPDATING_CLUSTER_MODEL:
amf_cluster = scsm.cluster;
assert (amf_cluster != NULL);
scsm.cluster = NULL;
this_amf_node = get_this_node_obj ();
sync_state_set (NORMAL_OPERATION);
if (this_amf_node != NULL) {
this_amf_node->nodeid = this_ip->nodeid;
#ifdef AMFDEBUG
amf_runtime_attributes_print (amf_cluster);
#endif
amf_cluster_sync_ready (amf_cluster, this_amf_node);
} else {
log_printf (LOG_LEVEL_INFO,
"Info: This node is not configured as an AMF node, disabling.");
sync_state_set (UNCONFIGURED);
}
break;
case UNCONFIGURED:
case PROBING_1:
case NORMAL_OPERATION:
break;
default:
dprintf ("unknown state: %u", scsm.state);;
assert (0);
break;
}
SYNCTRACE ("");
}
/**
* First AMF function to be called by the framework. AMF
* execution continues when this node joins the cluster.
* @param objdb
*
* @return int
*/
static int amf_exec_init_fn (struct objdb_iface_ver0 *objdb)
{
log_init ("AMF");
if (gethostname (hostname, sizeof (hostname)) == -1) {
log_printf (LOG_LEVEL_ERROR, "gethostname failed: %d", errno);
openais_exit_error (AIS_DONE_FATAL_ERR);
}
if (objdb != NULL && !amf_enabled (objdb)) {
sync_state_set (UNCONFIGURED);
return 0;
}
sync_state_set (IDLE);
amf_cluster_init();
amf_node_init();
amf_application_init();
amf_sg_init();
amf_su_init();
amf_comp_init();
amf_si_init();
amf_util_init ();
return (0);
}
/**
* Cluster configuration change event handler
* @param configuration_type
* @param member_list
* @param member_list_entries
* @param left_list
* @param left_list_entries
* @param joined_list
* @param joined_list_entries
* @param ring_id
*/
static void amf_confchg_fn (
enum totem_configuration_type configuration_type,
unsigned int *member_list, int member_list_entries,
unsigned int *left_list, int left_list_entries,
unsigned int *joined_list, int joined_list_entries,
struct memb_ring_id *ring_id)
{
ENTER ("mnum: %d, jnum: %d, lnum: %d, sync state: %s, ring ID %llu rep %s\n",
member_list_entries, joined_list_entries, left_list_entries,
scsm_state_names[scsm.state], ring_id->seq, totemip_print (&ring_id->rep));
/*
* Save nodes that joined, needed to initialize each
* node's totem node id later.
*/
scsm.joined_list_entries = joined_list_entries;
if (scsm.joined_list != NULL) {
free (scsm.joined_list);
}
scsm.joined_list = amf_malloc (joined_list_entries * sizeof (unsigned int));
memcpy (scsm.joined_list, joined_list, sizeof (unsigned int) * joined_list_entries);
switch (scsm.state) {
case IDLE: {
sync_state_set (PROBING_1);
if (poll_timer_add (aisexec_poll_handle, AMF_SYNC_TIMEOUT, NULL,
timer_function_scsm_timer1_tmo, &scsm.timer_handle) != 0) {
openais_exit_error (AIS_DONE_FATAL_ERR);
}
break;
}
case PROBING_1:
/* fall-through */
case PROBING_2:
if (joined_list_entries > 0) {
struct req_exec_amf_sync_request msg;
memcpy (msg.hostname, hostname, strlen (hostname) + 1);
msg.protocol_version = AMF_PROTOCOL_VERSION;
amf_msg_mcast (MESSAGE_REQ_EXEC_AMF_SYNC_REQUEST,
&msg.protocol_version, sizeof (msg) - sizeof (mar_req_header_t));
}
break;
case UNCONFIGURED:
break;
case UPDATING_CLUSTER_MODEL:
if (!is_member (scsm.sync_master, member_list, member_list_entries)) {
/*
TODO: ???
free_synced_data ();
*/
sync_state_set (PROBING_1);
if (poll_timer_add (aisexec_poll_handle, AMF_SYNC_TIMEOUT, NULL,
timer_function_scsm_timer1_tmo, &scsm.timer_handle) != 0) {
openais_exit_error (AIS_DONE_FATAL_ERR);
}
}
break;
case SYNCHRONIZING: {
if (joined_list_entries > 0 && scsm.sync_master == this_ip->nodeid) {
/* restart sync */
amf_msg_mcast (MESSAGE_REQ_EXEC_AMF_SYNC_START, NULL, 0);
}
/* If the sync master left the cluster, calculate a new sync
* master between the remaining nodes in the cluster excluding
* the nodes we are just syncing.
