mirror of
https://git.proxmox.com/git/mirror_corosync
synced 2025-07-24 17:10:18 +00:00

correctly by the config parser. git-svn-id: http://svn.fedorahosted.org/svn/corosync/trunk@1249 fd59a12c-fef9-0310-b244-a6a79926bd2f
1632 lines
46 KiB
C
1632 lines
46 KiB
C
/** @file amfsg.c
|
|
*
|
|
* Copyright (c) 2002-2006 MontaVista Software, Inc.
|
|
* Author: Steven Dake (sdake@mvista.com)
|
|
*
|
|
* Copyright (c) 2006 Ericsson AB.
|
|
* Author: Hans Feldt, Anders Eriksson, Lars Holm
|
|
* - Introduced AMF B.02 information model
|
|
* - Use DN in API and multicast messages
|
|
* - (Re-)Introduction of event based multicast messages
|
|
* - Refactoring of code into several AMF files
|
|
* - Component/SU restart, SU failover
|
|
* - Constructors/destructors
|
|
* - Serializers/deserializers
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
*
|
|
* This software licensed under BSD license, the text of which follows:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* - Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* - Neither the name of the MontaVista Software, Inc. nor the names of its
|
|
* contributors may be used to endorse or promote products derived from this
|
|
* software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* AMF Service Group Class Implementation
|
|
*
|
|
* This file contains functions for handling AMF-service groups(SGs). It can be
|
|
* viewed as the implementation of the AMF Service Group class (called SG)
|
|
* as described in SAI-Overview-B.02.01. The SA Forum specification
|
|
* SAI-AIS-AMF-B.02.01 has been used as specification of the behaviour
|
|
* and is referred to as 'the spec' below.
|
|
*
|
|
* The functions in this file are responsible for:
|
|
* -on request start the service group by instantiating the contained SUs
|
|
* -on request assign the service instances it protects to the in-service
|
|
* service units it contains respecting as many as possible of the configured
|
|
* requirements for the group
|
|
* -create and delete an SI-assignment object for each relation between
|
|
* an SI and an SU
|
|
* -order each contained SU to create and delete CSI-assignments
|
|
* -request the Service Instance class (SI) to execute the transfer of the
|
|
* HA-state set/remove requests to each component involved
|
|
* -fully control the execution of component failover and SU failover
|
|
* -on request control the execution of the initial steps of node switchover
|
|
* and node failover
|
|
* -fully handle the auto adjust procedure
|
|
*
|
|
* Currently only the 'n+m' redundancy model is implemented. It is the
|
|
* ambition to identify n+m specific variables and functions and add the suffix
|
|
* '_nplusm' to them so that they can be easily recognized.
|
|
*
|
|
* When SG is requested to assign workload to all SUs or all SUs hosted on
|
|
* a specific node, a procedure containing several steps is executed:
|
|
* <1> An algorithm is executed which assigns SIs to SUs respecting the rules
|
|
* that has been configured for SG. The algorithm also has to consider
|
|
* if assignments between som SIs and SUs already exist. The scope of this
|
|
* algorithm is to create SI-assignments and set up requested HA-state for
|
|
* each assignment but not to transfer those HA-states to the components.
|
|
* <2> All SI-assignments with a requested HA state == ACTIVE are transferred
|
|
* to the components concerned before any STANDBY assignments are
|
|
* transferred. All components have to acknowledge the setting of the
|
|
* ACTIVE HA state before the transfer of any STANDBY assignment is
|
|
* initiated.
|
|
* <3> All active assignments can not be transferred at the same time to the
|
|
* different components because the rules for dependencies between SI and
|
|
* SI application wide and CSI and CSI within one SI, has to be respected.
|
|
*
|
|
* SG is fully responsible for step <1> but not fully responsible for handling
|
|
* step <2> and <3>. However, SG uses an attribute called 'dependency level'
|
|
* when requsted to assign workload. This parameter refers to an integer that
|
|
* has been calculated initially for each SI. The 'dependency level' indicates
|
|
* to which extent an SI depends on other SIs such that an SI that depends on
|
|
* no other SI is on dependecy_level == 1, an SI that depends only on an SI on
|
|
* dependency_level == 1 is on dependency-level == 2.
|
|
* An SI that depends on several SIs gets a
|
|
* dependency_level that is one unit higher than the SI with the highest
|
|
* dependency_level it depends on. When SG is requested to assign the workload
|
|
* on a certain dependency level, it requests all SI objects on that level to
|
|
* activate (all) SI-assignments that during step <1> has been requested to
|
|
* assume the active HA state.
|
|
*
|
|
* SG contains the following state machines:
|
|
* - administrative state machine (ADSM) (NOT IN THIS RELEASE)
|
|
* - availability control state machine (ACSM)
|
|
*
|
|
* The availability control state machine contains two states and one of them
|
|
* is composite. Being a composite state means that it contains substates.
|
|
* The states are:
|
|
* - IDLE (non composite state)
|
|
* - MANAGING_SG (composite state)
|
|
* MANAGING_SG is entered at several different events which has in common
|
|
* the need to set up or change the assignment of SIs to SUs. Only one such
|
|
* event can be handled at the time. If new events occur while one event is
|
|
* being handled then the new event is saved and will be handled after the
|
|
* handling of the first event is ready (return to IDLE state has been done).
|
|
* MANAGING_SG handles the following events:
|
|
* - start (requests SG to order SU to instantiate all SUs in SG and waits
|
|
* for SU to indicate presence state change reports from the SUs and
|
|
* finally responds 'started' to the requester)
|
|
* - assign (requests SG to assign SIs to SUs according to pre-configured
|
|
* rules (if not already done) and transfer the HA state of
|
|
* the SIs on the requested SI dependency level. Then SG waits for
|
|
* confirmation that the HA state has been succesfully set and
|
|
* finally responds 'assigned' to the reqeuster)
|
|
* - auto_adjust (this event indicates that the auto-adjust probation timer has
|
|
* expired and that SG should evaluate current assignments of
|
|
* SIs to SUs and if needed remove current assignments and
|
|
* create new according to what is specified in paragraph
|
|
* 3.7.1.2)
|
|
* - failover_comp (requests SG to failover a specific component according to
|
|
* the procedure described in paragraph 3.12.1.3)
|
|
* - failover_su (requests SG to failover a specific SU according to the
|
|
* procedure described in paragraph 3.12.1.3 and 3.12.1.4)
|
|
* - switchover_node (requests SG to execute the recovery actions described
|
|
* in 3.12.1.3 and respond to the requester when recovery
|
|
* is completed)
|
|
* - failover_node (requests SG to execute the recovery actions described
|
|
* in 3.12.1.3 and respond to the requester when recovery is
|
|
* completed)
|
|
*
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <errno.h>
