mirror_corosync/exec/totemsrp.c
Steven Dake 2e4b10583d defect 502
fix assert when packet added in multicast message handler.


git-svn-id: http://svn.fedorahosted.org/svn/corosync/trunk@725 fd59a12c-fef9-0310-b244-a6a79926bd2f
2005-06-30 20:29:33 +00:00

4085 lines
106 KiB
C

int global_seqno = 0;
//#define RANDOM_DROP 1
int my_token_held = 0;
int my_do_delivery = 0;
unsigned long long token_ring_id_seq = 0;
int log_digest = 0;
int last_released = 0;
int set_aru = -1;
int totemsrp_brake;
/*
* Copyright (c) 2003-2004 MontaVista Software, Inc.
*
* All rights reserved.
*
* Author: Steven Dake (sdake@mvista.com)
*
* This software licensed under BSD license, the text of which follows:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - Neither the name of the MontaVista Software, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* The first version of this code was based upon Yair Amir's PhD thesis:
* http://www.cs.jhu.edu/~yairamir/phd.ps) (ch4,5).
*
* The current version of totemsrp implements the Totem protocol specified in:
* http://citeseer.ist.psu.edu/amir95totem.html
*
* The deviations from the above published protocols are:
* - encryption of message contents with SOBER128
* - authentication of meessage contents with SHA1/HMAC
* - token hold mode where token doesn't rotate on unused ring - reduces cpu
* usage on 1.6ghz xeon from 35% to less then .1 % as measured by top
*/
#include <assert.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <netdb.h>
#include <sys/un.h>
#include <sys/sysinfo.h>
#include <sys/ioctl.h>
#include <sys/param.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <linux/if.h>
#include <linux/sockios.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <signal.h>
#include <sched.h>
#include <time.h>
#include <sys/time.h>
#include <sys/poll.h>
#include "aispoll.h"
#include "totemsrp.h"
#include "../include/queue.h"
#include "../include/sq.h"
#include "../include/list.h"
#include "hdb.h"
#include "swab.h"
#include "crypto.h"
#define AUTHENTICATION 1 /* use authentication */
#define ENCRYPTION 1 /* use encryption */
#define LOCALHOST_IP inet_addr("127.0.0.1")
#define QUEUE_RTR_ITEMS_SIZE_MAX 2000 /* allow 512 retransmit items */
#define NEW_MESSAGE_QUEUE_SIZE_MAX 2000 /* allow 500 messages to be queued */
#define RETRANS_MESSAGE_QUEUE_SIZE_MAX 2000 /* allow 500 messages to be queued */
#define RECEIVED_MESSAGE_QUEUE_SIZE_MAX 2000 /* allow 500 messages to be queued */
#define MAXIOVS 5
#define RETRANSMIT_ENTRIES_MAX 30
#define MISSING_MCAST_WINDOW 128
#define TIMEOUT_STATE_GATHER_JOIN 100
#define TIMEOUT_STATE_GATHER_CONSENSUS 200
#define TOKEN_RETRANSMITS_BEFORE_LOSS 4
#define TIMEOUT_TOKEN 200
#define TIMEOUT_TOKEN_RETRANSMIT (int)(TIMEOUT_TOKEN / (TOKEN_RETRANSMITS_BEFORE_LOSS + 0.2))
#define TIMEOUT_TOKEN_HOLD (int)(TIMEOUT_TOKEN_RETRANSMIT * 0.8 - (1000/HZ))
#define TIMEOUT_MERGE_DETECT 200
#define PACKET_SIZE_MAX 2000
#define FAIL_TO_RECV_CONST 250
#define SEQNO_UNCHANGED_CONST 20
#define TIMEOUT_DOWNCHECK 1000
void memb_set_print (char *string,
struct in_addr *list, int list_entries);
/*
* we compare incoming messages to determine if their endian is
* different - if so convert them
*
* do not change
*/
#define ENDIAN_LOCAL 0xff22
/*
* Authentication of messages
*/
hmac_state totemsrp_hmac_state;
prng_state totemsrp_prng_state;
unsigned char totemsrp_private_key[1024];
unsigned int totemsrp_private_key_len;
int stats_sent = 0;
int stats_recv = 0;
int stats_delv = 0;
int stats_remcasts = 0;
int stats_orf_token = 0;
struct timeval stats_tv_start = { 0, 0 };
/*
* Flow control mcasts and remcasts on last and current orf_token
*/
int fcc_remcast_last = 0;
int fcc_mcast_last = 0;
int fcc_mcast_current = 0;
int fcc_remcast_current = 0;
enum message_type {
MESSAGE_TYPE_ORF_TOKEN = 0, /* Ordering, Reliability, Flow (ORF) control Token */
MESSAGE_TYPE_MCAST = 1, /* ring ordered multicast message */
MESSAGE_TYPE_MEMB_MERGE_DETECT = 2, /* merge rings if there are available rings */
MESSAGE_TYPE_MEMB_JOIN = 3, /* membership join message */
MESSAGE_TYPE_MEMB_COMMIT_TOKEN = 4, /* membership commit token */
MESSAGE_TYPE_TOKEN_HOLD_CANCEL = 5, /* cancel the holding of the token */
};
/*
* New membership algorithm local variables
*/
struct consensus_list_item {
struct in_addr addr;
int set;
};
static struct consensus_list_item consensus_list[PROCESSOR_COUNT_MAX];
static int consensus_list_entries;
static struct in_addr my_proc_list[PROCESSOR_COUNT_MAX];
static struct in_addr my_failed_list[PROCESSOR_COUNT_MAX];
static struct in_addr my_new_memb_list[PROCESSOR_COUNT_MAX];
static struct in_addr my_trans_memb_list[PROCESSOR_COUNT_MAX];
static struct in_addr my_memb_list[PROCESSOR_COUNT_MAX];
static struct in_addr my_deliver_memb_list[PROCESSOR_COUNT_MAX];
static int my_proc_list_entries = 0;
static int my_failed_list_entries = 0;
static int my_new_memb_entries = 0;
static int my_trans_memb_entries = 0;
static int my_memb_entries = 0;
static int my_deliver_memb_entries = 0;
static struct memb_ring_id my_ring_id;
static struct memb_ring_id my_old_ring_id;
static int my_aru_count = 0;
static int my_merge_detect_timeout_outstanding = 0;
static int my_last_aru = 0;
static int my_seq_unchanged = 0;
static int my_received_flg = 1;
static int my_high_seq_received = 0;
static int my_install_seq = 0;
static int my_rotation_counter = 0;
static int my_set_retrans_flg = 0;
static int my_retrans_flg_count = 0;
static unsigned int my_high_ring_delivered = 0;
static unsigned int timeout_token = TIMEOUT_TOKEN;
static unsigned int timeout_token_retransmit = TIMEOUT_TOKEN_RETRANSMIT;
static unsigned int timeout_token_hold = 0;
static unsigned int token_retransmits_before_loss = TOKEN_RETRANSMITS_BEFORE_LOSS;
static unsigned int timeout_state_gather_join = TIMEOUT_STATE_GATHER_JOIN;
static unsigned int timeout_state_gather_consensus = TIMEOUT_STATE_GATHER_CONSENSUS;
static unsigned int timeout_merge_detect = TIMEOUT_MERGE_DETECT;
static unsigned int timeout_downcheck = TIMEOUT_DOWNCHECK;
static unsigned int fail_to_recv_const = FAIL_TO_RECV_CONST;
struct token_callback_instance {
struct list_head list;
int (*callback_fn) (enum totem_callback_token_type type, void *);
enum totem_callback_token_type callback_type;
int delete;
void *data;
};
/*
* Queues used to order, deliver, and recover messages
*/
struct queue new_message_queue;
struct queue retrans_message_queue;
struct sq regular_sort_queue;
struct sq recovery_sort_queue;
/*
* Multicast address
*/
struct sockaddr_in sockaddr_in_mcast;
struct totemsrp_socket {
int mcast;
int token;
};
/*
* File descriptors in use by TOTEMSRP
*/
struct totemsrp_socket totemsrp_sockets[2];
/*
* Received up to and including
*/
int my_aru = 0;
static int my_high_delivered = 0;
DECLARE_LIST_INIT (token_callback_received_listhead);
DECLARE_LIST_INIT (token_callback_sent_listhead);
char orf_token_retransmit[15000]; // sizeof (struct orf_token) + sizeof (struct rtr_item) * RETRANSMIT_ENTRIES_MAX];
int orf_token_retransmit_size;
int my_token_seq = -1;
/*
* Timers
*/
poll_timer_handle timer_orf_token_timeout = 0;
poll_timer_handle timer_orf_token_retransmit_timeout = 0;
poll_timer_handle timer_orf_token_hold_retransmit_timeout = 0;
poll_timer_handle timer_merge_detect_timeout = 0;
poll_timer_handle memb_timer_state_gather_join_timeout = 0;
poll_timer_handle memb_timer_state_gather_consensus_timeout = 0;
poll_timer_handle memb_timer_state_commit_timeout = 0;
poll_timer_handle timer_netif_check_timeout = 0;
/*
* Function called when new message received
*/
int (*totemsrp_recv) (char *group, struct iovec *iovec, int iov_len);
/*
* Function and data used to log messages
*/
static void (*totemsrp_log_printf) (int level, char *format, ...);
int totemsrp_log_level_security;
int totemsrp_log_level_error;
int totemsrp_log_level_warning;
int totemsrp_log_level_notice;
int totemsrp_log_level_debug;
#define HMAC_HASH_SIZE 20
struct security_header {
unsigned char hash_digest[HMAC_HASH_SIZE]; /* The hash *MUST* be first in the data structure */
unsigned char salt[16]; /* random number */
} __attribute__((packed));
struct message_header {
struct security_header security_header;
char type;
char encapsulated;
// unsigned short filler;
unsigned short endian_detector;
} __attribute__((packed));
struct mcast {
struct message_header header;
int seq;
int this_seqno;
struct memb_ring_id ring_id;
struct in_addr source;
int guarantee;
} __attribute__((packed));
/*
* MTU - multicast message header - IP header - UDP header
*
* On lossy switches, making use of the DF UDP flag can lead to loss of
* forward progress. So the packets must be fragmented by a higher layer
*
* This layer can only handle packets of MTU size.