*/
if (!is_member (scsm.sync_master, member_list, member_list_entries)) {
scsm.sync_master =
calc_sync_master (
member_list, member_list_entries,
scsm.joined_list, scsm.joined_list_entries);
if (scsm.sync_master == this_ip->nodeid) {
/* restart sync */
SYNCTRACE ("I am (new) sync master");
amf_msg_mcast (MESSAGE_REQ_EXEC_AMF_SYNC_START, NULL, 0);
}
}
break;
}
case NORMAL_OPERATION: {
/* If the sync master left the cluster, calculate a new sync
* master between the remaining nodes in the cluster.
*/
if (!is_member (scsm.sync_master, member_list, member_list_entries)) {
scsm.sync_master =
calc_sync_master (
member_list, member_list_entries, NULL, 0);
if (scsm.sync_master == this_ip->nodeid) {
SYNCTRACE ("I am (new) sync master");
}
}
if (left_list_entries > 0) {
int i;
struct amf_node *node;
for (i = 0; i < left_list_entries; i++) {
node = amf_node_find_by_nodeid (left_list[i]);
if (node != NULL) {
amf_node_leave(node);
}
}
}
break;
}
default:
log_printf (LOG_LEVEL_ERROR, "unknown state: %u\n", scsm.state);
assert (0);
break;
}
}
static int amf_lib_exit_fn (void *conn)
{
struct amf_comp *comp;
struct amf_pd *amf_pd = (struct amf_pd *)openais_conn_private_data_get (conn);
assert (amf_pd != NULL);
comp = amf_pd->comp;
/* Make sure this is not a new connection */
if (comp != NULL && comp->conn == conn ) {
comp->conn = NULL;
dprintf ("Lib exit from comp %s\n", getSaNameT (&comp->name));
}
return (0);
}
static int amf_lib_init_fn (void *conn)
{
struct amf_pd *amf_pd = (struct amf_pd *)openais_conn_private_data_get (conn);
list_init (&amf_pd->list);
return (0);
}
static void amf_dump_fn (void)
{
if (amf_cluster == NULL) {
return;
}
amf_runtime_attributes_print (amf_cluster);
}
/******************************************************************************
* Executive Message Implementation
*****************************************************************************/
static void message_handler_req_exec_amf_comp_register (
void *message, unsigned int nodeid)
{
struct res_lib_amf_componentregister res_lib;
struct req_exec_amf_comp_register *req_exec = message;
struct amf_comp *comp;
SaAisErrorT error;
if (scsm.state != NORMAL_OPERATION) {
return;
}
comp = amf_comp_find (amf_cluster, &req_exec->compName);
assert (comp != NULL);
TRACE1 ("ComponentRegister: '%s'", comp->name.value);
error = amf_comp_register (comp);
if (amf_su_is_local (comp->su)) {
res_lib.header.id = MESSAGE_RES_AMF_COMPONENTREGISTER;
res_lib.header.size = sizeof (struct res_lib_amf_componentregister);
res_lib.header.error = error;
openais_conn_send_response (
comp->conn, &res_lib, sizeof (struct res_lib_amf_componentregister));
}
}
static void message_handler_req_exec_amf_comp_error_report (
void *message, unsigned int nodeid)
{
struct req_exec_amf_comp_error_report *req_exec = message;
struct amf_comp *comp;
if (scsm.state != NORMAL_OPERATION) {
return;
}
comp = amf_comp_find (amf_cluster, &req_exec->erroneousComponent);
assert (comp != NULL);
amf_comp_error_report (comp, req_exec->recommendedRecovery);
}
static void message_handler_req_exec_amf_comp_instantiate(
void *message, unsigned int nodeid)
{
struct req_exec_amf_comp_instantiate *req_exec = message;
struct amf_comp *component;
component = amf_comp_find (amf_cluster, &req_exec->compName);
if (component == NULL) {
log_printf (LOG_ERR, "Error: '%s' not found", req_exec->compName.value);
return;
}
amf_comp_instantiate_event (component);
}
static void message_handler_req_exec_amf_comp_instantiate_tmo(
void *message, unsigned int nodeid)
{
struct req_exec_amf_comp_instantiate_tmo *req_exec = message;
struct amf_comp *component;