|
|
|
|
#include "amf.h"
|
|
#include "print.h"
|
|
#include "main.h"
|
|
#include "util.h"
|
|
|
|
static void acsm_enter_activating_standby (struct amf_sg *sg);
|
|
static void delete_si_assignments_in_scope (struct amf_sg *sg);
|
|
static void acsm_enter_repairing_su (struct amf_sg *sg);
|
|
static void standby_su_activated_cbfn (
|
|
struct amf_si_assignment *si_assignment, int result);
|
|
|
|
static void dependent_si_deactivated_cbfn (
|
|
struct amf_si_assignment *si_assignment, int result);
|
|
|
|
static const char *sg_recovery_type_text[] = {
|
|
"Unknown",
|
|
"FailoverSU",
|
|
"FailoverNode"
|
|
};
|
|
|
|
static void return_to_idle (struct amf_sg *sg)
|
|
{
|
|
SaNameT dn;
|
|
|
|
ENTER ("sg: %s state: %d", sg->name.value,sg->avail_state);
|
|
|
|
sg->avail_state = SG_AC_Idle;
|
|
if (sg->recovery_scope.recovery_type != 0) {
|
|
switch (sg->recovery_scope.recovery_type) {
|
|
case SG_RT_FailoverSU:
|
|
assert (sg->recovery_scope.sus[0] != NULL);
|
|
amf_su_dn_make (sg->recovery_scope.sus[0], &dn);
|
|
log_printf (
|
|
LOG_NOTICE, "'%s' %s recovery action finished",
|
|
dn.value,
|
|
sg_recovery_type_text[sg->recovery_scope.recovery_type]);
|
|
|
|
break;
|
|
case SG_RT_FailoverNode:
|
|
log_printf (
|
|
LOG_NOTICE, "'%s for %s' recovery action finished",
|
|
sg_recovery_type_text[sg->recovery_scope.recovery_type],
|
|
sg->name.value);
|
|
break;
|
|
default:
|
|
log_printf (
|
|
LOG_NOTICE, "'%s' recovery action finished",
|
|
sg_recovery_type_text[0]);
|
|
}
|
|
}
|
|
|
|
if (sg->recovery_scope.sus != NULL) {
|
|
free ((void *)sg->recovery_scope.sus);
|
|
}
|
|
if (sg->recovery_scope.sis != NULL) {
|
|
free ((void *)sg->recovery_scope.sis);
|
|
}
|
|
memset (&sg->recovery_scope, 0, sizeof (struct sg_recovery_scope));
|
|
sg->node_to_start = NULL;
|
|
}
|
|
|
|
static int su_instantiated_count (struct amf_sg *sg)
|
|
{
|
|
int cnt = 0;
|
|
struct amf_su *su;
|
|
|
|
for (su = sg->su_head; su != NULL; su = su->next) {
|
|
if (su->saAmfSUPresenceState == SA_AMF_PRESENCE_INSTANTIATED)
|
|
cnt++;
|
|
}
|
|
|
|
return cnt;
|
|
}
|
|
|
|
static int has_any_su_in_scope_active_workload (struct amf_sg *sg)
|
|
{
|
|
struct amf_su **sus= sg->recovery_scope.sus;
|
|
struct amf_si_assignment *si_assignment;
|
|
|
|
while (*sus != NULL) {
|
|
si_assignment = amf_su_get_next_si_assignment (*sus, NULL);
|
|
while (si_assignment != NULL) {
|
|
if (si_assignment->saAmfSISUHAState != SA_AMF_HA_ACTIVE) {
|
|
break;
|
|
}
|
|
si_assignment = amf_su_get_next_si_assignment (
|
|
*sus, si_assignment);
|
|
}
|
|
if (si_assignment != NULL) {
|
|
break;
|
|
}
|
|
sus++;
|
|
}
|
|
return(*sus == NULL);
|
|
}
|
|
|
|
static int is_standby_for_non_active_si_in_scope (struct amf_sg *sg)
|
|
{
|
|
struct amf_si **sis= sg->recovery_scope.sis;
|
|
struct amf_si_assignment *si_assignment;
|
|
|
|
/*
|
|
* Check if there is any si in the scope which has no active assignment
|
|
* and at least one standby assignment.
|
|
*/
|
|
while (*sis != NULL) {
|
|
si_assignment = (*sis)->assigned_sis;
|
|
while (si_assignment != NULL) {
|
|
if (si_assignment->saAmfSISUHAState == SA_AMF_HA_ACTIVE) {
|
|
break;
|
|
}
|
|
si_assignment = si_assignment->next;
|
|
}
|
|
if (si_assignment == NULL) {
|
|
/* There is no ACTIVE assignment ..*/
|
|
si_assignment = (*sis)->assigned_sis;
|
|
while (si_assignment != NULL) {
|
|
if (si_assignment->saAmfSISUHAState == SA_AMF_HA_STANDBY) {
|
|
break;
|
|
}
|
|
si_assignment = si_assignment->next;
|
|
}
|
|
if (si_assignment != NULL) {
|
|
/* .. and one STANDBY assignment*/
|
|
break;
|
|
}
|
|
}
|
|
sis++;
|
|
}
|
|
return(*sis != NULL);
|
|
}
|
|
|
|
static void acsm_enter_terminating_suspected (struct amf_sg *sg)
|
|
{
|
|
struct amf_su **sus= sg->recovery_scope.sus;
|
|
|
|
sg->avail_state = SG_AC_TerminatingSuspected;
|
|
/*
|
|
* Terminate suspected SU(s)
|
|
*/
|
|
while (*sus != 0) {
|
|
amf_su_terminate (*sus);
|
|
sus++;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Callback function used by SI when there is no dependent SI to
|
|
* deactivate.
|
|
* @param sg
|
|
*/
|
|
static void dependent_si_deactivated_cbfn2 (struct amf_sg *sg)
|
|
{
|
|
struct amf_su **sus = sg->recovery_scope.sus;
|
|
ENTER("'%s'", sg->name.value);
|
|
|
|
/* Select next state depending on if some SU in the scope is
|
|
* needs to be terminated.
|
|
*/
|
|
while (*sus != NULL) {
|
|
ENTER("SU %s pr_state='%d'",(*sus)->name.value,
|
|
(*sus)->saAmfSUPresenceState);
|
|
if (((*sus)->saAmfSUPresenceState ==
|
|
SA_AMF_PRESENCE_UNINSTANTIATED) ||
|
|
((*sus)->saAmfSUPresenceState ==
|
|
SA_AMF_PRESENCE_TERMINATION_FAILED) ||
|
|
((*sus)->saAmfSUPresenceState ==
|
|
SA_AMF_PRESENCE_INSTANTIATION_FAILED)) {
|
|
sus++;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (*sus != NULL) {
|
|
acsm_enter_terminating_suspected (sg);
|
|
} else {
|
|
delete_si_assignments_in_scope(sg);
|
|
acsm_enter_activating_standby (sg);
|
|
}
|
|
|
|
}
|
|
|
|
static void timer_function_dependent_si_deactivated2 (void *sg)
|
|
{
|
|
|
|
ENTER ("");
|
|
dependent_si_deactivated_cbfn2 (sg);
|
|
}
|
|
|
|
|
|
static struct amf_si *si_get_dependent (struct amf_si *si)
|
|
{
|
|
|
|
struct amf_si *tmp_si = NULL;
|
|
ENTER("'%p'",si->depends_on);
|
|
if (si->depends_on != NULL) {
|
|
|
|
if (si->depends_on->name.length < SA_MAX_NAME_LENGTH) {
|
|
si->depends_on->name.value[si->depends_on->name.length] = '\0';
|
|
}
|
|
SaNameT res_arr[2];
|
|
int is_match;
|
|
|
|
|
|
is_match = sa_amf_grep ((char*)si->depends_on->name.value,
|
|
"safDepend=.*,safSi=(.*),safApp=.*",
|
|
2, res_arr);
|
|
|
|
if (is_match) {
|
|
tmp_si = amf_si_find (si->application, (char*)res_arr[1].value);
|
|
} else {
|
|
log_printf (LOG_LEVEL_ERROR, "distinguished name for "
|
|
"amf_si_depedency failed\n");
|
|
openais_exit_error (AIS_DONE_FATAL_ERR);
|
|
}
|
|
}
|
|
return tmp_si;
|
|
}
|
|
|
|
struct amf_si *amf_dependent_get_next (struct amf_si *si,
|
|
struct amf_si *si_iter)
|
|
{
|
|
struct amf_si *tmp_si;
|
|
struct amf_application *application;
|
|
|
|
ENTER("");
|
|
if (si_iter == NULL) {
|
|
assert(amf_cluster != NULL);
|
|
application = amf_cluster->application_head;
|
|
assert(application != NULL);
|
|
tmp_si = application->si_head;
|
|
} else {
|
|
tmp_si = si_iter->next;
|
|
if (tmp_si == NULL) {
|
|
application = si->application->next;
|
|
if (application == NULL) {
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (; tmp_si != NULL; tmp_si = tmp_si->next) {
|
|
struct amf_si *depends_on_si = si_get_dependent (tmp_si);
|
|
while (depends_on_si != NULL) {
|
|
if (depends_on_si == si) {
|
|
goto out;
|
|
}
|
|
depends_on_si = depends_on_si->next;
|
|
}
|
|
}
|
|
out:
|
|
return tmp_si;
|
|
}
|
|
|
|
static void acsm_enter_deactivating_dependent_workload (struct amf_sg *sg)
|
|
{
|
|
struct amf_si **sis= sg->recovery_scope.sis;
|
|
struct amf_si_assignment *si_assignment;
|
|
int callback_pending = 0;
|
|
|
|
sg->avail_state = SG_AC_DeactivatingDependantWorkload;
|
|
|
|
ENTER("'%s'",sg->name.value);
|
|
/*
|
|
* For each SI in the recovery scope, find all active assignments
|
|
* and request them to be deactivated.