*/
#define FRAGMENT_SIZE (PACKET_SIZE_MAX - sizeof (struct mcast) - 20 - 8)
struct rtr_item {
struct memb_ring_id ring_id;
int seq;
}__attribute__((packed));
struct orf_token {
struct message_header header;
int seq;
int token_seq;
int aru;
struct in_addr aru_addr;
struct memb_ring_id ring_id;
short int fcc;
int retrans_flg;
int rtr_list_entries;
struct rtr_item rtr_list[0];
}__attribute__((packed));
struct memb_join {
struct message_header header;
struct in_addr proc_list[PROCESSOR_COUNT_MAX];
int proc_list_entries;
struct in_addr failed_list[PROCESSOR_COUNT_MAX];
int failed_list_entries;
unsigned long long ring_seq;
} __attribute__((packed));
struct memb_merge_detect {
struct message_header header;
struct memb_ring_id ring_id;
} __attribute__((packed));
struct token_hold_cancel {
struct message_header header;
struct memb_ring_id ring_id;
} __attribute__((packed));
struct memb_commit_token_memb_entry {
struct memb_ring_id ring_id;
int aru;
int high_delivered;
int received_flg;
}__attribute__((packed));
struct memb_commit_token {
struct message_header header;
int token_seq;
struct memb_ring_id ring_id;
unsigned int retrans_flg;
int memb_index;
int addr_entries;
struct in_addr addr[PROCESSOR_COUNT_MAX];
struct memb_commit_token_memb_entry memb_list[PROCESSOR_COUNT_MAX];
}__attribute__((packed));
struct message_item {
struct mcast *mcast;
struct iovec iovec[MAXIOVS];
int iov_len;
};
struct sort_queue_item {
struct iovec iovec[MAXIOVS];
int iov_len;
};
enum memb_state {
MEMB_STATE_OPERATIONAL = 1,
MEMB_STATE_GATHER = 2,
MEMB_STATE_COMMIT = 3,
MEMB_STATE_RECOVERY = 4
};
static enum memb_state memb_state = MEMB_STATE_OPERATIONAL;
static struct sockaddr_in my_id;
struct sockaddr_in next_memb;
static struct sockaddr_in memb_local_sockaddr_in;
static char iov_buffer[15000]; //PACKET_SIZE_MAX];
static struct iovec totemsrp_iov_recv = {
.iov_base = iov_buffer,
.iov_len = sizeof (iov_buffer)
};
static char iov_encrypted_buffer[15000]; //char orf_token_retransmit[15000]; // sizeof (struct orf_token) + sizeof (struct rtr_item) * RETRANSMIT_ENTRIES_MAX];
static struct iovec iov_encrypted = {
.iov_base = iov_encrypted_buffer,
.iov_len = sizeof (iov_encrypted_buffer)
};
struct message_handlers {
int count;
int (*handler_functions[6]) (struct sockaddr_in *, struct iovec *, int, int, int);
};
poll_handle *totemsrp_poll_handle;
void (*totemsrp_deliver_fn) (
struct in_addr source_addr,
struct iovec *iovec,
int iov_len,
int endian_conversion_required) = 0;
void (*totemsrp_confchg_fn) (
enum totem_configuration_type configuration_type,
struct in_addr *member_list, int member_list_entries,
struct in_addr *left_list, int left_list_entries,
struct in_addr *joined_list, int joined_list_entries,
struct memb_ring_id *ring_id) = 0;
static struct totem_interface *totemsrp_interfaces;
static int totemsrp_interface_count;
/*
* forward decls
*/
static int message_handler_orf_token (struct sockaddr_in *, struct iovec *, int, int, int);
static int message_handler_mcast (struct sockaddr_in *, struct iovec *, int, int, int);
static int message_handler_memb_merge_detect (struct sockaddr_in *, struct iovec *, int, int, int);
static int message_handler_memb_join (struct sockaddr_in *, struct iovec *, int, int, int);
static int message_handler_memb_commit_token (struct sockaddr_in *, struct iovec *, int, int, int);
static int message_handler_token_hold_cancel (struct sockaddr_in *, struct iovec *, int, int, int);
static void memb_ring_id_create_or_load (struct memb_ring_id *);
static int recv_handler (poll_handle handle, int fd, int revents, void *data, unsigned int *prio);
static int netif_determine (struct sockaddr_in *bindnet, struct sockaddr_in *bound_to,int *interface_up);
static int loopback_determine (struct sockaddr_in *bound_to);
static void netif_down_check (void);
static void token_callbacks_execute (enum totem_callback_token_type type);
#define NETIF_STATE_REPORT_UP 1
#define NETIF_STATE_REPORT_DOWN 2
#define BIND_STATE_UNBOUND 0
#define BIND_STATE_REGULAR 1
#define BIND_STATE_LOOPBACK 2
int netif_state_report = NETIF_STATE_REPORT_UP | NETIF_STATE_REPORT_DOWN;
int netif_bind_state = BIND_STATE_UNBOUND;
static int totemsrp_build_sockets (struct sockaddr_in *sockaddr_mcast,
struct sockaddr_in *sockaddr_bindnet,
struct totemsrp_socket *sockets,
struct sockaddr_in *bound_to,
int *interface_up);
static int totemsrp_build_sockets_loopback (struct sockaddr_in *sockaddr_mcast,
struct sockaddr_in *sockaddr_bindnet,
struct totemsrp_socket *sockets,
struct sockaddr_in *bound_to);
static void memb_state_gather_enter (void);
static void messages_deliver_to_app (int skip, int end_point);
static int orf_token_mcast (struct orf_token *oken,
int fcc_mcasts_allowed, struct sockaddr_in *system_from);
static int messages_free (int token_aru);
static void encrypt_and_sign (struct iovec *iovec, int iov_len);
static int authenticate_and_decrypt (struct iovec *iov);
static int recv_handler (poll_handle handle, int fd, int revents, void *data, unsigned int *prio);
static void memb_ring_id_store (struct memb_commit_token *commit_token);
static void memb_state_commit_token_update (struct memb_commit_token *memb_commit_token);
static int memb_state_commit_token_send (struct memb_commit_token *memb_commit_token);
static void memb_state_commit_token_create (struct memb_commit_token *commit_token);
static int token_hold_cancel_send (void);
static void orf_token_endian_convert (struct orf_token *in, struct orf_token *out);
static void memb_commit_token_endian_convert (struct memb_commit_token *in, struct memb_commit_token *out);
static void memb_join_endian_convert (struct memb_join *in, struct memb_join *out);
static void mcast_endian_convert (struct mcast *in, struct mcast *out);
struct message_handlers totemsrp_message_handlers = {
6,
{
message_handler_orf_token,
message_handler_mcast,
message_handler_memb_merge_detect,
message_handler_memb_join,
message_handler_memb_commit_token,
message_handler_token_hold_cancel
}
};
void totemsrp_log_printf_init (
void (*log_printf) (int , char *, ...),
int log_level_security,
int log_level_error,
int log_level_warning,
int log_level_notice,
int log_level_debug)
{
totemsrp_log_level_security = log_level_security;
totemsrp_log_level_error = log_level_error;
totemsrp_log_level_warning = log_level_warning;
totemsrp_log_level_notice = log_level_notice;
totemsrp_log_level_debug = log_level_debug;
totemsrp_log_printf = log_printf;
}
#ifdef CODE_COVERAGE_COMPILE_OUT
void print_digest (char *where, unsigned char *digest)
{
int i;
printf ("DIGEST %s:\n", where);
for (i = 0; i < 16; i++) {
printf ("%x ", digest[i]);
}
printf ("\n");
}
void print_msg (unsigned char *msg, int size)
{
int i;
printf ("MSG CONTENTS START\n");
for (i = 0; i < size; i++) {
printf ("%x ", msg[i]);
if ((i % 16) == 15) {
printf ("\n");
}
}
printf ("MSG CONTENTS DONE\n");
}
#endif
/*
* Exported interfaces
*/
int totemsrp_initialize (
struct openais_config *openais_config,
poll_handle *poll_handle,
unsigned char *private_key,
int private_key_len,
void *member_private,
int member_private_len,
void (*deliver_fn) (
struct in_addr source_addr,
struct iovec *iovec,
int iov_len,
int endian_conversion_required),
void (*confchg_fn) (
enum totem_configuration_type configuration_type,
struct in_addr *member_list, int member_list_entries,
struct in_addr *left_list, int left_list_entries,
struct in_addr *joined_list, int joined_list_entries,
struct memb_ring_id *ring_id))
{
unsigned int *timeouts = openais_config->timeouts;
int i;
timeout_token_hold = (int)(timeout_token_retransmit * 0.8 - (1000/HZ));
/*
* Initialize random number generator for later use to generate salt
*/
memcpy (totemsrp_private_key, private_key, private_key_len);
totemsrp_private_key_len = private_key_len;
rng_make_prng (128, PRNG_SOBER, &totemsrp_prng_state, NULL);
/*
* Initialize local variables for totemsrp
*/
memcpy (&sockaddr_in_mcast, &openais_config->mcast_addr,
sizeof (struct sockaddr_in));
memset (&next_memb, 0, sizeof (struct sockaddr_in));
memset (iov_buffer, 0, PACKET_SIZE_MAX);
/*
* Update our timeout values if they were specified in the openais.conf
* file.
*/
for (i = 0; i < MAX_TOTEM_TIMEOUTS; i++) {
if (!timeouts[i]) {
continue;
}
switch (i) {
case TOTEM_TOKEN:
timeout_token = timeouts[i];
totemsrp_log_printf (totemsrp_log_level_notice,
"Overriding token timeout to (%u ms)\n", timeouts[i]);
timeout_token_retransmit = (int)(timeout_token / (token_retransmits_before_loss + 0.2));
timeout_token_hold = (int)(timeout_token_retransmit * 0.8 - (1000/HZ));
break;
case TOTEM_RETRANSMIT_TOKEN:
timeout_token_retransmit = timeouts[i];
totemsrp_log_printf (totemsrp_log_level_notice,
"Overriding token retransmit timeout to (%u ms)\n", timeouts[i]);
break;
case TOTEM_RETRANSMITS_BEFORE_LOSS:
token_retransmits_before_loss = timeouts[i];
totemsrp_log_printf (totemsrp_log_level_notice,
"Overriding retransmits before loss (%u retrans)\n", timeouts[i]);
break;
case TOTEM_HOLD_TOKEN:
timeout_token_hold = timeouts[i];
totemsrp_log_printf (totemsrp_log_level_notice,
"Overriding token hold timeout to (%u ms)\n", timeouts[i]);
break;
case TOTEM_JOIN:
timeout_state_gather_join = timeouts[i];
totemsrp_log_printf (totemsrp_log_level_notice,
"Join Timeout set to %u ms\n", timeouts[i]);
break;
case TOTEM_CONSENSUS:
timeout_state_gather_consensus = timeouts[i];
totemsrp_log_printf (totemsrp_log_level_notice,
"Consensus Timeout set to %u ms\n", timeouts[i]);
break;
case TOTEM_MERGE:
timeout_merge_detect = timeouts[i];
totemsrp_log_printf (totemsrp_log_level_notice,
"Merge Detect Timeout set to %u ms\n", timeouts[i]);
break;
case TOTEM_DOWNCHECK:
timeout_downcheck = timeouts[i];
totemsrp_log_printf (totemsrp_log_level_notice,
"Downcheck Timeout set to %u ms\n", timeouts[i]);
break;
case TOTEM_FAIL_RECV_CONST:
totemsrp_log_printf (totemsrp_log_level_notice,
"Failed To Receive Const set to %u\n", timeouts[i]);
fail_to_recv_const = timeouts[i];
break;
default:
totemsrp_log_printf (totemsrp_log_level_notice,
"Received unknown timeout type: %d\n", timeouts[i]);
break;
}
}
totemsrp_log_printf (totemsrp_log_level_notice,
"Token Timeout (%d ms) retransmit timeout (%d ms)\n",
timeout_token, timeout_token_retransmit);
totemsrp_log_printf (totemsrp_log_level_notice,