component = amf_comp_find (amf_cluster, &req_exec->compName);
if (component == NULL) {
log_printf (LOG_ERR, "Error: '%s' not found", req_exec->compName.value);
return;
}
amf_comp_instantiate_tmo_event (component);
}
static void message_handler_req_exec_amf_clc_cleanup_completed (
void *message, unsigned int nodeid)
{
struct req_exec_amf_clc_cleanup_completed *req_exec = message;
struct amf_comp *comp;
if (scsm.state != NORMAL_OPERATION) {
return;
}
comp = amf_comp_find (amf_cluster, &req_exec->compName);
if (comp == NULL) {
log_printf (LOG_ERR, "Error: '%s' not found", req_exec->compName.value);
return;
}
amf_comp_cleanup_completed (comp);
}
static void message_handler_req_exec_amf_healthcheck_tmo (
void *message, unsigned int nodeid)
{
struct req_exec_amf_healthcheck_tmo *req_exec = message;
struct amf_comp *comp;
struct amf_healthcheck *healthcheck;
if (scsm.state != NORMAL_OPERATION) {
return;
}
comp = amf_comp_find (amf_cluster, &req_exec->compName);
if (comp == NULL) {
log_printf (LOG_ERR, "Error: '%s' not found", req_exec->compName.value);
return;
}
ENTER ("%s", comp->name.value);
healthcheck = amf_comp_find_healthcheck (comp, &req_exec->safHealthcheckKey);
amf_comp_healthcheck_tmo (comp, healthcheck);
}
static void message_handler_req_exec_amf_response (
void *message, unsigned int nodeid)
{
struct req_exec_amf_response *req_exec = message;
struct amf_comp *comp;
struct res_lib_amf_response res_lib;
SaAisErrorT retval;
if (scsm.state != NORMAL_OPERATION) {
return;
}
TRACE1 ("AmfResponse: %s", req_exec->dn.value);
comp = amf_comp_response_2 (
req_exec->interface, &req_exec->dn, req_exec->error, &retval);
assert (comp != NULL);
if (amf_su_is_local (comp->su)) {
res_lib.header.id = MESSAGE_RES_AMF_RESPONSE;
res_lib.header.size = sizeof (struct res_lib_amf_response);
res_lib.header.error = retval;
openais_conn_send_response (comp->conn, &res_lib, sizeof (res_lib));
}
}
static void message_handler_req_exec_amf_sync_start (
void *message, unsigned int nodeid)
{
SYNCTRACE ("from: %s", totempg_ifaces_print (nodeid));
switch (scsm.state) {
case IDLE:
break;
case PROBING_1:
poll_timer_delete (aisexec_poll_handle, scsm.timer_handle);
scsm.timer_handle = 0;
sync_state_set (UPDATING_CLUSTER_MODEL);
scsm.sync_master = nodeid;
break;
case PROBING_2:
if (this_ip->nodeid == nodeid) {
scsm.sync_master = nodeid;
sync_state_set (CREATING_CLUSTER_MODEL);
if (create_cluster_model() == 0) {
sync_state_set (SYNCHRONIZING);
sync_request ();
} else {
/* TODO: I am sync master but not AMF node */
log_printf (LOG_LEVEL_ERROR,
"AMF sync error: I am sync master but not AMF node");
openais_exit_error (AIS_DONE_FATAL_ERR);
}
} else {
sync_state_set (UPDATING_CLUSTER_MODEL);
scsm.sync_master = nodeid;
}
break;
case SYNCHRONIZING:
break;
case UPDATING_CLUSTER_MODEL:
free_synced_data ();
scsm.sync_master = nodeid;
break;
case UNCONFIGURED:
break;
default:
dprintf ("unknown state %d", scsm.state);
assert (0);
break;
}
}
static void message_handler_req_exec_amf_sync_data (
void *message, unsigned int nodeid)
{
struct req_exec_amf_sync_data *req_exec = message;
char *tmp = ((char*)message) + sizeof (struct req_exec_amf_sync_data);
SYNCTRACE ("rec %d bytes, ptr %p, type %d", req_exec->header.size, message,
req_exec->object_type);
#if 0
if (req_exec->protocol_version != AMF_PROTOCOL_VERSION) {
log_printf (LOG_ERR, "Error: Protocol version not supported");
return;
}
#endif
if (scsm.state != UPDATING_CLUSTER_MODEL) {
return;
}
switch (req_exec->object_type)
{
case AMF_CLUSTER:
if ((scsm.cluster = amf_cluster_deserialize (tmp)) == NULL) {