|
|
*/
|
|
while (*sis != NULL) {
|
|
struct amf_si *dependent_si;
|
|
struct amf_si *si = *sis;
|
|
si_assignment = si->assigned_sis;
|
|
dependent_si = amf_dependent_get_next (si, NULL);
|
|
|
|
while (dependent_si != NULL) {
|
|
si_assignment = dependent_si->assigned_sis;
|
|
|
|
while (si_assignment != NULL) {
|
|
|
|
if (si_assignment->saAmfSISUHAState == SA_AMF_HA_ACTIVE) {
|
|
si_assignment->requested_ha_state = SA_AMF_HA_QUIESCED;
|
|
callback_pending = 1;
|
|
amf_si_ha_state_assume (
|
|
si_assignment, dependent_si_deactivated_cbfn);
|
|
}
|
|
si_assignment = si_assignment->next;
|
|
}
|
|
dependent_si = amf_dependent_get_next (si, dependent_si);
|
|
}
|
|
sis++;
|
|
}
|
|
|
|
if (callback_pending == 0) {
|
|
poll_timer_handle handle;
|
|
ENTER("");
|
|
poll_timer_add (aisexec_poll_handle, 0, sg,
|
|
timer_function_dependent_si_deactivated2, &handle);
|
|
}
|
|
}
|
|
/**
|
|
* Enter function for state SG_AC_ActivatingStandby. It activates
|
|
* one STANDBY assignment for each SI in the recovery scope.
|
|
* @param sg
|
|
*/
|
|
static void acsm_enter_activating_standby (struct amf_sg *sg)
|
|
{
|
|
struct amf_si **sis= sg->recovery_scope.sis;
|
|
struct amf_si_assignment *si_assignment;
|
|
int is_no_standby_activated = 1;
|
|
ENTER("'%s'",sg->name.value);
|
|
sg->avail_state = SG_AC_ActivatingStandby;
|
|
|
|
/*
|
|
* For each SI in the recovery scope, find one standby
|
|
* SI assignment and activate it.
|
|
*/
|
|
while (*sis != NULL) {
|
|
si_assignment = (*sis)->assigned_sis;
|
|
while (si_assignment != NULL) {
|
|
if (si_assignment->saAmfSISUHAState == SA_AMF_HA_STANDBY) {
|
|
si_assignment->requested_ha_state = SA_AMF_HA_ACTIVE;
|
|
amf_si_ha_state_assume (
|
|
si_assignment, standby_su_activated_cbfn);
|
|
is_no_standby_activated = 0;
|
|
break;
|
|
}
|
|
si_assignment = si_assignment->next;
|
|
}
|
|
sis++;
|
|
}
|
|
|
|
if (is_no_standby_activated) {
|
|
sg->avail_state = SG_AC_AssigningStandbyToSpare;
|
|
acsm_enter_repairing_su (sg);
|
|
}
|
|
}
|
|
|
|
static void acsm_enter_repairing_su (struct amf_sg *sg)
|
|
{
|
|
struct amf_su **sus= sg->recovery_scope.sus;
|
|
ENTER("'%s'",sg->name.value);
|
|
sg->avail_state = SG_AC_ReparingSu;
|
|
int is_any_su_instantiated = 0;
|
|
/*
|
|
* Instantiate SUs in current recovery scope until the configured
|
|
* preference is fulfiled.
|
|
*/
|
|
while (*sus != NULL) {
|
|
if (su_instantiated_count ((*sus)->sg) <
|
|
(*sus)->sg->saAmfSGNumPrefInserviceSUs) {
|
|
struct amf_node *node = amf_node_find(&((*sus)->saAmfSUHostedByNode));
|
|
if (node == NULL) {
|
|
log_printf (LOG_LEVEL_ERROR, "no node to hosted on su found"
|
|
"amf_si_depedency failed\n");
|
|
openais_exit_error (AIS_DONE_FATAL_ERR);
|
|
}
|
|
if (node->saAmfNodeOperState == SA_AMF_OPERATIONAL_ENABLED) {
|
|
is_any_su_instantiated = 1;
|
|
amf_su_instantiate ((*sus));
|
|
} else {
|
|
return_to_idle (sg);
|
|
}
|
|
|
|
}
|
|
sus++;
|
|
}
|
|
if (is_any_su_instantiated == 0) {
|
|
return_to_idle (sg);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Checks if the si pointed out is already in the scope.
|
|
* @param sg
|
|
* @param si
|
|
*/
|
|
static int is_si_in_scope(struct amf_sg *sg, struct amf_si *si)
|
|
{
|
|
struct amf_si **tmp_sis= sg->recovery_scope.sis;
|
|
|
|
while (*tmp_sis != NULL) {
|
|
if (*tmp_sis == si) {
|
|
break;
|
|
}
|
|
tmp_sis++;
|
|
}
|
|
return(*tmp_sis == si);
|
|
}
|
|
|
|
/**
|
|
* Adds the si pointed out to the scope.
|
|
* @param sg
|
|
* @param si
|
|
*/
|
|
static void add_si_to_scope ( struct amf_sg *sg, struct amf_si *si)
|
|
{
|
|
int number_of_si = 2; /* It shall be at least two */
|
|
struct amf_si **tmp_sis= sg->recovery_scope.sis;
|
|
|
|
ENTER ("'%s'", si->name.value);
|
|
|
|
while (*tmp_sis != NULL) {
|
|
number_of_si++;
|
|
tmp_sis++;
|
|
}
|
|
|
|
sg->recovery_scope.sis = (struct amf_si **)
|
|
realloc((void *)sg->recovery_scope.sis,
|
|
sizeof (struct amf_si *)*number_of_si);
|
|
assert (sg->recovery_scope.sis != NULL);
|
|
|
|
tmp_sis= sg->recovery_scope.sis;
|
|
while (*tmp_sis != NULL) {
|
|
tmp_sis++;
|
|
}
|
|
|
|
*tmp_sis = si;
|
|
*(++tmp_sis) = NULL;
|
|
}
|
|
/**
|
|
* Adds the ssu pointed out to the scope.
|
|
* @param sg
|
|
* @param su
|
|
*/
|
|
static void add_su_to_scope (struct amf_sg *sg, struct amf_su *su)
|
|
{
|
|
int number_of_su = 2; /* It shall be at least two */
|
|
struct amf_su **tmp_sus= sg->recovery_scope.sus;
|
|
|
|
ENTER ("'%s'", su->name.value);
|
|
while (*tmp_sus != NULL) {
|
|
number_of_su++;
|
|
tmp_sus++;
|
|
}
|
|
sg->recovery_scope.sus = (struct amf_su **)
|
|
realloc((void *)sg->recovery_scope.sus,
|
|
sizeof (struct amf_su *)*number_of_su);
|
|
assert (sg->recovery_scope.sus != NULL);
|
|
|
|
tmp_sus= sg->recovery_scope.sus;
|
|
while (*tmp_sus != NULL) {
|
|
tmp_sus++;
|
|
}
|
|
|
|
*tmp_sus = su;
|
|
*(++tmp_sus) = NULL;
|
|
}
|
|
|
|
/**
|
|
* Set recovery scope for failover SU.