"token hold (%d ms) retransmits before loss (%d retrans)\n",
timeout_token_hold, token_retransmits_before_loss);
queue_init (&new_message_queue, NEW_MESSAGE_QUEUE_SIZE_MAX,
sizeof (struct message_item));
queue_init (&retrans_message_queue, RETRANS_MESSAGE_QUEUE_SIZE_MAX,
sizeof (struct message_item));
sq_init (&regular_sort_queue,
QUEUE_RTR_ITEMS_SIZE_MAX, sizeof (struct sort_queue_item), 0);
sq_init (&recovery_sort_queue,
QUEUE_RTR_ITEMS_SIZE_MAX, sizeof (struct sort_queue_item), 0);
totemsrp_interfaces = openais_config->interfaces;
totemsrp_interface_count = 1;
/* totemsrp_interface_count = openais_config->interface_count; */
totemsrp_poll_handle = poll_handle;
netif_down_check();
memb_state_gather_enter ();
totemsrp_deliver_fn = deliver_fn;
totemsrp_confchg_fn = confchg_fn;
return (0);
}
/*
* Set operations for use by the membership algorithm
*/
static void memb_consensus_reset (void)
{
consensus_list_entries = 0;
}
void
memb_set_subtract (struct in_addr *out_list, int *out_list_entries,
struct in_addr *one_list, int one_list_entries,
struct in_addr *two_list, int two_list_entries)
{
int found = 0;
int i;
int j;
*out_list_entries = 0;
for (i = 0; i < one_list_entries; i++) {
for (j = 0; j < two_list_entries; j++) {
if (one_list[i].s_addr == two_list[j].s_addr) {
found = 1;
break;
}
}
if (found == 0) {
out_list[*out_list_entries].s_addr = one_list[i].s_addr;
*out_list_entries = *out_list_entries + 1;
}
found = 0;
}
}
/*
* Set consensus for a specific processor
*/
static void memb_consensus_set (struct in_addr *addr)
{
int found = 0;
int i;
for (i = 0; i < consensus_list_entries; i++) {
if (addr->s_addr == consensus_list[i].addr.s_addr) {
found = 1;
break; /* found entry */
}
}
consensus_list[i].addr.s_addr = addr->s_addr;
consensus_list[i].set = 1;
if (found == 0) {
consensus_list_entries++;
}
return;
}
/*
* Is consensus set for a specific processor
*/
static int memb_consensus_isset (struct in_addr *addr)
{
int i;
for (i = 0; i < consensus_list_entries; i++) {
if (addr->s_addr == consensus_list[i].addr.s_addr) {
return (consensus_list[i].set);
}
}
return (0);
}
/*
* Is consensus agreed upon based upon consensus database
*/
static int memb_consensus_agreed (void)
{
struct in_addr token_memb[PROCESSOR_COUNT_MAX];
int token_memb_entries = 0;
int agreed = 1;
int i;
memb_set_subtract (token_memb, &token_memb_entries,
my_proc_list, my_proc_list_entries,
my_failed_list, my_failed_list_entries);
for (i = 0; i < token_memb_entries; i++) {
if (memb_consensus_isset (&token_memb[i]) == 0) {
agreed = 0;
break;
}
}
assert (token_memb_entries >= 1);
return (agreed);
}
void memb_consensus_notset (struct in_addr *no_consensus_list,
int *no_consensus_list_entries,
struct in_addr *comparison_list,
int comparison_list_entries)
{
int i;
*no_consensus_list_entries = 0;
for (i = 0; i < my_proc_list_entries; i++) {
if (memb_consensus_isset (&my_proc_list[i]) == 0) {
no_consensus_list[*no_consensus_list_entries].s_addr = my_proc_list[i].s_addr;
*no_consensus_list_entries = *no_consensus_list_entries + 1;
}
}
}
/*
* Is set1 equal to set2 Entries can be in different orders
*/
int memb_set_equal (struct in_addr *set1, int set1_entries,
struct in_addr *set2, int set2_entries)
{
int i;
int j;
int found = 0;
if (set1_entries != set2_entries) {
return (0);
}
for (i = 0; i < set2_entries; i++) {
for (j = 0; j < set1_entries; j++) {
if (set1[j].s_addr == set2[i].s_addr) {
found = 1;
break;
}
}
if (found == 0) {
return (0);
}
found = 0;
}
return (1);
}
/*
* Is subset fully contained in fullset
*/
int memb_set_subset (struct in_addr *subset, int subset_entries,
struct in_addr *fullset, int fullset_entries)
{
int i;
int j;
int found = 0;
if (subset_entries > fullset_entries) {
return (0);
}
for (i = 0; i < subset_entries; i++) {
for (j = 0; j < fullset_entries; j++) {
if (subset[i].s_addr == fullset[j].s_addr) {
found = 1;
}
}
if (found == 0) {
return (0);
}
found = 1;
}
return (1);
}
/*
* merge subset into fullset taking care not to add duplicates
*/
void memb_set_merge (struct in_addr *subset, int subset_entries,
struct in_addr *fullset, int *fullset_entries)
{
int found = 0;
int i;
int j;
for (i = 0; i < subset_entries; i++) {
for (j = 0; j < *fullset_entries; j++) {
if (fullset[j].s_addr == subset[i].s_addr) {
found = 1;
break;
}
}
if (found == 0) {
fullset[j].s_addr = subset[i].s_addr;
*fullset_entries = *fullset_entries + 1;
}
found = 0;
}
return;
}
void memb_set_and (struct in_addr *set1, int set1_entries,
struct in_addr *set2, int set2_entries,
struct in_addr *and, int *and_entries)
{
int i;
int j;
int found = 0;
*and_entries = 0;
for (i = 0; i < set2_entries; i++) {
for (j = 0; j < set1_entries; j++) {
if (set1[j].s_addr == set2[i].s_addr) {
found = 1;
break;
}
}
if (found) {
and[*and_entries].s_addr = set1[j].s_addr;
*and_entries = *and_entries + 1;
}
found = 0;
}
return;
}
void memb_set_print (char *string,
struct in_addr *list, int list_entries)
{
int i;
printf ("List '%s' contains %d entries:\n", string, list_entries);
for (i = 0; i < list_entries; i++) {
printf ("addr %s\n", inet_ntoa (list[i]));
}
}
static void timer_function_orf_token_timeout (void *data);
static void timer_function_token_retransmit_timeout (void *data);
static void timer_function_token_hold_retransmit_timeout (void *data);
static void timer_function_merge_detect_timeout (void *data);
void reset_token_retransmit_timeout (void)
{
poll_timer_delete (*totemsrp_poll_handle,
timer_orf_token_retransmit_timeout);
poll_timer_add (*totemsrp_poll_handle, timeout_token_retransmit, 0,
timer_function_token_retransmit_timeout,
&timer_orf_token_retransmit_timeout);
}
void start_merge_detect_timeout (void)
{
if (my_merge_detect_timeout_outstanding == 0) {
poll_timer_add (*totemsrp_poll_handle, timeout_merge_detect, 0,
timer_function_merge_detect_timeout, &timer_merge_detect_timeout);
my_merge_detect_timeout_outstanding = 1;
}
}
void cancel_merge_detect_timeout (void)
{
poll_timer_delete (*totemsrp_poll_handle, timer_merge_detect_timeout);
my_merge_detect_timeout_outstanding = 0;
}
/*
* ring_state_* is used to save and restore the sort queue
* state when a recovery operation fails (and enters gather)
*/
static int old_ring_state_saved = 0;
static int old_ring_state_aru = 0;
static int old_ring_state_high_seq_received = 0;
static void old_ring_state_save (void)
{
if (old_ring_state_saved == 0) {
old_ring_state_saved = 1;
old_ring_state_aru = my_aru;
old_ring_state_high_seq_received = my_high_seq_received;
totemsrp_log_printf (totemsrp_log_level_notice,
"Saving state aru %d high seq recieved %d\n",
my_aru, my_high_seq_received);
}
}
static int ring_saved = 0;
static void ring_save (void)
{
if (ring_saved == 0) {
ring_saved = 1;
memcpy (&my_old_ring_id, &my_ring_id,
sizeof (struct memb_ring_id));
}
}
static void ring_reset (void)
{
ring_saved = 0;
}
static void ring_state_restore (void)
{
if (old_ring_state_saved) {
my_ring_id.rep.s_addr = 0;
my_aru = old_ring_state_aru;
my_high_seq_received = old_ring_state_high_seq_received;
totemsrp_log_printf (totemsrp_log_level_debug,
"Restoring my_aru %d my high seq received %d\n",
my_aru, my_high_seq_received);
}
}
static void old_ring_state_reset (void)
{
old_ring_state_saved = 0;
}
void reset_token_timeout (void) {
poll_timer_delete (*totemsrp_poll_handle, timer_orf_token_timeout);
poll_timer_add (*totemsrp_poll_handle, timeout_token, (void *)9999,
timer_function_orf_token_timeout, &timer_orf_token_timeout);
}
void cancel_token_timeout (void) {
poll_timer_delete (*totemsrp_poll_handle, timer_orf_token_timeout);
}
void cancel_token_retransmit_timeout (void) {
poll_timer_delete (*totemsrp_poll_handle, timer_orf_token_retransmit_timeout);
}
void start_token_hold_retransmit_timeout (void)
{
poll_timer_add (*totemsrp_poll_handle, timeout_token_hold, (void *)9999,
timer_function_token_hold_retransmit_timeout,
&timer_orf_token_hold_retransmit_timeout);
}
void cancel_token_hold_retransmit_timeout (void)
{
poll_timer_delete (*totemsrp_poll_handle,
timer_orf_token_hold_retransmit_timeout);
}
static void memb_state_consensus_timeout_expired (void)
{
struct in_addr no_consensus_list[PROCESSOR_COUNT_MAX];
int no_consensus_list_entries;
if (memb_consensus_agreed ()) {
memb_consensus_reset ();
memb_consensus_set (&my_id.sin_addr);
reset_token_timeout (); // REVIEWED
} else {
memb_consensus_notset (no_consensus_list,
&no_consensus_list_entries,
my_proc_list, my_proc_list_entries);
memb_set_merge (no_consensus_list, no_consensus_list_entries,
my_failed_list, &my_failed_list_entries);
memb_state_gather_enter ();
}
}
static int memb_join_message_send (void);
static int memb_merge_detect_transmit (void);
/*
* Timers used for various states of the membership algorithm
*/
static void timer_function_orf_token_timeout (void *data)
{
totemsrp_log_printf (totemsrp_log_level_notice,
"The token was lost in state %d from timer %x\n", memb_state, data);
switch (memb_state) {
case MEMB_STATE_OPERATIONAL:
netif_down_check();
memb_state_gather_enter ();
break;
case MEMB_STATE_GATHER:
memb_state_consensus_timeout_expired ();
memb_state_gather_enter ();
break;
case MEMB_STATE_COMMIT:
memb_state_gather_enter ();
break;
case MEMB_STATE_RECOVERY:
ring_state_restore ();
memb_state_gather_enter();
break;
}
}
static void memb_timer_function_state_gather (void *data)
{
switch (memb_state) {
case MEMB_STATE_OPERATIONAL:
case MEMB_STATE_RECOVERY:
assert (0); /* this should never happen */
break;
case MEMB_STATE_GATHER:
case MEMB_STATE_COMMIT:
memb_join_message_send ();
/*
* Restart the join timeout
`*/
poll_timer_delete (*totemsrp_poll_handle, memb_timer_state_gather_join_timeout);
poll_timer_add (*totemsrp_poll_handle, timeout_state_gather_join, 0,
memb_timer_function_state_gather, &memb_timer_state_gather_join_timeout);
break;
}
}
static void memb_timer_function_gather_consensus_timeout (void *data)
{
memb_state_consensus_timeout_expired ();
}
void deliver_messages_from_recovery_to_regular (void)
{
int i;
struct sort_queue_item *recovery_message_item;
struct sort_queue_item regular_message_item;
int res;
void *ptr;
struct mcast *mcast;
totemsrp_log_printf (totemsrp_log_level_debug,
"recovery to regular %d-%d\n", 1, my_aru);
/*
* Move messages from recovery to regular sort queue
*/
// todo should i be initialized to 0 or 1 ?