openais_exit_error (AIS_DONE_FATAL_ERR);
}
SYNCTRACE ("Cluster '%s' deserialised", scsm.cluster->name.value);
break;
case AMF_NODE:
if ((scsm.node = amf_node_deserialize (scsm.cluster, tmp)) == NULL) {
openais_exit_error (AIS_DONE_FATAL_ERR);
}
SYNCTRACE ("Node '%s' deserialised", scsm.node->name.value);
break;
case AMF_APPLICATION:
if ((scsm.app = amf_application_deserialize (scsm.cluster, tmp)) == NULL) {
openais_exit_error (AIS_DONE_FATAL_ERR);
}
SYNCTRACE ("App '%s' deserialised", scsm.app->name.value);
break;
case AMF_SG:
if ((scsm.sg = amf_sg_deserialize (scsm.app, tmp)) == NULL) {
openais_exit_error (AIS_DONE_FATAL_ERR);
}
SYNCTRACE ("SG '%s' deserialised", scsm.sg->name.value);
break;
case AMF_SU:
if ((scsm.su = amf_su_deserialize (scsm.sg, tmp)) == NULL) {
openais_exit_error (AIS_DONE_FATAL_ERR);
}
SYNCTRACE ("SU '%s' deserialised", scsm.su->name.value);
break;
case AMF_COMP:
if ((scsm.comp = amf_comp_deserialize (scsm.su, tmp)) == NULL) {
openais_exit_error (AIS_DONE_FATAL_ERR);
}
SYNCTRACE ("Component '%s' deserialised", scsm.comp->name.value);
break;
case AMF_HEALTHCHECK:
if ((scsm.healthcheck = amf_healthcheck_deserialize (scsm.comp,
tmp)) == NULL) {
openais_exit_error (AIS_DONE_FATAL_ERR);
}
SYNCTRACE ("Healthcheck '%s' deserialised",
scsm.healthcheck->safHealthcheckKey.key);
break;
case AMF_SI:
if ((scsm.si = amf_si_deserialize (scsm.app, tmp)) == NULL) {
openais_exit_error (AIS_DONE_FATAL_ERR);
}
SYNCTRACE ("SI '%s' deserialised", scsm.si->name.value);
break;
case AMF_SI_ASSIGNMENT:
if ((scsm.si_assignment = amf_si_assignment_deserialize (scsm.si,
tmp)) == NULL) {
openais_exit_error (AIS_DONE_FATAL_ERR);
}
SYNCTRACE ("SI Ass '%s' deserialised",
scsm.si_assignment->name.value);
break;
case AMF_CSI:
if ((scsm.csi = amf_csi_deserialize (scsm.si,
tmp)) == NULL) {
openais_exit_error (AIS_DONE_FATAL_ERR);
}
SYNCTRACE ("CSI '%s' deserialised", scsm.csi->name.value);
break;
case AMF_CSI_ASSIGNMENT:
if ((scsm.csi_assignment = amf_csi_assignment_deserialize (
scsm.csi, tmp)) == NULL) {
openais_exit_error (AIS_DONE_FATAL_ERR);
}
SYNCTRACE ("CSI Ass '%s' deserialised",
scsm.csi_assignment->name.value);
break;
case AMF_CSI_ATTRIBUTE:
if ((scsm.csi_attribute = amf_csi_attribute_deserialize (scsm.csi,
tmp)) == NULL) {
openais_exit_error (AIS_DONE_FATAL_ERR);
}
SYNCTRACE ("CSI Attr '%s' deserialised",
scsm.csi_attribute->name);
break;
default:
dprintf ("unknown object: %u", req_exec->object_type);
assert (0);
break;
}
}
/**
* Commit event handler for the previously received objects.
* Start this cluster/node now. Used at initial cluster start
* only.
* @param message
* @param nodeid
*/
static void message_handler_req_exec_amf_sync_ready (
void *message, unsigned int nodeid)
{
SYNCTRACE ("from: %s", totempg_ifaces_print (nodeid));
amf_sync_activate ();
}
static void message_handler_req_exec_amf_cluster_start_tmo (
void *message, unsigned int nodeid)
{
if (scsm.state != NORMAL_OPERATION) {
return;
}
amf_cluster_start_tmo_event (nodeid == scsm.sync_master, amf_cluster);
}
static void message_handler_req_exec_amf_sync_request (
void *message, unsigned int nodeid)
{
struct req_exec_amf_sync_request *req_exec = message;
clm_node_t *clm_node;
SYNCTRACE ("from: %s, name: %s, state %s", totempg_ifaces_print (nodeid),
req_exec->hostname, scsm_state_names[scsm.state]);
clm_node = clm_node_find_by_nodeid (nodeid);
assert (clm_node != NULL);
strcpy (clm_node->hostname, req_exec->hostname);
if (scsm.state == NORMAL_OPERATION) {
amf_node_t *amf_node = amf_cluster->node_head;
/*
* Iterate all AMF nodes if several AMF nodes are mapped to this
* particular CLM node.