|
|
* @param sg
|
|
* @param su
|
|
*/
|
|
|
|
static void set_scope_for_failover_su (struct amf_sg *sg, struct amf_su *su)
|
|
{
|
|
struct amf_si_assignment *si_assignment;
|
|
struct amf_si **sis;
|
|
struct amf_su **sus;
|
|
SaNameT dn;
|
|
sg->recovery_scope.recovery_type = SG_RT_FailoverSU;
|
|
|
|
|
|
sg->recovery_scope.comp = NULL;
|
|
sg->recovery_scope.sus = (struct amf_su **)
|
|
calloc (2, sizeof (struct amf_su *));
|
|
sg->recovery_scope.sis = (struct amf_si **)
|
|
calloc (1, sizeof (struct amf_si *));
|
|
|
|
assert ((sg->recovery_scope.sus != NULL) &&
|
|
(sg->recovery_scope.sis != NULL));
|
|
sg->recovery_scope.sus[0] = su;
|
|
|
|
amf_su_dn_make (sg->recovery_scope.sus[0], &dn);
|
|
log_printf (
|
|
LOG_NOTICE, "'%s' for %s recovery action started",
|
|
sg_recovery_type_text[sg->recovery_scope.recovery_type],
|
|
dn.value);
|
|
|
|
si_assignment = amf_su_get_next_si_assignment (su, NULL);
|
|
while (si_assignment != NULL) {
|
|
if (is_si_in_scope(sg, si_assignment->si) == 0) {
|
|
add_si_to_scope(sg,si_assignment->si );
|
|
}
|
|
si_assignment = amf_su_get_next_si_assignment (su, si_assignment);
|
|
}
|
|
|
|
sus = sg->recovery_scope.sus;
|
|
dprintf("The following sus are within the scope:\n");
|
|
while (*sus != NULL) {
|
|
dprintf("%s\n", (*sus)->name.value);
|
|
sus++;
|
|
}
|
|
sis= sg->recovery_scope.sis;
|
|
dprintf("The following sis are within the scope:\n");
|
|
while (*sis != NULL) {
|
|
dprintf("%s\n", (*sis)->name.value);
|
|
sis++;
|
|
}
|
|
}
|
|
static void set_scope_for_failover_node (struct amf_sg *sg, struct amf_node *node)
|
|
{
|
|
struct amf_si_assignment *si_assignment;
|
|
struct amf_si **sis;
|
|
struct amf_su **sus;
|
|
struct amf_su *su;
|
|
|
|
ENTER ("'%s'", node->name.value);
|
|
sg->recovery_scope.recovery_type = SG_RT_FailoverNode;
|
|
sg->recovery_scope.comp = NULL;
|
|
sg->recovery_scope.sus = (struct amf_su **)
|
|
calloc (1, sizeof (struct amf_su *));
|
|
sg->recovery_scope.sis = (struct amf_si **)
|
|
calloc (1, sizeof (struct amf_si *));
|
|
|
|
log_printf (
|
|
LOG_NOTICE, "'%s' for node %s recovery action started",
|
|
sg_recovery_type_text[sg->recovery_scope.recovery_type],
|
|
node->name.value);
|
|
|
|
assert ((sg->recovery_scope.sus != NULL) &&
|
|
(sg->recovery_scope.sis != NULL));
|
|
for (su = sg->su_head; su != NULL; su = su->next) {
|
|
if (name_match (&node->name, &su->saAmfSUHostedByNode)) {
|
|
add_su_to_scope (sg, su);
|
|
}
|
|
}
|
|
|
|
sus = sg->recovery_scope.sus;
|
|
while (*sus != 0) {
|
|
su = *sus;
|
|
si_assignment = amf_su_get_next_si_assignment (su, NULL);
|
|
while (si_assignment != NULL) {
|
|
if (is_si_in_scope(sg, si_assignment->si) == 0) {
|
|
add_si_to_scope(sg, si_assignment->si );
|
|
}
|
|
si_assignment = amf_su_get_next_si_assignment (su, si_assignment);
|
|
}
|
|
sus++;
|
|
}
|
|
|
|
sus = sg->recovery_scope.sus;
|
|
dprintf("The following sus are within the scope:\n");
|
|
while (*sus != NULL) {
|
|
dprintf("%s\n", (*sus)->name.value);
|
|
sus++;
|
|
}
|
|
sis = sg->recovery_scope.sis;
|
|
dprintf("The following sis are within the scope:\n");
|
|
while (*sis != NULL) {
|
|
dprintf("%s\n", (*sis)->name.value);
|
|
sis++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Delete all SI assignments and all CSI assignments
|
|
* by requesting all contained components.
|
|
* @param su
|
|
*/
|
|
static void delete_si_assignments (struct amf_su *su)
|
|
{
|
|
struct amf_csi *csi;
|
|
struct amf_si *si;
|
|
struct amf_si_assignment *si_assignment;
|
|
struct amf_si_assignment **prev;
|
|
ENTER ("'%s'", su->name.value);
|
|
|
|
for (si = su->sg->application->si_head; si != NULL; si = si->next) {
|
|
|
|
prev = &si->assigned_sis;
|
|
|
|
if (!name_match (&si->saAmfSIProtectedbySG, &su->sg->name)) {
|
|
continue;
|
|
}
|
|
|
|
for (csi = si->csi_head; csi != NULL; csi = csi->next) {
|
|
amf_csi_delete_assignments (csi, su);
|
|
}
|
|
|
|
|
|
for (si_assignment = si->assigned_sis; si_assignment != NULL;
|
|
si_assignment = si_assignment->next) {
|
|
if (si_assignment->su == su) {
|
|
struct amf_si_assignment *tmp = si_assignment;
|
|
*prev = si_assignment->next;
|
|
dprintf ("SI assignment %s unlinked", tmp->name.value);
|
|
free (tmp);
|
|
} else {
|
|
prev = &si_assignment->next;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Delete all SI assignments and all CSI assignments in current
|
|
* recovery scope.
|
|
* @param sg
|
|
*/
|
|
static void delete_si_assignments_in_scope (struct amf_sg *sg)
|
|
{
|
|
struct amf_su **sus= sg->recovery_scope.sus;
|
|
|
|
while (*sus != NULL) {
|
|
delete_si_assignments (*sus);
|
|
sus++;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Callback function used by SI when an SI has been deactivated.
|
|
* @param si_assignment
|
|
* @param result
|
|
*/
|
|
static void dependent_si_deactivated_cbfn (
|
|
struct amf_si_assignment *si_assignment, int result)
|
|
{
|
|
struct amf_sg *sg = si_assignment->su->sg;
|
|
struct amf_su **sus = sg->recovery_scope.sus;
|
|
struct amf_su *su;
|
|
|
|
ENTER ("'%s', %d", si_assignment->si->name.value, result);
|
|
|
|
/*
|
|
* If all SI assignments for all SUs in the SG are not pending,
|
|
* goto next state (TerminatingSuspected).
|
|
*/
|
|
|
|
|
|
for (su = sg->su_head ; su != NULL; su = su->next) {
|
|
struct amf_si_assignment *si_assignment;
|
|
si_assignment = amf_su_get_next_si_assignment(su, NULL);
|
|
|
|
while (si_assignment != NULL) {
|
|
if (si_assignment->saAmfSISUHAState !=
|
|
si_assignment->requested_ha_state) {
|
|
goto still_wating;
|
|
}
|
|
si_assignment = amf_su_get_next_si_assignment(su, si_assignment);
|
|
}
|
|
|
|
|
|
}
|
|
|
|
still_wating:
|
|
|
|
if (su == NULL) {
|
|
sus = si_assignment->su->sg->recovery_scope.sus;
|
|
|
|
/* Select next state depending on if some SU in the scope is
|
|
* needs to be terminated.
|
|
*/
|
|
while (*sus != NULL) {
|
|
if (((*sus)->saAmfSUPresenceState !=
|
|
SA_AMF_PRESENCE_UNINSTANTIATED) &&
|
|
((*sus)->saAmfSUPresenceState !=
|
|
SA_AMF_PRESENCE_TERMINATION_FAILED) &&
|
|
((*sus)->saAmfSUPresenceState !=
|
|
SA_AMF_PRESENCE_INSTANTIATION_FAILED)) {
|
|
break;
|
|
}
|
|
sus++;
|
|
}
|
|
if (*sus != NULL) {
|
|
acsm_enter_terminating_suspected (sg);
|
|
} else {
|
|
delete_si_assignments_in_scope(sg);
|
|
acsm_enter_activating_standby (sg);
|
|
}
|
|
}
|
|
LEAVE("");
|
|
}
|
|
|
|
|
|
static void standby_su_activated_cbfn (
|
|
struct amf_si_assignment *si_assignment, int result)
|
|
{
|
|
struct amf_su **sus= si_assignment->su->sg->recovery_scope.sus;
|
|
struct amf_si **sis= si_assignment->su->sg->recovery_scope.sis;
|
|
|
|
ENTER ("'%s', %d", si_assignment->si->name.value, result);
|
|
|
|
/*
|
|
* If all SI assignments for all SIs in the scope are activated, goto next
|
|
* state.