for (i = 1; i <= my_aru; i++) {
res = sq_item_get (&recovery_sort_queue, i, &ptr);
if (res != 0) {
continue;
}
printf ("Transferring message with seq id %d\n", i);
recovery_message_item = (struct sort_queue_item *)ptr;
/*
* Convert recovery message into regular message
*/
if (recovery_message_item->iov_len > 1) {
mcast = recovery_message_item->iovec[1].iov_base;
memcpy (&regular_message_item.iovec[0],
&recovery_message_item->iovec[1],
sizeof (struct iovec) * recovery_message_item->iov_len);
} else {
mcast = recovery_message_item->iovec[0].iov_base;
totemsrp_log_printf (totemsrp_log_level_notice,
"encapsulated is %d\n",
mcast->header.encapsulated);
if (mcast->header.encapsulated == 1) {
/*
* Message is a recovery message encapsulated
* in a new ring message
*/
regular_message_item.iovec[0].iov_base =
recovery_message_item->iovec[0].iov_base + sizeof (struct mcast);
regular_message_item.iovec[0].iov_len =
recovery_message_item->iovec[0].iov_len - sizeof (struct mcast);
regular_message_item.iov_len = 1;
mcast = regular_message_item.iovec[0].iov_base;
} else {
printf ("not encapsulated\n");
continue; /* TODO this case shouldn't happen */
/*
* Message is originated on new ring and not
* encapsulated
*/
regular_message_item.iovec[0].iov_base =
recovery_message_item->iovec[0].iov_base;
regular_message_item.iovec[0].iov_len =
recovery_message_item->iovec[0].iov_len;
}
}
totemsrp_log_printf (totemsrp_log_level_debug,
"comparing if ring id is for this processors old ring seqno %d\n",
mcast->seq);
/*
* Only add this message to the regular sort
* queue if it was originated with the same ring
* id as the previous ring
*/
if (memcmp (&my_old_ring_id, &mcast->ring_id,
sizeof (struct memb_ring_id)) == 0) {
totemsrp_log_printf (totemsrp_log_level_notice,
"adding msg with seq no %d\n", mcast->seq, mcast->this_seqno);
regular_message_item.iov_len = recovery_message_item->iov_len;
res = sq_item_inuse (&regular_sort_queue, mcast->seq);
if (res == 0) {
sq_item_add (&regular_sort_queue,
&regular_message_item, mcast->seq);
if (mcast->seq > old_ring_state_high_seq_received) {
old_ring_state_high_seq_received = mcast->seq;
}
}
} else {
totemsrp_log_printf (totemsrp_log_level_notice,
"-not adding msg with seq no %d\n", mcast->seq);
}
}
}
/*
* Change states in the state machine of the membership algorithm
*/
static void memb_state_operational_enter (void)
{
struct in_addr joined_list[PROCESSOR_COUNT_MAX];
int joined_list_entries = 0;
struct in_addr left_list[PROCESSOR_COUNT_MAX];
int left_list_entries = 0;
int aru_save;
old_ring_state_reset ();
ring_reset ();
deliver_messages_from_recovery_to_regular ();
totemsrp_log_printf (totemsrp_log_level_debug,
"Delivering to app %d to %d\n",
my_high_delivered + 1, old_ring_state_high_seq_received);
aru_save = my_aru;
my_aru = old_ring_state_aru;
messages_deliver_to_app (0, old_ring_state_high_seq_received);
/*
* Calculate joined and left list
*/
memb_set_subtract (left_list, &left_list_entries,
my_memb_list, my_memb_entries,
my_trans_memb_list, my_trans_memb_entries);
memb_set_subtract (joined_list, &joined_list_entries,
my_new_memb_list, my_new_memb_entries,
my_trans_memb_list, my_trans_memb_entries);
/*
* Deliver transitional configuration to application
*/
totemsrp_confchg_fn (TOTEM_CONFIGURATION_TRANSITIONAL,
my_trans_memb_list, my_trans_memb_entries,
left_list, left_list_entries,
0, 0, &my_ring_id);
// TODO we need to filter to ensure we only deliver those
// messages which are part of my_deliver_memb
messages_deliver_to_app (1, old_ring_state_high_seq_received);
my_aru = aru_save;
/*
* Deliver regular configuration to application
*/
totemsrp_confchg_fn (TOTEM_CONFIGURATION_REGULAR,
my_new_memb_list, my_new_memb_entries,
0, 0,
joined_list, joined_list_entries, &my_ring_id);
/*
* Install new membership
*/
my_memb_entries = my_new_memb_entries;
memcpy (my_memb_list, my_new_memb_list,
sizeof (struct in_addr) * my_memb_entries);
last_released = 0;
my_set_retrans_flg = 0;
/*
* The recovery sort queue now becomes the regular
* sort queue. It is necessary to copy the state
* into the regular sort queue.
*/
sq_copy (&regular_sort_queue, &recovery_sort_queue);
my_last_aru = 0;
my_proc_list_entries = my_new_memb_entries;
memcpy (my_proc_list, my_new_memb_list,
sizeof (struct in_addr) * my_memb_entries);
my_failed_list_entries = 0;
my_high_delivered = my_aru;
// TODO the recovery messages are leaked
totemsrp_log_printf (totemsrp_log_level_notice,
"entering OPERATIONAL state.\n");
memb_state = MEMB_STATE_OPERATIONAL;
return;
}
static void memb_state_gather_enter (void)
{
memb_set_merge (&my_id.sin_addr, 1,
my_proc_list, &my_proc_list_entries);
memb_join_message_send ();
/*
* Restart the join timeout
*/
poll_timer_delete (*totemsrp_poll_handle, memb_timer_state_gather_join_timeout);
poll_timer_add (*totemsrp_poll_handle, timeout_state_gather_join, 0,
memb_timer_function_state_gather, &memb_timer_state_gather_join_timeout);
/*
* Restart the consensus timeout
*/
poll_timer_delete (*totemsrp_poll_handle,
memb_timer_state_gather_consensus_timeout);
poll_timer_add (*totemsrp_poll_handle, timeout_state_gather_consensus, 0,
memb_timer_function_gather_consensus_timeout,
&memb_timer_state_gather_consensus_timeout);
/*
* Cancel the token loss and token retransmission timeouts
*/
cancel_token_retransmit_timeout (); // REVIEWED
cancel_token_timeout (); // REVIEWED
cancel_merge_detect_timeout ();
memb_consensus_reset ();
memb_consensus_set (&my_id.sin_addr);
totemsrp_log_printf (totemsrp_log_level_notice,
"entering GATHER state.\n");
memb_state = MEMB_STATE_GATHER;
return;
}
void timer_function_token_retransmit_timeout (void *data);
static void memb_state_commit_enter (struct memb_commit_token *commit_token)
{
ring_save ();
old_ring_state_save ();
memb_state_commit_token_update (commit_token);
memb_state_commit_token_send (commit_token);
memb_ring_id_store (commit_token);
poll_timer_delete (*totemsrp_poll_handle, memb_timer_state_gather_join_timeout);
memb_timer_state_gather_join_timeout = 0;
poll_timer_delete (*totemsrp_poll_handle, memb_timer_state_gather_consensus_timeout);
memb_timer_state_gather_consensus_timeout = 0;
reset_token_timeout (); // REVIEWED
reset_token_retransmit_timeout (); // REVIEWED
totemsrp_log_printf (totemsrp_log_level_notice,
"entering COMMIT state.\n");
memb_state = MEMB_STATE_COMMIT;
return;
}
void memb_state_recovery_enter (struct memb_commit_token *commit_token)
{
int i;
#ifdef COMPILE_OUT
int local_received_flg = 1;
#endif
unsigned int low_ring_aru;
unsigned int messages_originated = 0;
my_high_ring_delivered = 0;
sq_reinit (&recovery_sort_queue, 0);
queue_reinit (&retrans_message_queue);
low_ring_aru = old_ring_state_high_seq_received;
memb_state_commit_token_send (commit_token);
my_token_seq = -1;
/*
* Build regular configuration
*/
my_new_memb_entries = commit_token->addr_entries;
memcpy (my_new_memb_list, commit_token->addr,
sizeof (struct in_addr) * my_new_memb_entries);
/*
* Build transitional configuration
*/
memb_set_and (my_new_memb_list, my_new_memb_entries,
my_memb_list, my_memb_entries,
my_trans_memb_list, &my_trans_memb_entries);
for (i = 0; i < my_new_memb_entries; i++) {
totemsrp_log_printf (totemsrp_log_level_notice,
"position [%d] member %s:\n", i, inet_ntoa (commit_token->addr[i]));
totemsrp_log_printf (totemsrp_log_level_notice,
"previous ring seq %lld rep %s\n",
commit_token->memb_list[i].ring_id.seq,
inet_ntoa (commit_token->memb_list[i].ring_id.rep));
totemsrp_log_printf (totemsrp_log_level_notice,
"aru %d high delivered %d received flag %d\n",
commit_token->memb_list[i].aru,
commit_token->memb_list[i].high_delivered,
commit_token->memb_list[i].received_flg);
assert (commit_token->memb_list[i].ring_id.rep.s_addr);
}
/*
* Determine if any received flag is false
*/
#ifdef COMPILE_OUT
for (i = 0; i < commit_token->addr_entries; i++) {
if (memb_set_subset (&my_new_memb_list[i], 1,
my_trans_memb_list, my_trans_memb_entries) &&
commit_token->memb_list[i].received_flg == 0) {
#endif
my_deliver_memb_entries = my_trans_memb_entries;
memcpy (my_deliver_memb_list, my_trans_memb_list,
sizeof (struct in_addr) * my_trans_memb_entries);
#ifdef COMPILE_OUT
local_received_flg = 0;
break;
}
}
#endif
// if (local_received_flg == 0) {
/*
* Calculate my_low_ring_aru, my_high_ring_delivered for the transitional membership
*/
for (i = 0; i < commit_token->addr_entries; i++) {
printf ("comparing %d old ring %s.%lld with commit ring %s.%lld.\n", i,
inet_ntoa (my_old_ring_id.rep), my_old_ring_id.seq,
inet_ntoa (commit_token->memb_list[i].ring_id.rep),
commit_token->memb_list[i].ring_id.seq);
printf ("memb set subset %d\n",
memb_set_subset (&my_new_memb_list[i], 1, my_deliver_memb_list, my_deliver_memb_entries));
if (memb_set_subset (&my_new_memb_list[i], 1,
my_deliver_memb_list,
my_deliver_memb_entries) &&
memcmp (&my_old_ring_id,
&commit_token->memb_list[i].ring_id,
sizeof (struct memb_ring_id)) == 0) {
if (low_ring_aru == 0 ||
low_ring_aru > commit_token->memb_list[i].aru) {
low_ring_aru = commit_token->memb_list[i].aru;
}
if (my_high_ring_delivered < commit_token->memb_list[i].high_delivered) {
my_high_ring_delivered = commit_token->memb_list[i].high_delivered;
}
}
}
assert (low_ring_aru != 0xffffffff);
/*
* Cpy all old ring messages to retrans_message_queue
*/
totemsrp_log_printf (totemsrp_log_level_notice,
"copying all old ring messages from %d-%d.\n",
low_ring_aru + 1, old_ring_state_high_seq_received);
for (i = low_ring_aru + 1; i <= old_ring_state_high_seq_received; i++) {
struct sort_queue_item *sort_queue_item;
struct message_item message_item;
void *ptr;
int res;
res = sq_item_get (&regular_sort_queue, i, &ptr);
if (res != 0) {
printf ("-not copying %d-\n", i);
continue;
}
printf ("copying %d\n", i);
sort_queue_item = ptr;
assert (sort_queue_item->iov_len > 0);
assert (sort_queue_item->iov_len <= MAXIOVS);