*/
for (; amf_node != NULL; amf_node = amf_node->next) {
if (strcmp ((char*)amf_node->saAmfNodeClmNode.value,
req_exec->hostname) == 0) {
amf_node->nodeid = nodeid;
}
}
}
}
/*****************************************************************************
* Library Interface Implementation
****************************************************************************/
static void message_handler_req_lib_amf_componentregister (
void *conn,
void *msg)
{
struct req_lib_amf_componentregister *req_lib = msg;
struct amf_comp *comp;
assert (scsm.state == NORMAL_OPERATION);
comp = amf_comp_find (amf_cluster, &req_lib->compName);
if (comp) {
struct req_exec_amf_comp_register req_exec;
struct iovec iovec;
struct amf_pd *amf_pd = openais_conn_private_data_get (conn);
TRACE2("Comp register '%s'", req_lib->compName.value);
comp->conn = conn;
amf_pd->comp = comp;
req_exec.header.size = sizeof (struct req_exec_amf_comp_register);
req_exec.header.id = SERVICE_ID_MAKE (AMF_SERVICE,
MESSAGE_REQ_EXEC_AMF_COMPONENT_REGISTER);
memcpy (&req_exec.compName, &req_lib->compName, sizeof (SaNameT));
memcpy (&req_exec.proxyCompName,
&req_lib->proxyCompName, sizeof (SaNameT));
iovec.iov_base = (char *)&req_exec;
iovec.iov_len = sizeof (req_exec);
assert (totempg_groups_mcast_joined (openais_group_handle,
&iovec, 1, TOTEMPG_AGREED) == 0);
} else {
struct res_lib_amf_componentregister res_lib;
log_printf (LOG_ERR, "Error: Comp register: '%s' not found", req_lib->compName.value);
res_lib.header.id = MESSAGE_RES_AMF_COMPONENTREGISTER;
res_lib.header.size = sizeof (struct res_lib_amf_componentregister);
res_lib.header.error = SA_AIS_ERR_INVALID_PARAM;
openais_conn_send_response (
conn, &res_lib, sizeof (struct res_lib_amf_componentregister));
}
}
static void message_handler_req_lib_amf_componentunregister (
void *conn,
void *msg)
{
#ifdef COMPILE_OUT
struct req_lib_amf_componentunregister *req_lib_amf_componentunregister = (struct req_lib_amf_componentunregister *)message;
struct req_exec_amf_componentunregister req_exec_amf_componentunregister;
struct iovec iovec;
struct amf_comp *component;
log_printf (LOG_LEVEL_FROM_LIB, "Handle : message_handler_req_lib_amf_componentunregister()\n");
req_exec_amf_componentunregister.header.size = sizeof (struct req_exec_amf_componentunregister);
req_exec_amf_componentunregister.header.id =
SERVICE_ID_MAKE (AMF_SERVICE, MESSAGE_REQ_EXEC_AMF_COMPONENTUNREGISTER);
message_source_set (&req_exec_amf_componentunregister.source, conn_info);
memcpy (&req_exec_amf_componentunregister.req_lib_amf_componentunregister,
req_lib_amf_componentunregister,
sizeof (struct req_lib_amf_componentunregister));
component = amf_comp_find (amf_cluster, &req_lib_amf_componentunregister->compName);
if (component && component->registered && component->local) {
// component->probableCause = SA_AMF_NOT_RESPONDING;
}
iovec.iov_base = (char *)&req_exec_amf_componentunregister;
iovec.iov_len = sizeof (req_exec_amf_componentunregister);
assert (totempg_groups_mcast_joined (openais_group_handle,
&iovec, 1, TOTEMPG_AGREED) == 0);
#endif
}
static void message_handler_req_lib_amf_pmstart (
void *conn,
void *msg)
{
}
static void message_handler_req_lib_amf_pmstop (
void *conn,
void *msg)
{
}
static void message_handler_req_lib_amf_healthcheckstart (
void *conn, void *msg)
{
struct req_lib_amf_healthcheckstart *req_lib = msg;
struct res_lib_amf_healthcheckstart res_lib;
struct amf_comp *comp;
SaAisErrorT error = SA_AIS_OK;
comp = amf_comp_find (amf_cluster, &req_lib->compName);
if (comp != NULL) {
comp->conn = conn;
error = amf_comp_healthcheck_start (
comp, &req_lib->healthcheckKey, req_lib->invocationType,
req_lib->recommendedRecovery);
} else {
log_printf (LOG_ERR, "Healthcheckstart: Component '%s' not found",
req_lib->compName.value);
error = SA_AIS_ERR_NOT_EXIST;
}