|
|
*/
|
|
|
|
while (*sis != NULL) {
|
|
if ((*sis)->assigned_sis != NULL &&
|
|
(*sis)->assigned_sis->saAmfSISUHAState != SA_AMF_HA_ACTIVE) {
|
|
break;
|
|
}
|
|
sis++;
|
|
}
|
|
|
|
if (*sis == NULL) {
|
|
/*
|
|
* TODO: create SI assignment to spare and assign them
|
|
*/
|
|
(*sus)->sg->avail_state = SG_AC_AssigningStandbyToSpare;
|
|
|
|
acsm_enter_repairing_su ((*sus)->sg);
|
|
}
|
|
}
|
|
|
|
static void assign_si_assumed_cbfn (
|
|
struct amf_si_assignment *si_assignment, int result)
|
|
{
|
|
struct amf_si_assignment *tmp_si_assignment;
|
|
struct amf_si *si;
|
|
struct amf_sg *sg = si_assignment->su->sg;
|
|
int si_assignment_cnt = 0;
|
|
int confirmed_assignments = 0;
|
|
|
|
ENTER ("'%s', %d", si_assignment->si->name.value, result);
|
|
|
|
/*
|
|
* Report to application when all SIs that this SG protects
|
|
* has been assigned or go back to idle state if not cluster
|
|
* start.
|
|
*/
|
|
for (si = sg->application->si_head; si != NULL; si = si->next) {
|
|
if (name_match (&si->saAmfSIProtectedbySG, &sg->name)) {
|
|
|
|
for (tmp_si_assignment = si->assigned_sis;
|
|
tmp_si_assignment != NULL;
|
|
tmp_si_assignment = tmp_si_assignment->next) {
|
|
|
|
si_assignment_cnt++;
|
|
if (tmp_si_assignment->requested_ha_state ==
|
|
tmp_si_assignment->saAmfSISUHAState) {
|
|
|
|
confirmed_assignments++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
assert (confirmed_assignments != 0);
|
|
|
|
switch (sg->avail_state) {
|
|
case SG_AC_AssigningOnRequest:
|
|
if (si_assignment_cnt == confirmed_assignments) {
|
|
return_to_idle (sg);
|
|
amf_application_sg_assigned (sg->application, sg);
|
|
} else {
|
|
dprintf ("%d, %d", si_assignment_cnt, confirmed_assignments);
|
|
}
|
|
break;
|
|
case SG_AC_AssigningStandBy:
|
|
{
|
|
if (si_assignment_cnt == confirmed_assignments) {
|
|
return_to_idle (sg);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
dprintf ("%d, %d, %d", sg->avail_state, si_assignment_cnt,
|
|
confirmed_assignments);
|
|
amf_runtime_attributes_print (amf_cluster);
|
|
assert (0);
|
|
}
|
|
}
|
|
|
|
static inline int div_round (int a, int b)
|
|
{
|
|
int res;
|
|
|
|
assert (b != 0);
|
|
res = a / b;
|
|
if ((a % b) != 0)
|
|
res++;
|
|
return res;
|
|
}
|
|
|
|
static int all_su_has_presence_state (
|
|
struct amf_sg *sg, struct amf_node *node_to_start,
|
|
SaAmfPresenceStateT state)
|
|
{
|
|
struct amf_su *su;
|
|
int all_set = 1;
|
|
|
|
for (su = sg->su_head; su != NULL; su = su->next) {
|
|
|
|
if (su->saAmfSUPresenceState != state) {
|
|
if (node_to_start == NULL) {
|
|
all_set = 0;
|
|
break;
|
|
} else {
|
|
if (name_match(&node_to_start->name,
|
|
&su->saAmfSUHostedByNode)) {
|
|
all_set = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return all_set;
|
|
}
|
|
|
|
|
|
static int all_su_in_scope_has_presence_state (
|
|
struct amf_sg *sg, SaAmfPresenceStateT state)
|
|
{
|
|
struct amf_su **sus= sg->recovery_scope.sus;
|
|
while (*sus != NULL) {
|
|
if ((*sus)->saAmfSUPresenceState != state) {
|
|
break;
|
|
}
|
|
sus++;
|
|
}
|
|
return(*sus == NULL);
|
|
}
|
|
|
|
/**
|
|
* Get number of SIs protected by the specified SG.
|
|
* @param sg
|
|
*
|
|
* @return int
|
|
*/
|
|
static int sg_si_count_get (struct amf_sg *sg)
|
|
{
|
|
struct amf_si *si;
|
|
int cnt = 0;
|
|
|
|
for (si = sg->application->si_head; si != NULL; si = si->next) {
|
|
if (name_match (&si->saAmfSIProtectedbySG, &sg->name)) {
|
|
cnt += 1;
|
|
}
|
|
}
|
|
return(cnt);
|
|
}
|
|
|
|
int amf_si_get_saAmfSINumReqActiveAssignments(struct amf_si *si)
|
|
{
|
|
struct amf_si_assignment *si_assignment = si->assigned_sis;
|
|
int number_of_req_active_assignments = 0;
|
|
|
|
for (; si_assignment != NULL; si_assignment = si_assignment->next) {
|
|
|
|
if (si_assignment->requested_ha_state == SA_AMF_HA_ACTIVE) {
|
|
number_of_req_active_assignments++;
|
|
}
|
|
}
|
|
return number_of_req_active_assignments;
|
|
}
|
|
|
|
|
|
int amf_si_get_saAmfSINumReqStandbyAssignments(struct amf_si *si)
|
|
{
|
|
struct amf_si_assignment *si_assignment = si->assigned_sis;
|
|
int number_of_req_active_assignments = 0;
|
|
|
|
for (; si_assignment != NULL; si_assignment = si_assignment->next) {
|
|
if (si_assignment->requested_ha_state == SA_AMF_HA_STANDBY) {
|
|
number_of_req_active_assignments++;
|
|
}
|
|
}
|
|
return number_of_req_active_assignments;
|
|
}
|
|
|
|
static int sg_assign_nm_active (struct amf_sg *sg, int su_active_assign)
|
|
{
|
|
struct amf_su *su;
|
|
struct amf_si *si;
|
|
int assigned = 0;
|
|
int assign_to_su = 0;
|
|
int total_assigned = 0;
|
|
int si_left;
|
|
int si_total;
|
|
int su_left_to_assign = su_active_assign;
|
|
|
|
si_total = sg_si_count_get (sg);
|
|
si_left = si_total;
|
|
assign_to_su = div_round (si_left, su_active_assign);
|
|
if (assign_to_su > sg->saAmfSGMaxActiveSIsperSUs) {
|
|
assign_to_su = sg->saAmfSGMaxActiveSIsperSUs;
|
|
}
|
|
|
|
su = sg->su_head;
|
|
while (su != NULL && su_left_to_assign > 0) {
|
|
if (amf_su_get_saAmfSUReadinessState (su) !=
|
|
SA_AMF_READINESS_IN_SERVICE ||
|
|
amf_su_get_saAmfSUNumCurrActiveSIs (su) ==
|
|
assign_to_su ||
|
|
amf_su_get_saAmfSUNumCurrStandbySIs (su) > 0) {
|
|
|
|
su = su->next;
|
|
continue; /* Not in service */
|
|
}
|
|
|
|
si = sg->application->si_head;
|
|
assigned = 0;
|
|
assign_to_su = div_round (si_left, su_left_to_assign);
|
|
if (assign_to_su > sg->saAmfSGMaxActiveSIsperSUs) {
|
|
assign_to_su = sg->saAmfSGMaxActiveSIsperSUs;
|
|
}
|
|
while (si != NULL) {
|
|
|
|
if (name_match (&si->saAmfSIProtectedbySG, &sg->name) &&
|
|
assigned < assign_to_su &&
|
|
amf_si_get_saAmfSINumReqActiveAssignments(si) == 0) {
|
|
assigned += 1;
|
|
total_assigned += 1;
|
|
amf_su_assign_si (su, si, SA_AMF_HA_ACTIVE);
|
|
}
|
|
|
|
si = si->next;
|
|
}
|
|