messages_originated++;
memset (&message_item, 0, sizeof (struct message_item));
// TODO LEAK
message_item.mcast = malloc (sizeof (struct mcast));
assert (message_item.mcast);
memcpy (message_item.mcast, sort_queue_item->iovec[0].iov_base,
sizeof (struct mcast));
memcpy (&message_item.mcast->ring_id, &my_ring_id,
sizeof (struct memb_ring_id));
message_item.mcast->header.encapsulated = 1;
message_item.iov_len = sort_queue_item->iov_len;
memcpy (&message_item.iovec, &sort_queue_item->iovec, sizeof (struct iovec) *
sort_queue_item->iov_len);
queue_item_add (&retrans_message_queue, &message_item);
}
totemsrp_log_printf (totemsrp_log_level_notice,
"Originated %d messages in RECOVERY.\n", messages_originated);
// }
my_aru = 0;
my_aru_count = 0;
my_seq_unchanged = 0;
my_high_seq_received = 0;
my_install_seq = 0;
totemsrp_log_printf (totemsrp_log_level_notice, "entering RECOVERY state.\n");
reset_token_timeout (); // REVIEWED
reset_token_retransmit_timeout (); // REVIEWED
memb_state = MEMB_STATE_RECOVERY;
return;
}
static void encrypt_and_sign (struct iovec *iovec, int iov_len)
{
char *addr = iov_encrypted.iov_base + sizeof (struct security_header);
int i;
char keys[48];
struct security_header *header = iov_encrypted.iov_base;
prng_state keygen_prng_state;
prng_state stream_prng_state;
char *hmac_key = &keys[32];
char *cipher_key = &keys[16];
char *initial_vector = &keys[0];
unsigned long len;
iov_encrypted.iov_len = 0;
memset (keys, 0, sizeof (keys));
memset (header->salt, 0, sizeof (header->salt));
#if (defined(ENCRYPTION) || defined(AUTHENITCATION))
/*
* Generate MAC, CIPHER, IV keys from private key
*/
sober128_read (header->salt, sizeof (header->salt), &totemsrp_prng_state);
sober128_start (&keygen_prng_state);
sober128_add_entropy (totemsrp_private_key, totemsrp_private_key_len, &keygen_prng_state);
sober128_add_entropy (header->salt, sizeof (header->salt), &keygen_prng_state);
sober128_read (keys, sizeof (keys), &keygen_prng_state);
#endif
#ifdef ENCRYPTION
/*
* Setup stream cipher
*/
sober128_start (&stream_prng_state);
sober128_add_entropy (cipher_key, 16, &stream_prng_state);
sober128_add_entropy (initial_vector, 16, &stream_prng_state);
#endif
#ifdef CODE_COVERAGE_COMPILE_OUT
if (log_digest) {
printf ("new encryption\n");
print_digest ("salt", header->salt);
print_digest ("initial_vector", initial_vector);
print_digest ("cipher_key", cipher_key);
print_digest ("hmac_key", hmac_key);
}
#endif
/*
* Copy header of message, then remainder of message, then encrypt it
*/
memcpy (addr, iovec[0].iov_base + sizeof (struct security_header),
iovec[0].iov_len - sizeof (struct security_header));
addr += iovec[0].iov_len - sizeof (struct security_header);
iov_encrypted.iov_len += iovec[0].iov_len;
for (i = 1; i < iov_len; i++) {
memcpy (addr, iovec[i].iov_base, iovec[i].iov_len);
addr += iovec[i].iov_len;
iov_encrypted.iov_len += iovec[i].iov_len;
}
/*
* Encrypt message by XORing stream cipher data
*/
#ifdef ENCRYPTION
sober128_read (iov_encrypted.iov_base + sizeof (struct security_header),
iov_encrypted.iov_len - sizeof (struct security_header),
&stream_prng_state);
#endif
#ifdef AUTHENTICATION
memset (&totemsrp_hmac_state, 0, sizeof (hmac_state));
/*
* Sign the contents of the message with the hmac key and store signature in message
*/
hmac_init (&totemsrp_hmac_state, DIGEST_SHA1, hmac_key, 16);
hmac_process (&totemsrp_hmac_state,
iov_encrypted.iov_base + HMAC_HASH_SIZE,
iov_encrypted.iov_len - HMAC_HASH_SIZE);
len = hash_descriptor[DIGEST_SHA1]->hashsize;
hmac_done (&totemsrp_hmac_state, header->hash_digest, &len);
#endif
#ifdef COMPILE_OUT
print_digest ("initial_vector", initial_vector);
print_digest ("cipher_key", cipher_key);
print_digest ("hmac_key", hmac_key);
print_digest ("salt", header->salt);
print_digest ("sent digest", header->hash_digest);
#endif
}
/*
* Only designed to work with a message with one iov
*/
static int authenticate_and_decrypt (struct iovec *iov)
{
char keys[48];
struct security_header *header = iov[0].iov_base;
prng_state keygen_prng_state;
prng_state stream_prng_state;
char *hmac_key = &keys[32];
char *cipher_key = &keys[16];
char *initial_vector = &keys[0];
char digest_comparison[HMAC_HASH_SIZE];
unsigned long len;
int res = 0;
iov_encrypted.iov_len = 0;
#ifdef COMPILE_OUT
printf ("Decryption message\n");
print_msg (header, iov[0].iov_len);
#endif
#if (defined(ENCRYPTION) || defined(AUTHENITCATION))
/*
* Generate MAC, CIPHER, IV keys from private key
*/
memset (keys, 0, sizeof (keys));
sober128_start (&keygen_prng_state);
sober128_add_entropy (totemsrp_private_key, totemsrp_private_key_len, &keygen_prng_state);
sober128_add_entropy (header->salt, sizeof (header->salt), &keygen_prng_state);
sober128_read (keys, sizeof (keys), &keygen_prng_state);
#endif
#ifdef ENCRYPTION
/*
* Setup stream cipher
*/
sober128_start (&stream_prng_state);
sober128_add_entropy (cipher_key, 16, &stream_prng_state);
sober128_add_entropy (initial_vector, 16, &stream_prng_state);
#endif
#ifdef CODE_COVERAGE_COMPILE_OUT
if (log_digest) {
printf ("New decryption\n");
print_digest ("salt", header->salt);
print_digest ("initial_vector", initial_vector);
print_digest ("cipher_key", cipher_key);
print_digest ("hmac_key", hmac_key);
}
#endif
#ifdef AUTHENTICATION
/*
* Authenticate contents of message
*/
hmac_init (&totemsrp_hmac_state, DIGEST_SHA1, hmac_key, 16);
hmac_process (&totemsrp_hmac_state,
iov->iov_base + HMAC_HASH_SIZE,
iov->iov_len - HMAC_HASH_SIZE);
len = hash_descriptor[DIGEST_SHA1]->hashsize;
assert (HMAC_HASH_SIZE >= len);
hmac_done (&totemsrp_hmac_state, digest_comparison, &len);
#ifdef PRINTDIGESTS
print_digest ("received digest", header->hash_digest);
print_digest ("calculated digest", digest_comparison);
#endif
if (memcmp (digest_comparison, header->hash_digest, len) != 0) {
#ifdef CODE_COVERAGE_COMPILE_OUT
print_digest ("initial_vector", initial_vector);
print_digest ("cipher_key", cipher_key);
print_digest ("hmac_key", hmac_key);
print_digest ("salt", header->salt);
print_digest ("sent digest", header->hash_digest);
print_digest ("calculated digest", digest_comparison);
printf ("received message size %d\n", iov->iov_len);
#endif
totemsrp_log_printf (totemsrp_log_level_security, "Received message has invalid digest... ignoring.\n");
res = -1;
return (-1);
}
#endif /* AUTHENTICATION */
/*
* Decrypt the contents of the message with the cipher key
*/
#ifdef ENCRYPTION
sober128_read (iov->iov_base + sizeof (struct security_header),
iov->iov_len - sizeof (struct security_header),
&stream_prng_state);
#endif
return (res);
return (0);
}
void totemsrp_new_msg_signal (void)
{
token_hold_cancel_send ();
}
int totemsrp_mcast (
struct iovec *iovec,
int iov_len,
int guarantee)
{
int i;
int j;
struct message_item message_item;
if (queue_is_full (&new_message_queue)) {
return (-1);
}
for (j = 0, i = 0; i < iov_len; i++) {
j+= iovec[i].iov_len;
}
memset (&message_item, 0, sizeof (struct message_item));
/*
* Allocate pending item
*/
// TODO LEAK
message_item.mcast = malloc (sizeof (struct mcast));
if (message_item.mcast == 0) {
goto error_mcast;
}
/*
* Set mcast header
*/
message_item.mcast->header.type = MESSAGE_TYPE_MCAST;
message_item.mcast->header.endian_detector = ENDIAN_LOCAL;
message_item.mcast->header.encapsulated = 2;
message_item.mcast->guarantee = guarantee;
message_item.mcast->source.s_addr = my_id.sin_addr.s_addr;
for (i = 0; i < iov_len; i++) {
// TODO LEAK
message_item.iovec[i].iov_base = malloc (iovec[i].iov_len);
if (message_item.iovec[i].iov_base == 0) {
goto error_iovec;
}
memcpy (message_item.iovec[i].iov_base, iovec[i].iov_base,
iovec[i].iov_len);
message_item.iovec[i].iov_len = iovec[i].iov_len;
}
message_item.iov_len = iov_len;
totemsrp_log_printf (totemsrp_log_level_debug, "mcasted message added to pending queue\n");
queue_item_add (&new_message_queue, &message_item);
return (0);
error_iovec:
for (j = 0; j < i; j++) {
free (message_item.iovec[j].iov_base);
}
return (-1);
error_mcast:
return (0);
}
/*
* Determine if there is room to queue a new message
*/
int totemsrp_avail (void)
{
int avail;
queue_avail (&new_message_queue, &avail);
return (avail);
}
static int netif_determine (struct sockaddr_in *bindnet,
struct sockaddr_in *bound_to,
int *interface_up)
{
struct sockaddr_in *sockaddr_in;
int id_fd;
struct ifconf ifc;
int numreqs = 0;
int res;
int i;
in_addr_t mask_addr;
*interface_up = 0;
/*
* Generate list of local interfaces in ifc.ifc_req structure
*/
id_fd = socket (AF_INET, SOCK_STREAM, 0);
ifc.ifc_buf = 0;
do {
numreqs += 32;
ifc.ifc_len = sizeof (struct ifreq) * numreqs;
ifc.ifc_buf = (void *)realloc(ifc.ifc_buf, ifc.ifc_len);
res = ioctl (id_fd, SIOCGIFCONF, &ifc);
if (res < 0) {
close (id_fd);
return -1;
}
} while (ifc.ifc_len == sizeof (struct ifreq) * numreqs);
res = -1;
/*
* Find interface address to bind to
*/
for (i = 0; i < ifc.ifc_len / sizeof (struct ifreq); i++) {
sockaddr_in = (struct sockaddr_in *)&ifc.ifc_ifcu.ifcu_req[i].ifr_ifru.ifru_addr;
mask_addr = inet_addr ("255.255.255.0");
if ((sockaddr_in->sin_family == AF_INET) &&
(sockaddr_in->sin_addr.s_addr & mask_addr) ==
(bindnet->sin_addr.s_addr & mask_addr)) {
bound_to->sin_addr.s_addr = sockaddr_in->sin_addr.s_addr;
res = i;
if (ioctl(id_fd, SIOCGIFFLAGS, &ifc.ifc_ifcu.ifcu_req[i]) < 0) {
printf ("couldn't do ioctl\n");
}
*interface_up = ifc.ifc_ifcu.ifcu_req[i].ifr_ifru.ifru_flags & IFF_UP;
break; /* for */
}
}
free (ifc.ifc_buf);
close (id_fd);
return (res);
}
static int loopback_determine (struct sockaddr_in *bound_to)
{
bound_to->sin_addr.s_addr = LOCALHOST_IP;
if (&bound_to->sin_addr.s_addr == 0) {
return -1;
}
return 1;
}
int firstrun = 0;
/*
* If the interface is up, the sockets for gmi are built. If the interface is down
* this function is requeued in the timer list to retry building the sockets later.