res_lib.header.id = MESSAGE_RES_AMF_HEALTHCHECKSTART;
res_lib.header.size = sizeof (res_lib);
res_lib.header.error = error;
openais_conn_send_response (conn, &res_lib,
sizeof (struct res_lib_amf_healthcheckstart));
}
static void message_handler_req_lib_amf_healthcheckconfirm (
void *conn, void *msg)
{
struct req_lib_amf_healthcheckconfirm *req_lib = msg;
struct res_lib_amf_healthcheckconfirm res_lib;
struct amf_comp *comp;
SaAisErrorT error = SA_AIS_OK;
comp = amf_comp_find (amf_cluster, &req_lib->compName);
if (comp != NULL) {
error = amf_comp_healthcheck_confirm (
comp, &req_lib->healthcheckKey, req_lib->healthcheckResult);
} else {
log_printf (LOG_ERR, "Healthcheck confirm: Component '%s' not found",
req_lib->compName.value);
error = SA_AIS_ERR_NOT_EXIST;
}
res_lib.header.id = MESSAGE_RES_AMF_HEALTHCHECKCONFIRM;
res_lib.header.size = sizeof (res_lib);
res_lib.header.error = error;
openais_conn_send_response (conn, &res_lib, sizeof (res_lib));
}
static void message_handler_req_lib_amf_healthcheckstop (
void *conn, void *msg)
{
struct req_lib_amf_healthcheckstop *req_lib = msg;
struct res_lib_amf_healthcheckstop res_lib;
struct amf_comp *comp;
SaAisErrorT error = SA_AIS_OK;
comp = amf_comp_find (amf_cluster, &req_lib->compName);
if (comp != NULL) {
error = amf_comp_healthcheck_stop (comp, &req_lib->healthcheckKey);
} else {
log_printf (LOG_ERR, "Healthcheckstop: Component '%s' not found",
req_lib->compName.value);
error = SA_AIS_ERR_NOT_EXIST;
}
res_lib.header.id = MESSAGE_RES_AMF_HEALTHCHECKSTOP;
res_lib.header.size = sizeof (res_lib);
res_lib.header.error = error;
openais_conn_send_response (conn, &res_lib, sizeof (res_lib));
}
static void message_handler_req_lib_amf_hastateget (void *conn, void *msg)
{
struct req_lib_amf_hastateget *req_lib = msg;
struct res_lib_amf_hastateget res_lib;
struct amf_comp *comp;
SaAmfHAStateT ha_state;
SaAisErrorT error;
comp = amf_comp_find (amf_cluster, &req_lib->compName);
if (comp != NULL) {
error = amf_comp_hastate_get (comp, &req_lib->csiName, &ha_state);
res_lib.haState = ha_state;
res_lib.header.error = error;
} else {
log_printf (LOG_ERR, "HA state get: Component '%s' not found",
req_lib->compName.value);
error = SA_AIS_ERR_NOT_EXIST;
}
res_lib.header.id = MESSAGE_RES_AMF_HASTATEGET;
res_lib.header.size = sizeof (struct res_lib_amf_hastateget);
res_lib.header.error = error;
openais_conn_send_response (conn, &res_lib,
sizeof (struct res_lib_amf_hastateget));
}
static void message_handler_req_lib_amf_protectiongrouptrack (
void *conn,
void *msg)
{
#ifdef COMPILE_OUT
struct req_lib_amf_protectiongrouptrack *req_lib_amf_protectiongrouptrack = (struct req_lib_amf_protectiongrouptrack *)message;
struct res_lib_amf_protectiongrouptrack res_lib_amf_protectiongrouptrack;
struct libamf_ci_trackentry *track = 0;
int i;
struct saAmfProtectionGroup *amfProtectionGroup;
log_printf (LOG_LEVEL_FROM_LIB, "Handle : message_handler_req_lib_amf_protectiongrouptrack()\n");
amfProtectionGroup = protectiongroup_find (&req_lib_amf_protectiongrouptrack->csiName);
if (amfProtectionGroup) {
log_printf (LOG_LEVEL_DEBUG, "protectiongrouptrack: Got valid track start on CSI: %s.\n", getSaNameT (&req_lib_amf_protectiongrouptrack->csiName));
for (i = 0; i < conn_info->ais_ci.u.libamf_ci.trackEntries; i++) {
if (conn_info->ais_ci.u.libamf_ci.tracks[i].active == 0) {
track = &conn_info->ais_ci.u.libamf_ci.tracks[i];
break;
}
}
if (track == 0) {
grow_amf_track_table (conn_info, 1);
track = &conn_info->ais_ci.u.libamf_ci.tracks[i];
}
track->active = 1;
track->trackFlags = req_lib_amf_protectiongrouptrack->trackFlags;
track->notificationBufferAddress = req_lib_amf_protectiongrouptrack->notificationBufferAddress;
memcpy (&track->csiName,
&req_lib_amf_protectiongrouptrack->csiName, sizeof (SaNameT));
conn_info->ais_ci.u.libamf_ci.trackActive += 1;