su = su->next;
|
|
su_left_to_assign -= 1;
|
|
si_left -= assigned;
|
|
dprintf (" su_left_to_assign =%d, si_left=%d\n",
|
|
su_left_to_assign, si_left);
|
|
}
|
|
|
|
assert (total_assigned <= si_total);
|
|
if (total_assigned == 0) {
|
|
dprintf ("Info: No SIs assigned");
|
|
}
|
|
LEAVE();
|
|
|
|
return total_assigned;
|
|
}
|
|
|
|
static int sg_assign_nm_standby (struct amf_sg *sg, int su_standby_assign)
|
|
{
|
|
struct amf_su *su;
|
|
struct amf_si *si;
|
|
int assigned = 0;
|
|
int assign_to_su = 0;
|
|
int total_assigned = 0;
|
|
int si_left;
|
|
int si_total;
|
|
int su_left_to_assign = su_standby_assign;
|
|
|
|
ENTER ("'%s'", sg->name.value);
|
|
|
|
if (su_standby_assign == 0) {
|
|
return 0;
|
|
}
|
|
si_total = sg_si_count_get (sg);
|
|
si_left = si_total;
|
|
assign_to_su = div_round (si_left, su_standby_assign);
|
|
if (assign_to_su > sg->saAmfSGMaxStandbySIsperSUs) {
|
|
assign_to_su = sg->saAmfSGMaxStandbySIsperSUs;
|
|
}
|
|
|
|
su = sg->su_head;
|
|
while (su != NULL && su_left_to_assign > 0) {
|
|
if (amf_su_get_saAmfSUReadinessState (su) !=
|
|
SA_AMF_READINESS_IN_SERVICE ||
|
|
amf_su_get_saAmfSUNumCurrActiveSIs (su) > 0 ||
|
|
amf_su_get_saAmfSUNumCurrStandbySIs (su) ==
|
|
assign_to_su) {
|
|
|
|
su = su->next;
|
|
continue; /* Not available for assignment */
|
|
}
|
|
|
|
si = sg->application->si_head;
|
|
assigned = 0;
|
|
assign_to_su = div_round (si_left, su_left_to_assign);
|
|
if (assign_to_su > sg->saAmfSGMaxStandbySIsperSUs) {
|
|
assign_to_su = sg->saAmfSGMaxStandbySIsperSUs;
|
|
}
|
|
while (si != NULL) {
|
|
if (name_match (&si->saAmfSIProtectedbySG, &sg->name) &&
|
|
assigned < assign_to_su &&
|
|
amf_si_get_saAmfSINumReqStandbyAssignments (si) == 0) {
|
|
assigned += 1;
|
|
total_assigned += 1;
|
|
amf_su_assign_si (su, si, SA_AMF_HA_STANDBY);
|
|
}
|
|
si = si->next;
|
|
}
|
|
su_left_to_assign -= 1;
|
|
si_left -= assigned;
|
|
dprintf (" su_left_to_assign =%d, si_left=%d\n",
|
|
su_left_to_assign, si_left);
|
|
|
|
su = su->next;
|
|
}
|
|
|
|
assert (total_assigned <= si_total);
|
|
if (total_assigned == 0) {
|
|
dprintf ("Info: No SIs assigned!");
|
|
}
|
|
|
|
return total_assigned;
|
|
}
|
|
|
|
static int su_inservice_count_get (struct amf_sg *sg)
|
|
{
|
|
struct amf_su *su;
|
|
int answer = 0;
|
|
|
|
for (su = sg->su_head; su != NULL; su = su->next) {
|
|
if (amf_su_get_saAmfSUReadinessState (su) ==
|
|
SA_AMF_READINESS_IN_SERVICE) {
|
|
|
|
answer += 1;
|
|
}
|
|
}
|
|
return(answer);
|
|
}
|
|
|
|
|
|
/**
|
|
* TODO: dependency_level not used, hard coded
|
|
* @param sg
|
|
* @param dependency_level
|
|
*/
|
|
static int assign_si (struct amf_sg *sg, int dependency_level)
|
|
{
|
|
int active_sus_needed = 0;
|
|
int standby_sus_needed = 0;
|
|
int inservice_count;
|
|
int su_active_assign;
|
|
int su_standby_assign;
|
|
int su_spare_assign;
|
|
int assigned = 0;
|
|
|
|
ENTER ("'%s'", sg->name.value);
|
|
|
|
/**
|
|
* Phase 1: Calculate assignments and create all runtime objects in
|
|
* information model. Do not do the actual assignment, done in
|
|
* phase 2.
|
|
*/
|
|
|
|
/**
|
|
* Calculate number of SUs to assign to active or standby state
|
|
*/
|
|
inservice_count = su_inservice_count_get (sg);
|
|
|
|
if (sg->saAmfSGNumPrefActiveSUs > 0) {
|
|
active_sus_needed = div_round (
|
|
sg_si_count_get (sg),
|
|
sg->saAmfSGMaxActiveSIsperSUs);
|
|
} else {
|
|
log_printf (LOG_LEVEL_ERROR, "ERROR: saAmfSGNumPrefActiveSUs == 0 !!");
|
|
openais_exit_error (AIS_DONE_FATAL_ERR);
|
|
}
|
|
|
|
if (sg->saAmfSGNumPrefStandbySUs > 0) {
|
|
standby_sus_needed = div_round (
|
|
sg_si_count_get (sg),
|
|
sg->saAmfSGMaxStandbySIsperSUs);
|
|
} else {
|
|
log_printf (LOG_LEVEL_ERROR, "ERROR: saAmfSGNumPrefStandbySUs == 0 !!");
|
|
openais_exit_error (AIS_DONE_FATAL_ERR);
|
|
|
|
}
|
|
|
|
dprintf ("(inservice=%d) (active_sus_needed=%d) (standby_sus_needed=%d)"
|
|
"\n",
|
|
inservice_count, active_sus_needed, standby_sus_needed);
|
|
|
|
/* Determine number of active and standby service units
|
|
* to assign based upon reduction procedure
|
|
*/
|
|
if ((inservice_count < active_sus_needed)) {
|
|
dprintf ("assignment VI - partial assignment with SIs drop outs\n");
|
|
|
|
su_active_assign = inservice_count;
|
|
su_standby_assign = 0;
|
|
su_spare_assign = 0;
|
|
} else
|
|
if ((inservice_count < active_sus_needed + standby_sus_needed)) {
|
|
dprintf ("assignment V - partial assignment with reduction of"
|
|
" standby units\n");
|
|
|
|
su_active_assign = active_sus_needed;
|
|
su_standby_assign = inservice_count - active_sus_needed;
|
|
su_spare_assign = 0;
|
|
} else
|
|
if ((inservice_count < sg->saAmfSGNumPrefActiveSUs + standby_sus_needed)) {
|
|
dprintf ("IV: full assignment with reduction of active service"
|
|
" units\n");
|
|
su_active_assign = inservice_count - standby_sus_needed;
|
|
su_standby_assign = standby_sus_needed;
|
|
su_spare_assign = 0;
|
|
} else
|
|
if ((inservice_count <
|
|
sg->saAmfSGNumPrefActiveSUs + sg->saAmfSGNumPrefStandbySUs)) {
|
|
dprintf ("III: full assignment with reduction of standby service"
|
|
" units\n");
|
|
su_active_assign = sg->saAmfSGNumPrefActiveSUs;
|
|
su_standby_assign = inservice_count - sg->saAmfSGNumPrefActiveSUs;
|
|
su_spare_assign = 0;
|
|
} else
|
|
if ((inservice_count ==
|
|
sg->saAmfSGNumPrefActiveSUs + sg->saAmfSGNumPrefStandbySUs)) {
|
|
if (sg->saAmfSGNumPrefInserviceSUs > inservice_count) {
|
|
dprintf ("II: full assignment with spare reduction\n");
|
|
} else {
|
|
dprintf ("II: full assignment without spares\n");
|
|
}
|
|
|
|
su_active_assign = sg->saAmfSGNumPrefActiveSUs;
|
|
su_standby_assign = sg->saAmfSGNumPrefStandbySUs;
|
|
su_spare_assign = 0;
|
|
} else {
|
|
dprintf ("I: full assignment with spares\n");
|
|