*/
static void timer_function_netif_check_timeout ()
{
int res;
int interface_no;
int interface_up;
/*
* Build sockets for every interface
*/
for (interface_no = 0; interface_no < totemsrp_interface_count; interface_no++) {
netif_determine(&totemsrp_interfaces[interface_no].bindnet,
&totemsrp_interfaces[interface_no].boundto,
&interface_up);
if (((netif_bind_state & BIND_STATE_LOOPBACK) && (!interface_up))
|| ((netif_bind_state & BIND_STATE_REGULAR) && (interface_up))) {
break;
}
totemsrp_log_printf(totemsrp_log_level_debug,"network interface UP %s\n",
inet_ntoa (totemsrp_interfaces[interface_no].boundto.sin_addr));
if (totemsrp_sockets[interface_no].mcast > 0) {
close (totemsrp_sockets[interface_no].mcast);
poll_dispatch_delete (*totemsrp_poll_handle,
totemsrp_sockets[interface_no].mcast);
}
if (totemsrp_sockets[interface_no].token > 0) {
close (totemsrp_sockets[interface_no].token);
poll_dispatch_delete (*totemsrp_poll_handle,
totemsrp_sockets[interface_no].token);
}
if (!interface_up) {
totemsrp_log_printf (totemsrp_log_level_notice,"Interface is down binding to LOOPBACK addr.\n");
netif_bind_state = BIND_STATE_LOOPBACK;
res = totemsrp_build_sockets_loopback(&sockaddr_in_mcast,
&totemsrp_interfaces[interface_no].bindnet,
&totemsrp_sockets[interface_no],
&totemsrp_interfaces[interface_no].boundto);
totemsrp_log_printf (totemsrp_log_level_notice,"network interface LOCAL %s\n",
inet_ntoa (totemsrp_interfaces[interface_no].boundto.sin_addr));
poll_dispatch_add (*totemsrp_poll_handle, totemsrp_sockets[interface_no].token,
POLLIN, 0, recv_handler, UINT_MAX);
continue;
}
netif_bind_state = BIND_STATE_REGULAR;
memcpy(&sockaddr_in_mcast,&config_mcast_addr, sizeof (struct sockaddr_in));
/*
* Create and bind the multicast and unicast sockets
*/
res = totemsrp_build_sockets (&sockaddr_in_mcast,
&totemsrp_interfaces[interface_no].bindnet,
&totemsrp_sockets[interface_no],
&totemsrp_interfaces[interface_no].boundto,
&interface_up);
poll_dispatch_add (*totemsrp_poll_handle, totemsrp_sockets[interface_no].mcast,
POLLIN, 0, recv_handler, UINT_MAX);
poll_dispatch_add (*totemsrp_poll_handle, totemsrp_sockets[interface_no].token,
POLLIN, 0, recv_handler, UINT_MAX);
}
memcpy (&my_id, &totemsrp_interfaces->boundto, sizeof (struct sockaddr_in));
/*
* This stuff depends on totemsrp_build_sockets
*/
if (firstrun == 0) {
firstrun += 1;
memcpy (&my_memb_list[0], &totemsrp_interfaces->boundto,
sizeof (struct sockaddr_in));
memb_ring_id_create_or_load (&my_ring_id);
totemsrp_log_printf (totemsrp_log_level_notice, "Created or loaded sequence id %lld.%s for this ring.\n",
my_ring_id.seq, inet_ntoa (my_ring_id.rep));
}
if (interface_up) {
if (netif_state_report & NETIF_STATE_REPORT_UP) {
totemsrp_log_printf (totemsrp_log_level_notice,
" The network interface is now up.\n");
netif_state_report = NETIF_STATE_REPORT_DOWN;
memb_state_gather_enter ();
}
/*
* If this is a single processor, detect downs which may not
* be detected by token loss when the interface is downed
*/
if (my_memb_entries <= 1) {
poll_timer_add (*totemsrp_poll_handle, timeout_downcheck, (void *)1,
timer_function_netif_check_timeout,
&timer_netif_check_timeout);
}
} else {
if (netif_state_report & NETIF_STATE_REPORT_DOWN) {
totemsrp_log_printf (totemsrp_log_level_notice,
"The network interface is down.\n");
memb_state_gather_enter ();
}
netif_state_report = NETIF_STATE_REPORT_UP;
/*
* Add a timer to retry building interfaces and request memb_gather_enter
*/
cancel_token_retransmit_timeout ();
cancel_token_timeout ();
poll_timer_add (*totemsrp_poll_handle, timeout_downcheck, (void *)1,
timer_function_netif_check_timeout,
&timer_netif_check_timeout);
}
}
/*
* Check if an interface is down and reconfigure
* totemsrp waiting for it to come back up
*/
static void netif_down_check (void)
{
timer_function_netif_check_timeout ();
}
static int totemsrp_build_sockets_loopback (struct sockaddr_in *sockaddr_mcast,
struct sockaddr_in *sockaddr_bindnet,
struct totemsrp_socket *sockets,
struct sockaddr_in *bound_to)
{
struct ip_mreq mreq;
struct sockaddr_in sockaddr_in;
int res;
memset (&mreq, 0, sizeof (struct ip_mreq));
/*
* Determine the ip address bound to and the interface name
*/
res = loopback_determine (bound_to);
if (res == -1) {
return (-1);
}
/* TODO this should be somewhere else */
memb_local_sockaddr_in.sin_addr.s_addr = bound_to->sin_addr.s_addr;
memb_local_sockaddr_in.sin_family = AF_INET;
memb_local_sockaddr_in.sin_port = sockaddr_mcast->sin_port;
sockaddr_in.sin_family = AF_INET;
sockaddr_in.sin_port = sockaddr_mcast->sin_port;
/*
* Setup unicast socket
*/
sockets->token = socket (AF_INET, SOCK_DGRAM, 0);
if (sockets->token == -1) {
perror ("socket2");
return (-1);
}
/*
* Bind to unicast socket used for token send/receives
* This has the side effect of binding to the correct interface
*/
sockaddr_in.sin_addr.s_addr = bound_to->sin_addr.s_addr;
res = bind (sockets->token, (struct sockaddr *)&sockaddr_in,
sizeof (struct sockaddr_in));
if (res == -1) {
perror ("bind2 failed");
return (-1);
}
memcpy(&sockaddr_in_mcast, &sockaddr_in, sizeof(struct sockaddr_in));
sockets->mcast = sockets->token;
return (0);
}
static int totemsrp_build_sockets (struct sockaddr_in *sockaddr_mcast,
struct sockaddr_in *sockaddr_bindnet,
struct totemsrp_socket *sockets,
struct sockaddr_in *bound_to,
int *interface_up)
{
struct ip_mreq mreq;
struct sockaddr_in sockaddr_in;
char flag;
int res;
memset (&mreq, 0, sizeof (struct ip_mreq));
/*
* Determine the ip address bound to and the interface name
*/
res = netif_determine (sockaddr_bindnet,
bound_to,
interface_up);
if (res == -1) {
return (-1);
}
/* TODO this should be somewhere else */
memb_local_sockaddr_in.sin_addr.s_addr = bound_to->sin_addr.s_addr;
memb_local_sockaddr_in.sin_family = AF_INET;
memb_local_sockaddr_in.sin_port = sockaddr_mcast->sin_port;
/*
* Create multicast socket
*/
sockets->mcast = socket (AF_INET, SOCK_DGRAM, 0);
if (sockets->mcast == -1) {
perror ("socket");
return (-1);
}
if (setsockopt (sockets->mcast, SOL_IP, IP_MULTICAST_IF,
&bound_to->sin_addr, sizeof (struct in_addr)) < 0) {
totemsrp_log_printf (totemsrp_log_level_warning, "Could not bind to device for multicast, group messaging may not work properly. (%s)\n", strerror (errno));
}
/*
* Bind to multicast socket used for multicast send/receives
*/
sockaddr_in.sin_family = AF_INET;
sockaddr_in.sin_addr.s_addr = sockaddr_mcast->sin_addr.s_addr;
sockaddr_in.sin_port = sockaddr_mcast->sin_port;
res = bind (sockets->mcast, (struct sockaddr *)&sockaddr_in,
sizeof (struct sockaddr_in));
if (res == -1) {
perror ("bind failed");
return (-1);
}
/*
* Setup unicast socket
*/
sockets->token = socket (AF_INET, SOCK_DGRAM, 0);
if (sockets->token == -1) {
perror ("socket2");
return (-1);
}
/*
* Bind to unicast socket used for token send/receives
* This has the side effect of binding to the correct interface
*/
sockaddr_in.sin_addr.s_addr = bound_to->sin_addr.s_addr;
res = bind (sockets->token, (struct sockaddr *)&sockaddr_in,
sizeof (struct sockaddr_in));
if (res == -1) {
perror ("bind2 failed");
return (-1);
}
#ifdef CONFIG_USE_BROADCAST
/* This config option doesn't work */
{
int on = 1;
setsockopt (sockets->mcast, SOL_SOCKET, SO_BROADCAST, (char *)&on, sizeof (on));
}
#else
/*
* Join group membership on socket
*/
mreq.imr_multiaddr.s_addr = sockaddr_mcast->sin_addr.s_addr;
mreq.imr_interface.s_addr = bound_to->sin_addr.s_addr;
res = setsockopt (sockets->mcast, IPPROTO_IP, IP_ADD_MEMBERSHIP,
&mreq, sizeof (mreq));
if (res == -1) {
perror ("join multicast group failed");
return (-1);
}
#endif
/*
* Turn on multicast loopback
*/
flag = 1;
res = setsockopt (sockets->mcast, IPPROTO_IP, IP_MULTICAST_LOOP,
&flag, sizeof (flag));
if (res == -1) {
perror ("turn off loopback");
return (-1);
}
return (0);
}
/*
* Misc Management
*/
int in_addr_compare (const void *a, const void *b) {
struct in_addr *in_addr_a = (struct in_addr *)a;
struct in_addr *in_addr_b = (struct in_addr *)b;
return (in_addr_a->s_addr > in_addr_b->s_addr);
}
/*
* ORF Token Management
*/
/*
* Recast message to mcast group if it is available
*/
int orf_token_remcast (int seq) {
struct msghdr msg_mcast;
struct sort_queue_item *sort_queue_item;
int res;
struct mcast *mcast;
void *ptr;
struct sq *sort_queue;
if (memb_state == MEMB_STATE_RECOVERY) {
sort_queue = &recovery_sort_queue;
} else {
sort_queue = &regular_sort_queue;
}
/*
* Get RTR item at seq, if not available, return
*/
res = sq_item_get (sort_queue, seq, &ptr);
if (res != 0) {
return -1;
}
sort_queue_item = ptr;
mcast = (struct mcast *)sort_queue_item->iovec[0].iov_base;
encrypt_and_sign (sort_queue_item->iovec, sort_queue_item->iov_len);
/*
* Build multicast message
*/
msg_mcast.msg_name = (caddr_t)&sockaddr_in_mcast;
msg_mcast.msg_namelen = sizeof (struct sockaddr_in);
msg_mcast.msg_iov = &iov_encrypted;
msg_mcast.msg_iovlen = 1;
msg_mcast.msg_control = 0;
msg_mcast.msg_controllen = 0;
msg_mcast.msg_flags = 0;
/*
* Multicast message
*/
res = sendmsg (totemsrp_sockets[0].mcast, &msg_mcast, MSG_NOSIGNAL | MSG_DONTWAIT);
if (res == -1) {
return (-1);
}
stats_sent += res;
return (0);
}
/*
* Free all freeable messages from ring
*/
static int messages_free (int token_aru)
{
struct sort_queue_item *regular_message;
int i, j;
int res;
int log_release = 0;
int release_to;
release_to = token_aru;
if (release_to > my_last_aru) {
release_to = my_last_aru;
}
if (release_to > my_high_delivered) {
release_to = my_high_delivered;
}
/*
* Release retransmit list items if group aru indicates they are transmitted
*/
for (i = last_released; i <= release_to; i++) {
void *ptr;
res = sq_item_get (&regular_sort_queue, i, &ptr);
if (res == 0) {
regular_message = ptr;
for (j = 0; j < regular_message->iov_len; j++) {
free (regular_message->iovec[j].iov_base);
}
}
sq_items_release (&regular_sort_queue, i);
last_released = i + 1;
log_release = 1;
}
if (log_release) {
totemsrp_log_printf (totemsrp_log_level_debug,
"releasing messages up to and including %d\n", release_to);
}
return (0);
}
void update_aru (void)
{
int i;
int res;
struct sq *sort_queue;
if (memb_state == MEMB_STATE_RECOVERY) {
sort_queue = &recovery_sort_queue;
} else {
sort_queue = &regular_sort_queue;
}
for (i = my_aru + 1; i <= my_high_seq_received; i++) {
void *ptr;
res = sq_item_get (sort_queue, i, &ptr);
/*
* If hole, stop assembly
*/
if (res != 0) {
break;
}
my_aru = i;
}
// totemsrp_log_printf (totemsrp_log_level_debug,
// "setting received flag to FALSE %d %d\n",
// my_aru, my_high_seq_received);
my_received_flg = 0;
if (my_aru == my_high_seq_received) {
// totemsrp_log_printf (totemsrp_log_level_debug,
// "setting received flag to TRUE %d %d\n",