list_add (&conn_info->conn_list, &library_notification_send_listhead);
/*
* If SA_TRACK_CURRENT is specified, write out all current connections
*/
} else {
log_printf (LOG_LEVEL_DEBUG, "invalid track start, csi not registered with system.\n");
}
res_lib_amf_protectiongrouptrack.header.id = MESSAGE_RES_AMF_PROTECTIONGROUPTRACK;
res_lib_amf_protectiongrouptrack.header.size = sizeof (struct res_lib_amf_protectiongrouptrack);
res_lib_amf_protectiongrouptrack.header.error = SA_ERR_NOT_EXIST;
if (amfProtectionGroup) {
res_lib_amf_protectiongrouptrack.header.error = SA_AIS_OK;
}
openais_conn_send_response (conn, &res_lib_amf_protectiongrouptrack,
sizeof (struct res_lib_amf_protectiongrouptrack));
if (amfProtectionGroup &&
req_lib_amf_protectiongrouptrack->trackFlags & SA_TRACK_CURRENT) {
protectiongroup_notification_send (conn_info,
track->notificationBufferAddress,
amfProtectionGroup,
0,
0,
SA_TRACK_CHANGES_ONLY);
track->trackFlags &= ~SA_TRACK_CURRENT;
}
#endif
}
static void message_handler_req_lib_amf_csiquiescingcomplete (
void *conn,
void *msg)
{
}
static void message_handler_req_lib_amf_protectiongrouptrackstop (
void *conn,
void *msg)
{
#ifdef COMPILE_OUT
struct req_lib_amf_protectiongrouptrackstop *req_lib_amf_protectiongrouptrackstop = (struct req_lib_amf_protectiongrouptrackstop *)message;
struct res_lib_amf_protectiongrouptrackstop res_lib_amf_protectiongrouptrackstop;
struct libamf_ci_trackentry *track = 0;
int i;
log_printf (LOG_LEVEL_FROM_LIB, "Handle : message_handler_req_lib_amf_protectiongrouptrackstop()\n");
for (i = 0; i < conn_info->ais_ci.u.libamf_ci.trackEntries; i++) {
if (name_match (&req_lib_amf_protectiongrouptrackstop->csiName,
&conn_info->ais_ci.u.libamf_ci.tracks[i].csiName)) {
track = &conn_info->ais_ci.u.libamf_ci.tracks[i];
}
}
if (track) {
log_printf (LOG_LEVEL_DEBUG, "protectiongrouptrackstop: Trackstop on CSI: %s\n", getSaNameT (&req_lib_amf_protectiongrouptrackstop->csiName));
memset (track, 0, sizeof (struct libamf_ci_trackentry));
conn_info->ais_ci.u.libamf_ci.trackActive -= 1;
if (conn_info->ais_ci.u.libamf_ci.trackActive == 0) {
list_del (&conn_info->conn_list);
}
}
res_lib_amf_protectiongrouptrackstop.header.id = MESSAGE_RES_AMF_PROTECTIONGROUPTRACKSTOP;
res_lib_amf_protectiongrouptrackstop.header.size = sizeof (struct res_lib_amf_protectiongrouptrackstop);
res_lib_amf_protectiongrouptrackstop.header.error = SA_ERR_NOT_EXIST;
if (track) {
res_lib_amf_protectiongrouptrackstop.header.error = SA_AIS_OK;
}
openais_conn_send_response (conn, &res_lib_amf_protectiongrouptrackstop,
sizeof (struct res_lib_amf_protectiongrouptrackstop));
#endif
}
static void message_handler_req_lib_amf_componenterrorreport (
void *conn,
void *msg)
{
struct req_lib_amf_componenterrorreport *req_lib = msg;
struct amf_comp *comp;
assert (scsm.state == NORMAL_OPERATION);
comp = amf_comp_find (amf_cluster, &req_lib->erroneousComponent);
if (comp != NULL) {
struct req_exec_amf_comp_error_report req_exec;
struct iovec iovec;
TRACE2("Lib comp error report for '%s'", comp->name.value);
req_exec.header.size = sizeof (struct req_exec_amf_comp_error_report);
req_exec.header.id = SERVICE_ID_MAKE (AMF_SERVICE,
MESSAGE_REQ_EXEC_AMF_COMPONENT_ERROR_REPORT);
memcpy (&req_exec.reportingComponent, &req_lib->reportingComponent,
sizeof (SaNameT));
memcpy (&req_exec.erroneousComponent, &req_lib->erroneousComponent,
sizeof (SaNameT));
memcpy (&req_exec.errorDetectionTime, &req_lib->errorDetectionTime,
sizeof (SaTimeT));
memcpy (&req_exec.recommendedRecovery, &req_lib->recommendedRecovery,
sizeof (SaAmfRecommendedRecoveryT));
memcpy (&req_exec.ntfIdentifier, &req_lib->ntfIdentifier,
sizeof (SaNtfIdentifierT));
iovec.iov_base = (char *)&req_exec;
iovec.iov_len = sizeof (req_exec);
assert (totempg_groups_mcast_joined (