su_active_assign = sg->saAmfSGNumPrefActiveSUs;
|
|
su_standby_assign = sg->saAmfSGNumPrefStandbySUs;
|
|
su_spare_assign = inservice_count -
|
|
sg->saAmfSGNumPrefActiveSUs - sg->saAmfSGNumPrefStandbySUs;
|
|
}
|
|
|
|
dprintf ("(inservice=%d) (assigning active=%d) (assigning standby=%d)"
|
|
" (assigning spares=%d)\n",
|
|
inservice_count, su_active_assign, su_standby_assign, su_spare_assign);
|
|
|
|
if (inservice_count > 0) {
|
|
assigned = sg_assign_nm_active (sg, su_active_assign);
|
|
assigned += sg_assign_nm_standby (sg, su_standby_assign);
|
|
|
|
#if 0
|
|
assert (assigned > 0);
|
|
#endif
|
|
sg->saAmfSGNumCurrAssignedSUs = inservice_count;
|
|
|
|
/**
|
|
* Phase 2: do the actual assignment to the component
|
|
* TODO: first do active, then standby
|
|
*/
|
|
{
|
|
struct amf_si *si;
|
|
struct amf_si_assignment *si_assignment;
|
|
|
|
for (si = sg->application->si_head; si != NULL; si = si->next) {
|
|
if (name_match (&si->saAmfSIProtectedbySG, &sg->name)) {
|
|
for (si_assignment = si->assigned_sis;
|
|
si_assignment != NULL;
|
|
si_assignment = si_assignment->next) {
|
|
|
|
if (si_assignment->requested_ha_state !=
|
|
si_assignment->saAmfSISUHAState) {
|
|
amf_si_ha_state_assume (
|
|
si_assignment, assign_si_assumed_cbfn);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
LEAVE ("'%s'", sg->name.value);
|
|
return assigned;
|
|
}
|
|
|
|
void amf_sg_assign_si (struct amf_sg *sg, int dependency_level)
|
|
{
|
|
|
|
sg->avail_state = SG_AC_AssigningOnRequest;
|
|
if (assign_si (sg, dependency_level) == 0) {
|
|
return_to_idle (sg);
|
|
amf_application_sg_assigned (sg->application, sg);
|
|
}
|
|
}
|
|
|
|
void amf_sg_failover_node_req (
|
|
struct amf_sg *sg, struct amf_node *node)
|
|
{
|
|
|
|
ENTER("'%s, %s'",node->name.value, sg->name.value);
|
|
|
|
/*
|
|
* TODO: Defer all new events. Workaround is to exit.
|
|
*/
|
|
if (sg->avail_state != SG_AC_Idle) {
|
|
log_printf (LOG_LEVEL_ERROR, "To handle multiple simultaneous SG"
|
|
" recovery actions is not implemented yet:"
|
|
" SG '%s', NODE '%s', avail_state %d",
|
|
sg->name.value, node->name.value, sg->avail_state);
|
|
openais_exit_error (AIS_DONE_FATAL_ERR);
|
|
return;
|
|
}
|
|
|
|
set_scope_for_failover_node(sg, node);
|
|
|
|
if (has_any_su_in_scope_active_workload (sg)) {
|
|
acsm_enter_deactivating_dependent_workload (sg);
|
|
} else {
|
|
struct amf_su **sus = sg->recovery_scope.sus;
|
|
|
|
/* Select next state depending on if some SU in the scope is
|
|
* needs to be terminated.
|
|
*/
|
|
while (*sus != NULL) {
|
|
ENTER("SU %s pr_state='%d'",(*sus)->name.value,
|
|
(*sus)->saAmfSUPresenceState);
|
|
if (((*sus)->saAmfSUPresenceState ==
|
|
SA_AMF_PRESENCE_UNINSTANTIATED) ||
|
|
((*sus)->saAmfSUPresenceState ==
|
|
SA_AMF_PRESENCE_TERMINATION_FAILED) ||
|
|
((*sus)->saAmfSUPresenceState ==
|
|
SA_AMF_PRESENCE_INSTANTIATION_FAILED)) {
|
|
sus++;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (*sus != NULL) {
|
|
acsm_enter_terminating_suspected (sg);
|
|
} else {
|
|
delete_si_assignments_in_scope (sg);
|
|
return_to_idle (sg);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
void amf_sg_start (struct amf_sg *sg, struct amf_node *node)
|
|
{
|
|
struct amf_su *su;
|
|
sg_avail_control_state_t old_avail_state = sg->avail_state;
|
|
int instantiated_sus = 0;
|
|
|
|
ENTER ("'%s'", sg->name.value);
|
|
|
|
sg->node_to_start = node;
|
|
|
|
sg->avail_state = SG_AC_InstantiatingServiceUnits;
|
|
|
|
for (su = sg->su_head; su != NULL; su = su->next) {
|
|
if (node == NULL) {
|
|
/* Cluster start */
|
|
amf_su_instantiate (su);
|
|
instantiated_sus++;
|
|
} else {
|
|
/* Node start, match if SU is hosted on the specified node*/
|
|
if (name_match (&node->name, &su->saAmfSUHostedByNode)) {
|
|
amf_su_instantiate (su);
|
|
instantiated_sus++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (instantiated_sus == 0) {
|
|
sg->avail_state = old_avail_state;
|
|
}
|
|
}
|
|
|
|
void amf_sg_su_state_changed (struct amf_sg *sg,
|
|
struct amf_su *su, SaAmfStateT type, int state)
|
|
{
|
|
ENTER ("'%s' SU '%s' state %s",
|
|
sg->name.value, su->name.value, amf_presence_state(state));
|
|
|
|
if (type == SA_AMF_PRESENCE_STATE) {
|
|
if (state == SA_AMF_PRESENCE_INSTANTIATED) {
|
|
if (sg->avail_state == SG_AC_InstantiatingServiceUnits) {
|
|
if (all_su_has_presence_state(sg, sg->node_to_start,
|
|
SA_AMF_PRESENCE_INSTANTIATED)) {
|
|
su->sg->avail_state = SG_AC_Idle;
|
|
amf_application_sg_started (
|
|
sg->application, sg, this_amf_node);
|
|
}
|
|
} else if (sg->avail_state == SG_AC_ReparingSu) {
|
|
if (all_su_in_scope_has_presence_state(su->sg,
|
|
SA_AMF_PRESENCE_INSTANTIATED)) {
|
|
su->sg->avail_state = SG_AC_AssigningStandBy;
|
|
if (assign_si (sg, 0) == 0) {
|
|
return_to_idle (sg);
|
|
}
|
|
|
|
} else {
|
|
dprintf ("avail-state: %u", sg->avail_state);
|
|
assert (0);
|
|
}
|
|
} else {
|
|
assert (0);
|
|
}
|
|
} else if (state == SA_AMF_PRESENCE_UNINSTANTIATED) {
|
|
if (sg->avail_state == SG_AC_TerminatingSuspected) {
|
|
if (all_su_in_scope_has_presence_state (sg, state)) {
|
|
delete_si_assignments_in_scope (sg);
|
|
if (is_standby_for_non_active_si_in_scope (sg)) {
|
|
acsm_enter_activating_standby (sg);
|
|
} else {
|
|
/*
|
|
* TODO: create SI assignment to spare and assign them
|
|
*/
|
|
sg->avail_state = SG_AC_AssigningStandbyToSpare;
|
|
acsm_enter_repairing_su (sg);
|
|
}
|
|
}
|
|
} else {
|
|
assert (0);
|
|
}
|
|
} else {
|
|
assert (0);
|
|
}
|
|
} else {
|
|
assert (0);
|
|
}
|
|
}
|
|
|
|
void amf_sg_init (void)
|
|
{
|
|
log_init ("AMF");
|
|
}
|
|
|
|
void amf_sg_failover_su_req (
|
|
struct amf_sg *sg, struct amf_su *su, struct amf_node *node)
|
|
{
|
|
ENTER ("");
|
|
/*
|
|
* TODO: Defer all new events. Workaround is to exit.