// my_aru, my_high_seq_received);
my_received_flg = 1;
}
}
/*
* Multicasts pending messages onto the ring (requires orf_token possession)
*/
static int orf_token_mcast (
struct orf_token *token,
int fcc_mcasts_allowed,
struct sockaddr_in *system_from)
{
struct msghdr msg_mcast;
struct sort_queue_item sort_queue_item;
struct message_item *message_item = 0;
int res = 0;
struct mcast *mcast;
struct queue *mcast_queue;
struct sq *sort_queue;
if (memb_state == MEMB_STATE_RECOVERY) {
mcast_queue = &retrans_message_queue;
sort_queue = &recovery_sort_queue;
reset_token_retransmit_timeout (); // REVIEWED
} else {
mcast_queue = &new_message_queue;
sort_queue = &regular_sort_queue;
}
for (fcc_mcast_current = 0; fcc_mcast_current < fcc_mcasts_allowed; fcc_mcast_current++) {
if (queue_is_empty (mcast_queue)) {
break;
}
message_item = (struct message_item *)queue_item_get (mcast_queue);
/* preincrement required by algo */
if (old_ring_state_saved &&
(memb_state == MEMB_STATE_GATHER ||
memb_state == MEMB_STATE_COMMIT)) {
totemsrp_log_printf (totemsrp_log_level_debug,
"not multicasting at seqno is %d\n",
token->seq);
return (0);
}
message_item->mcast->seq = ++token->seq;
message_item->mcast->this_seqno = global_seqno++;
/*
* Build IO vector
*/
memset (&sort_queue_item, 0, sizeof (struct sort_queue_item));
sort_queue_item.iovec[0].iov_base = message_item->mcast;
sort_queue_item.iovec[0].iov_len = sizeof (struct mcast);
mcast = sort_queue_item.iovec[0].iov_base;
memcpy (&sort_queue_item.iovec[1], message_item->iovec,
message_item->iov_len * sizeof (struct iovec));
memcpy (&mcast->ring_id, &my_ring_id, sizeof (struct memb_ring_id));
sort_queue_item.iov_len = message_item->iov_len + 1;
assert (sort_queue_item.iov_len < 16);
/*
* Add message to retransmit queue
*/
sq_item_add (sort_queue,
&sort_queue_item, message_item->mcast->seq);
// XXX printf ("ORIG [%s.%d-%d]\n", inet_ntoa (message_item->mcast->source),
// XXX message_item->mcast->seq, message_item->mcast->this_seqno);
/*
* Delete item from pending queue
*/
queue_item_remove (mcast_queue);
/*
* Encrypt and digest the message
*/
encrypt_and_sign (sort_queue_item.iovec, sort_queue_item.iov_len);
/*
* Build multicast message
*/
msg_mcast.msg_name = &sockaddr_in_mcast;
msg_mcast.msg_namelen = sizeof (struct sockaddr_in);
msg_mcast.msg_iov = &iov_encrypted;
msg_mcast.msg_iovlen = 1;
msg_mcast.msg_control = 0;
msg_mcast.msg_controllen = 0;
msg_mcast.msg_flags = 0;
/*
* Multicast message
* An error here is recovered by the multicast algorithm
*/
res = sendmsg (totemsrp_sockets[0].mcast, &msg_mcast, MSG_NOSIGNAL | MSG_DONTWAIT);
iov_encrypted.iov_len = PACKET_SIZE_MAX;
if (res > 0) {
stats_sent += res;
}
}
assert (fcc_mcast_current < 100);
/*
* If messages mcasted, deliver any new messages to totemg
*/
if (fcc_mcast_current) {
my_do_delivery = 1;
}
my_high_seq_received = token->seq;
update_aru ();
/*
* Return 1 if more messages are available for single node clusters
*/
return (fcc_mcast_current);
}
/*
* Remulticasts messages in orf_token's retransmit list (requires orf_token)
* Modify's orf_token's rtr to include retransmits required by this process
*/
static int orf_token_rtr (
struct orf_token *orf_token,
int *fcc_allowed)
{
int res;
int i, j;
int found;
int total_entries;
struct sq *sort_queue;
struct rtr_item *rtr_list;
if (memb_state == MEMB_STATE_RECOVERY) {
sort_queue = &recovery_sort_queue;
} else {
sort_queue = &regular_sort_queue;
}
rtr_list = &orf_token->rtr_list[0];
if (orf_token->rtr_list_entries) {
totemsrp_log_printf (totemsrp_log_level_debug,
"Retransmit List %d\n", orf_token->rtr_list_entries);
for (i = 0; i < orf_token->rtr_list_entries; i++) {
totemsrp_log_printf (totemsrp_log_level_debug,
"%d ", rtr_list[i].seq);
}
totemsrp_log_printf (totemsrp_log_level_debug, "\n");
}
total_entries = orf_token->rtr_list_entries;
/*
* Retransmit messages on orf_token's RTR list from RTR queue
*/
for (fcc_remcast_current = 0, i = 0;
fcc_remcast_current <= *fcc_allowed && i < orf_token->rtr_list_entries;) {
/*
* If this retransmit request isn't from this configuration,
* try next rtr entry
*/
if (memcmp (&rtr_list[i].ring_id, &my_ring_id,
sizeof (struct memb_ring_id)) != 0) {
i += 1;
continue;
}
assert (rtr_list[i].seq > 0);
res = orf_token_remcast (rtr_list[i].seq);
if (res == 0) {
/*
* Multicasted message, so no need to copy to new retransmit list
*/
orf_token->rtr_list_entries -= 1;
assert (orf_token->rtr_list_entries >= 0);
memmove (&rtr_list[i], &rtr_list[i + 1],
sizeof (struct rtr_item) * (orf_token->rtr_list_entries));
fcc_remcast_current++;
stats_remcasts++;
} else {
i += 1;
}
}
*fcc_allowed = *fcc_allowed - fcc_remcast_current - 1;
#ifdef COMPILE_OUT
for (i = 0; i < orf_token->rtr_list_entries; i++) {
assert (rtr_list_old[index_old].seq != -1);
}
#endif
/*
* Add messages to retransmit to RTR list
* but only retry if there is room in the retransmit list
*/
for (i = my_aru + 1;
orf_token->rtr_list_entries < RETRANSMIT_ENTRIES_MAX &&
i <= my_high_seq_received;
i++) {
/*
* Find if a message is missing from this processor
*/
res = sq_item_inuse (sort_queue, i);
if (res == 0) {
/*
* Determine if missing message is already in retransmit list
*/
found = 0;
for (j = 0; j < orf_token->rtr_list_entries; j++) {
if (i == rtr_list[j].seq) {
found = 1;
}
}
if (found == 0) {
/*
* Missing message not found in current retransmit list so add it
*/
memcpy (&rtr_list[orf_token->rtr_list_entries].ring_id,
&my_ring_id, sizeof (struct memb_ring_id));
rtr_list[orf_token->rtr_list_entries].seq = i;
orf_token->rtr_list_entries++;
}
}
}
return (fcc_remcast_current);
}
void token_retransmit (void) {
struct iovec iovec;
struct msghdr msg_orf_token;
int res;
iovec.iov_base = orf_token_retransmit;
iovec.iov_len = orf_token_retransmit_size;
msg_orf_token.msg_name = &next_memb;
msg_orf_token.msg_namelen = sizeof (struct sockaddr_in);
msg_orf_token.msg_iov = &iovec;
msg_orf_token.msg_iovlen = 1;
msg_orf_token.msg_control = 0;
msg_orf_token.msg_controllen = 0;
msg_orf_token.msg_flags = 0;
res = sendmsg (totemsrp_sockets[0].token, &msg_orf_token, MSG_NOSIGNAL);
}
/*
* Retransmit the regular token if no mcast or token has
* been received in retransmit token period retransmit
* the token to the next processor
*/
void timer_function_token_retransmit_timeout (void *data)
{
switch (memb_state) {
case MEMB_STATE_GATHER:
break;
case MEMB_STATE_COMMIT:
break;
case MEMB_STATE_OPERATIONAL:
case MEMB_STATE_RECOVERY:
token_retransmit ();
reset_token_retransmit_timeout (); // REVIEWED
break;
}
}
void timer_function_token_hold_retransmit_timeout (void *data)
{
switch (memb_state) {
case MEMB_STATE_GATHER:
break;
case MEMB_STATE_COMMIT:
break;
case MEMB_STATE_OPERATIONAL:
case MEMB_STATE_RECOVERY:
token_retransmit ();
break;
}
}
void timer_function_merge_detect_timeout(void *data)
{
my_merge_detect_timeout_outstanding = 0;
switch (memb_state) {
case MEMB_STATE_OPERATIONAL:
if (my_ring_id.rep.s_addr == my_id.sin_addr.s_addr) {
memb_merge_detect_transmit ();
}
break;
case MEMB_STATE_GATHER:
case MEMB_STATE_COMMIT:
case MEMB_STATE_RECOVERY:
break;
}
}
/*
* Send orf_token to next member (requires orf_token)
*/
static int token_send (
struct orf_token *orf_token,
int forward_token)
{
struct msghdr msg_orf_token;
struct iovec iovec;
int res;
iovec.iov_base = (char *)orf_token;
iovec.iov_len = sizeof (struct orf_token) +
(orf_token->rtr_list_entries * sizeof (struct rtr_item));
encrypt_and_sign (&iovec, 1);
/*
* Keep an encrypted copy in case the token retransmit timer expires
*/
memcpy (orf_token_retransmit, iov_encrypted.iov_base, iov_encrypted.iov_len);
orf_token_retransmit_size = iov_encrypted.iov_len;
/*
* IF the user doesn't want the token forwarded, then dont send
* it but keep an encrypted copy for the retransmit timeout
*/
if (forward_token == 0) {
return (0);
}
/*
* Send the message
*/
msg_orf_token.msg_name = &next_memb;
msg_orf_token.msg_namelen = sizeof (struct sockaddr_in);
msg_orf_token.msg_iov = &iov_encrypted;
msg_orf_token.msg_iovlen = 1;
msg_orf_token.msg_control = 0;
msg_orf_token.msg_controllen = 0;
msg_orf_token.msg_flags = 0;
res = sendmsg (totemsrp_sockets[0].token, &msg_orf_token, MSG_NOSIGNAL);
if (res == -1) {
totemsrp_log_printf (totemsrp_log_level_notice,
"Couldn't send token to addr %s %s %d\n",
inet_ntoa (next_memb.sin_addr),
strerror (errno), totemsrp_sockets[0].token);
}
/*
* res not used here errors are handled by algorithm
*/
if (res > 0) {
stats_sent += res;
}
return (res);
}
static int token_hold_cancel_send (void)
{
struct token_hold_cancel token_hold_cancel;
struct iovec iov;
struct msghdr msghdr;
/*
* Only cancel if the token is currently held
*/
if (my_token_held == 0) {
return (0);
}
my_token_held = 0;
/*
* Build message
*/
token_hold_cancel.header.type = MESSAGE_TYPE_TOKEN_HOLD_CANCEL;
token_hold_cancel.header.endian_detector = ENDIAN_LOCAL;
memcpy (&token_hold_cancel.ring_id, &my_ring_id,
sizeof (struct memb_ring_id));
iov.iov_base = &token_hold_cancel;
iov.iov_len = sizeof (struct token_hold_cancel);
encrypt_and_sign (&iov, 1);
/*
* Build multicast message
*/
msghdr.msg_name = (caddr_t)&sockaddr_in_mcast;
msghdr.msg_namelen = sizeof (struct sockaddr_in);
msghdr.msg_iov = &iov_encrypted;
msghdr.msg_iovlen = 1;
msghdr.msg_control = 0;
msghdr.msg_controllen = 0;
msghdr.msg_flags = 0;
/*
* Multicast message
*/
sendmsg (totemsrp_sockets[0].mcast, &msghdr, MSG_NOSIGNAL | MSG_DONTWAIT);
return (0);
}
int orf_token_send_initial (void)
{
struct orf_token orf_token;
int res;
orf_token.header.type = MESSAGE_TYPE_ORF_TOKEN;
orf_token.header.endian_detector = ENDIAN_LOCAL;
orf_token.header.encapsulated = 0;
orf_token.seq = 0;
orf_token.token_seq = 0;
orf_token.retrans_flg = 1;
my_set_retrans_flg = 1;
/*
if (queue_is_empty (&retrans_message_queue) == 1) {
orf_token.retrans_flg = 0;
} else {
orf_token.retrans_flg = 1;
my_set_retrans_flg = 1;
}
*/
orf_token.aru = 0;
// orf_token.aru_addr.s_addr = 0;//my_id.sin_addr.s_addr;
orf_token.aru_addr.s_addr = my_id.sin_addr.s_addr;
memcpy (&orf_token.ring_id, &my_ring_id, sizeof (struct memb_ring_id));
orf_token.fcc = 0;
orf_token.rtr_list_entries = 0;
res = token_send (&orf_token, 1);
return (res);
}
static void memb_state_commit_token_update (struct memb_commit_token *memb_commit_token)
{
int memb_index_this;
memb_index_this = (memb_commit_token->memb_index + 1) % memb_commit_token->addr_entries;
memcpy (&memb_commit_token->memb_list[memb_index_this].ring_id,
&my_old_ring_id, sizeof (struct memb_ring_id));
assert (my_old_ring_id.rep.s_addr != 0);
memb_commit_token->memb_list[memb_index_this].aru = old_ring_state_aru;
/*
* TODO high delivered is really my_aru, but with safe this
* could change?