openais_group_handle, &iovec, 1, TOTEMPG_AGREED) == 0);
} else {
struct res_lib_amf_componenterrorreport res_lib;
log_printf (LOG_ERR, "Component %s not found",
req_lib->erroneousComponent.value);
res_lib.header.size = sizeof (struct res_lib_amf_componenterrorreport);
res_lib.header.id = MESSAGE_RES_AMF_COMPONENTERRORREPORT;
res_lib.header.error = SA_AIS_ERR_NOT_EXIST;
openais_conn_send_response (conn, &res_lib,
sizeof (struct res_lib_amf_componenterrorreport));
}
}
static void message_handler_req_lib_amf_componenterrorclear (
void *conn,
void *msg)
{
#ifdef COMPILLE_OUT
struct req_lib_amf_componenterrorclear *req_lib_amf_componenterrorclear = (struct req_lib_amf_componenterrorclear *)message;
struct req_exec_amf_componenterrorclear req_exec_amf_componenterrorclear;
struct iovec iovec;
log_printf (LOG_LEVEL_FROM_LIB, "Handle : message_handler_req_lib_amf_componenterrorclear()\n");
req_exec_amf_componenterrorclear.header.size = sizeof (struct req_exec_amf_componenterrorclear);
req_exec_amf_componenterrorclear.header.id =
SERVICE_ID_MAKE (AMF_SERVICE, MESSAGE_REQ_EXEC_AMF_COMPONENTERRORCLEAR);
message_source_set (&req_exec_amf_componenterrorclear.source, conn_info);
memcpy (&req_exec_amf_componenterrorclear.req_lib_amf_componenterrorclear,
req_lib_amf_componenterrorclear,
sizeof (struct req_lib_amf_componenterrorclear));
iovec.iov_base = (char *)&req_exec_amf_componenterrorclear;
iovec.iov_len = sizeof (req_exec_amf_componenterrorclear);
assert (totempg_groups_mcast_joined (openais_group_handle,
&iovec, 1, TOTEMPG_AGREED) == 0);
#endif
}
/**
* Handle a response from a component.
*
* Healthcheck responses are handled locally and directly. This
* way we do not get healthcheck duration timeouts during e.g.
* AMF sync.
*
* Other events need to be multicasted. If we are syncing, defer
* these event by returning TRY-AGAIN to the component.
*
* No flow control was requested by AMF from the IPC layer (on
* purpose) for this lib handler. It is needed to handle
* healthcheck responses if it takes longer to sync than the
* duration period.
*
* When multicasting, check for space in the TOTEM outbound
* queue and return TRY-AGAIN if the queue is full.
*
* @param conn
* @param msg
*/
static void message_handler_req_lib_amf_response (void *conn, void *msg)
{
struct res_lib_amf_response res_lib;
struct req_lib_amf_response *req_lib = msg;
int multicast, send_ok;
SaAisErrorT retval;
SaUint32T interface;
SaNameT dn;
/*
* This is an optimisation to avoid multicast of healthchecks while keeping
* a nice design. We multicast and make lib responses from this file.
*/
multicast = amf_comp_response_1 (
req_lib->invocation, req_lib->error, &retval, &interface, &dn);
if (multicast) {
struct req_exec_amf_response req_exec;
struct iovec iovec;
if (scsm.state != NORMAL_OPERATION) {
retval = SA_AIS_ERR_TRY_AGAIN;
goto send_response;
}
req_exec.header.size = sizeof (struct req_exec_amf_response);
req_exec.header.id = SERVICE_ID_MAKE (AMF_SERVICE,
MESSAGE_REQ_EXEC_AMF_RESPONSE);
req_exec.interface = interface;
memcpy (&req_exec.dn, &dn, sizeof (SaNameT));
req_exec.error = req_lib->error;
iovec.iov_base = (char *)&req_exec;
iovec.iov_len = sizeof (req_exec);
send_ok = totempg_groups_send_ok_joined (openais_group_handle, &iovec, 1);
if (send_ok) {
if (totempg_groups_mcast_joined (
openais_group_handle, &iovec, 1, TOTEMPG_AGREED) == 0) {
goto end;
} else {
openais_exit_error (AIS_DONE_FATAL_ERR);
}
} else {
/* TOTEM queue is full, try again later */
retval = SA_AIS_ERR_TRY_AGAIN;
}
}
send_response:
res_lib.header.id = MESSAGE_RES_AMF_RESPONSE;
res_lib.header.size = sizeof (struct res_lib_amf_response);
res_lib.header.error = retval;
// ENTER ("");
if (openais_conn_send_response (conn, &res_lib, sizeof (res_lib)) != 0) {
openais_exit_error (AIS_DONE_FATAL_ERR);
}
end:
return;
}