|
|
*/
|
|
if (sg->avail_state != SG_AC_Idle) {
|
|
log_printf (LOG_LEVEL_ERROR, "To handle multiple simultaneous SG"
|
|
" recovery actions is not implemented yet:"
|
|
" SG '%s', SU '%s', avail_state %d",
|
|
sg->name.value, su->name.value, sg->avail_state);
|
|
openais_exit_error (AIS_DONE_FATAL_ERR);
|
|
return;
|
|
}
|
|
set_scope_for_failover_su (sg, su);
|
|
if (has_any_su_in_scope_active_workload (sg)) {
|
|
acsm_enter_deactivating_dependent_workload (sg);
|
|
} else {
|
|
acsm_enter_terminating_suspected (sg);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Constructor for SG objects. Adds SG to the list owned by
|
|
* the specified application. Always returns a valid SG
|
|
* object, out-of-memory problems are handled here. Default
|
|
* values are initialized.
|
|
* @param sg
|
|
* @param name
|
|
*
|
|
* @return struct amf_sg*
|
|
*/
|
|
|
|
struct amf_sg *amf_sg_new (struct amf_application *app, char *name)
|
|
{
|
|
struct amf_sg *sg = calloc (1, sizeof (struct amf_sg));
|
|
|
|
if (sg == NULL) {
|
|
openais_exit_error (AIS_DONE_OUT_OF_MEMORY);
|
|
}
|
|
|
|
sg->next = app->sg_head;
|
|
app->sg_head = sg;
|
|
sg->saAmfSGAdminState = SA_AMF_ADMIN_UNLOCKED;
|
|
sg->saAmfSGNumPrefActiveSUs = 1;
|
|
sg->saAmfSGNumPrefStandbySUs = 1;
|
|
sg->saAmfSGNumPrefInserviceSUs = ~0;
|
|
sg->saAmfSGNumPrefAssignedSUs = ~0;
|
|
sg->saAmfSGCompRestartProb = -1;
|
|
sg->saAmfSGCompRestartMax = ~0;
|
|
sg->saAmfSGSuRestartProb = -1;
|
|
sg->saAmfSGSuRestartMax = ~0;
|
|
sg->saAmfSGAutoAdjustProb = -1;
|
|
sg->saAmfSGAutoRepair = SA_TRUE;
|
|
sg->application = app;
|
|
setSaNameT (&sg->name, name);
|
|
sg->node_to_start = NULL;
|
|
|
|
return sg;
|
|
}
|
|
|
|
void amf_sg_delete (struct amf_sg *sg)
|
|
{
|
|
struct amf_su *su;
|
|
|
|
for (su = sg->su_head; su != NULL;) {
|
|
struct amf_su *tmp = su;
|
|
su = su->next;
|
|
amf_su_delete (tmp);
|
|
}
|
|
|
|
free (sg);
|
|
}
|
|
|
|
void *amf_sg_serialize (struct amf_sg *sg, int *len)
|
|
{
|
|
char *buf = NULL;
|
|
int offset = 0, size = 0;
|
|
|
|
TRACE8 ("%s", sg->name.value);
|
|
|
|
buf = amf_serialize_SaNameT (buf, &size, &offset, &sg->name);
|
|
buf = amf_serialize_SaUint32T (buf, &size, &offset, sg->saAmfSGRedundancyModel);
|
|
buf = amf_serialize_SaUint32T (
|
|
buf, &size, &offset, sg->saAmfSGAutoAdjust);
|
|
buf = amf_serialize_SaUint32T (
|
|
buf, &size, &offset, sg->saAmfSGNumPrefActiveSUs);
|
|
buf = amf_serialize_SaUint32T (
|
|
buf, &size, &offset, sg->saAmfSGNumPrefStandbySUs);
|
|
buf = amf_serialize_SaUint32T (
|
|
buf, &size, &offset, sg->saAmfSGNumPrefInserviceSUs);
|
|
buf = amf_serialize_SaUint32T (
|
|
buf, &size, &offset, sg->saAmfSGNumPrefAssignedSUs);
|
|
buf = amf_serialize_SaUint32T (
|
|
buf, &size, &offset, sg->saAmfSGMaxActiveSIsperSUs);
|
|
buf = amf_serialize_SaUint32T (
|
|
buf, &size, &offset, sg->saAmfSGMaxStandbySIsperSUs);
|
|
buf = amf_serialize_SaUint32T (
|
|
buf, &size, &offset, sg->saAmfSGCompRestartProb);
|
|
buf = amf_serialize_SaUint32T (
|
|
buf, &size, &offset, sg->saAmfSGCompRestartMax);
|
|
buf = amf_serialize_SaUint32T (
|
|
buf, &size, &offset, sg->saAmfSGSuRestartProb);
|
|
buf = amf_serialize_SaUint32T (
|
|
buf, &size, &offset, sg->saAmfSGSuRestartMax);
|
|
buf = amf_serialize_SaUint32T (
|
|
buf, &size, &offset, sg->saAmfSGAutoAdjustProb);
|
|
buf = amf_serialize_SaUint32T (
|
|
buf, &size, &offset, sg->saAmfSGAutoRepair);
|
|
buf = amf_serialize_SaUint32T (
|
|
buf, &size, &offset, sg->saAmfSGAdminState);
|
|
buf = amf_serialize_SaUint32T (
|
|
buf, &size, &offset, sg->saAmfSGNumCurrAssignedSUs);
|
|
buf = amf_serialize_SaUint32T (
|
|
buf, &size, &offset, sg->saAmfSGNumCurrNonInstantiatedSpareSUs);
|
|
buf = amf_serialize_SaUint32T (
|
|
buf, &size, &offset, sg->saAmfSGNumCurrInstantiatedSpareSUs);
|
|
buf = amf_serialize_SaStringT (
|
|
buf, &size, &offset, sg->clccli_path);
|
|
buf = amf_serialize_SaUint32T (
|
|
buf, &size, &offset, sg->avail_state);
|
|
|
|
*len = offset;
|
|
|
|
return buf;
|
|
}
|
|
|
|
struct amf_sg *amf_sg_deserialize (
|
|
struct amf_application *app, char *buf, int size)
|
|
{
|
|
char *tmp = buf;
|
|
struct amf_sg *sg;
|
|
|
|
sg = amf_sg_new (app, "");
|
|
|
|
tmp = amf_deserialize_SaNameT (tmp, &sg->name);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->saAmfSGRedundancyModel);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->saAmfSGAutoAdjust);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->saAmfSGNumPrefActiveSUs);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->saAmfSGNumPrefStandbySUs);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->saAmfSGNumPrefInserviceSUs);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->saAmfSGNumPrefAssignedSUs);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->saAmfSGMaxActiveSIsperSUs);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->saAmfSGMaxStandbySIsperSUs);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->saAmfSGCompRestartProb);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->saAmfSGCompRestartMax);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->saAmfSGSuRestartProb);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->saAmfSGSuRestartMax);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->saAmfSGAutoAdjustProb);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->saAmfSGAutoRepair);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->saAmfSGAdminState);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->saAmfSGNumCurrAssignedSUs);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->saAmfSGNumCurrNonInstantiatedSpareSUs);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->saAmfSGNumCurrInstantiatedSpareSUs);
|
|
tmp = amf_deserialize_SaStringT (tmp, &sg->clccli_path);
|
|
tmp = amf_deserialize_SaUint32T (tmp, &sg->avail_state);
|
|
|
|
return sg;
|
|
}
|
|
|
|
struct amf_sg *amf_sg_find (struct amf_application *app, char *name)
|
|
{
|
|
struct amf_sg *sg;
|
|
|
|
for (sg = app->sg_head; sg != NULL; sg = sg->next) {
|
|
if (sg->name.length == strlen(name) &&
|
|
strncmp (name, (char*)sg->name.value, sg->name.length) == 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return sg;
|
|
}
|
|
|