*/
memb_commit_token->memb_list[memb_index_this].high_delivered = my_high_delivered;
memb_commit_token->memb_list[memb_index_this].received_flg = my_received_flg;
}
static int memb_state_commit_token_send (struct memb_commit_token *memb_commit_token)
{
struct msghdr msghdr;
struct iovec iovec;
int res;
int memb_index_this;
int memb_index_next;
memb_commit_token->token_seq++;
memb_index_this = (memb_commit_token->memb_index + 1) % memb_commit_token->addr_entries;
memb_index_next = (memb_index_this + 1) % memb_commit_token->addr_entries;
memb_commit_token->memb_index = memb_index_this;
iovec.iov_base = memb_commit_token;
iovec.iov_len = sizeof (struct memb_commit_token);
encrypt_and_sign (&iovec, 1);
next_memb.sin_addr.s_addr = memb_commit_token->addr[memb_index_next].s_addr;
next_memb.sin_family = AF_INET;
next_memb.sin_port = sockaddr_in_mcast.sin_port;
msghdr.msg_name = &next_memb;
msghdr.msg_namelen = sizeof (struct sockaddr_in);
msghdr.msg_iov = &iov_encrypted;
msghdr.msg_iovlen = 1;
msghdr.msg_control = 0;
msghdr.msg_controllen = 0;
msghdr.msg_flags = 0;
res = sendmsg (totemsrp_sockets[0].token, &msghdr, MSG_NOSIGNAL | MSG_DONTWAIT);
return (res);
}
int memb_lowest_in_config (void)
{
struct in_addr token_memb[PROCESSOR_COUNT_MAX];
int token_memb_entries = 0;
struct in_addr lowest_addr;
int i;
lowest_addr.s_addr = 0xFFFFFFFF;
memb_set_subtract (token_memb, &token_memb_entries,
my_proc_list, my_proc_list_entries,
my_failed_list, my_failed_list_entries);
/*
* find representative by searching for smallest identifier
*/
for (i = 0; i < token_memb_entries; i++) {
if (lowest_addr.s_addr > token_memb[i].s_addr) {
lowest_addr.s_addr = token_memb[i].s_addr;
}
}
return (my_id.sin_addr.s_addr == lowest_addr.s_addr);
}
static void memb_state_commit_token_create (struct memb_commit_token *commit_token)
{
struct in_addr token_memb[PROCESSOR_COUNT_MAX];
int token_memb_entries = 0;
totemsrp_log_printf (totemsrp_log_level_notice,
"Creating commit token because I am the rep.\n");
memb_set_subtract (token_memb, &token_memb_entries,
my_proc_list, my_proc_list_entries,
my_failed_list, my_failed_list_entries);
memset (commit_token, 0, sizeof (struct memb_commit_token));
commit_token->header.type = MESSAGE_TYPE_MEMB_COMMIT_TOKEN;
commit_token->header.endian_detector = ENDIAN_LOCAL;
commit_token->header.encapsulated = 0;
commit_token->ring_id.rep.s_addr = my_id.sin_addr.s_addr;
commit_token->ring_id.seq = token_ring_id_seq + 4;
qsort (token_memb, token_memb_entries,
sizeof (struct in_addr), in_addr_compare);
memcpy (commit_token->addr, token_memb,
token_memb_entries * sizeof (struct in_addr));
memset (commit_token->memb_list, 0,
sizeof (struct memb_commit_token_memb_entry) * PROCESSOR_COUNT_MAX);
commit_token->memb_index = token_memb_entries - 1;
commit_token->addr_entries = token_memb_entries;
}
int memb_join_message_send (void)
{
struct msghdr msghdr;
struct iovec iovec;
struct memb_join memb_join;
int res;
memb_join.header.type = MESSAGE_TYPE_MEMB_JOIN;
memb_join.header.endian_detector = ENDIAN_LOCAL;
memb_join.header.encapsulated = 0;
memb_join.ring_seq = my_ring_id.seq;
memcpy (memb_join.proc_list, my_proc_list,
my_proc_list_entries * sizeof (struct in_addr));
memb_join.proc_list_entries = my_proc_list_entries;
memcpy (memb_join.failed_list, my_failed_list,
my_failed_list_entries * sizeof (struct in_addr));
memb_join.failed_list_entries = my_failed_list_entries;
iovec.iov_base = &memb_join;
iovec.iov_len = sizeof (struct memb_join);
encrypt_and_sign (&iovec, 1);
msghdr.msg_name = &sockaddr_in_mcast;
msghdr.msg_namelen = sizeof (struct sockaddr_in);
msghdr.msg_iov = &iov_encrypted;
msghdr.msg_iovlen = 1;
msghdr.msg_control = 0;
msghdr.msg_controllen = 0;
msghdr.msg_flags = 0;
res = sendmsg (totemsrp_sockets[0].mcast, &msghdr, MSG_NOSIGNAL | MSG_DONTWAIT);
return (res);
}
static int memb_merge_detect_transmit (void)
{
struct msghdr msghdr;
struct iovec iovec;
struct memb_merge_detect memb_merge_detect;
int res;
memb_merge_detect.header.type = MESSAGE_TYPE_MEMB_MERGE_DETECT;
memb_merge_detect.header.endian_detector = ENDIAN_LOCAL;
memb_merge_detect.header.encapsulated = 0;
memcpy (&memb_merge_detect.ring_id, &my_ring_id,
sizeof (struct memb_ring_id));
iovec.iov_base = &memb_merge_detect;
iovec.iov_len = sizeof (struct memb_merge_detect);
encrypt_and_sign (&iovec, 1);
msghdr.msg_name = &sockaddr_in_mcast;
msghdr.msg_namelen = sizeof (struct sockaddr_in);
msghdr.msg_iov = &iov_encrypted;
msghdr.msg_iovlen = 1;
msghdr.msg_control = 0;
msghdr.msg_controllen = 0;
msghdr.msg_flags = 0;
res = sendmsg (totemsrp_sockets[0].mcast, &msghdr, MSG_NOSIGNAL | MSG_DONTWAIT);
return (res);
}
static void memb_ring_id_create_or_load (
struct memb_ring_id *memb_ring_id)
{
int fd;
int res;
char filename[256];
sprintf (filename, "/tmp/ringid_%s",
inet_ntoa (my_id.sin_addr));
fd = open (filename, O_RDONLY, 0777);
if (fd > 0) {
res = read (fd, &memb_ring_id->seq, sizeof (unsigned long long));
assert (res == sizeof (unsigned long long));
close (fd);
} else
if (fd == -1 && errno == ENOENT) {
memb_ring_id->seq = 0;
umask(0);
fd = open (filename, O_CREAT|O_RDWR, 0777);
if (fd == -1) {
printf ("couldn't create file %d %s\n", fd, strerror(errno));
}
res = write (fd, &memb_ring_id->seq, sizeof (unsigned long long));
assert (res == sizeof (unsigned long long));
close (fd);
} else {
totemsrp_log_printf (totemsrp_log_level_warning,
"Couldn't open %s %s\n", filename, strerror (errno));
}
memb_ring_id->rep.s_addr = my_id.sin_addr.s_addr;
assert (memb_ring_id->rep.s_addr);
token_ring_id_seq = memb_ring_id->seq;
}
static void memb_ring_id_store (
struct memb_commit_token *commit_token)
{
char filename[256];
int fd;
int res;
sprintf (filename, "/tmp/ringid_%s",
inet_ntoa (my_id.sin_addr));
fd = open (filename, O_WRONLY, 0777);
if (fd == -1) {
fd = open (filename, O_CREAT|O_RDWR, 0777);
}
if (fd == -1) {
totemsrp_log_printf (totemsrp_log_level_warning,
"Couldn't store new ring id %llx to stable storage (%s)\n",
commit_token->ring_id.seq, strerror (errno));
assert (0);
return;
}
totemsrp_log_printf (totemsrp_log_level_notice,
"Storing new sequence id for ring %d\n", commit_token->ring_id.seq);
assert (fd > 0);
res = write (fd, &commit_token->ring_id.seq, sizeof (unsigned long long));
assert (res == sizeof (unsigned long long));
close (fd);
memcpy (&my_ring_id, &commit_token->ring_id, sizeof (struct memb_ring_id));
token_ring_id_seq = my_ring_id.seq;
}
void print_stats (void)
{
struct timeval tv_end;
gettimeofday (&tv_end, NULL);
totemsrp_log_printf (totemsrp_log_level_notice, "Bytes recv %d\n", stats_recv);
totemsrp_log_printf (totemsrp_log_level_notice, "Bytes sent %d\n", stats_sent);
totemsrp_log_printf (totemsrp_log_level_notice, "Messages delivered %d\n", stats_delv);
totemsrp_log_printf (totemsrp_log_level_notice, "Re-Mcasts %d\n", stats_remcasts);
totemsrp_log_printf (totemsrp_log_level_notice, "Tokens process %d\n", stats_orf_token);
}
int totemsrp_callback_token_create (void **handle_out,
enum totem_callback_token_type type,
int delete,
int (*callback_fn) (enum totem_callback_token_type type, void *),
void *data)
{
struct token_callback_instance *handle;
handle = (struct token_callback_instance *)malloc (sizeof (struct token_callback_instance));
if (handle == 0) {
return (-1);
}
*handle_out = (void *)handle;
list_init (&handle->list);
handle->callback_fn = callback_fn;
handle->data = data;
handle->callback_type = type;
handle->delete = delete;
switch (type) {
case TOTEM_CALLBACK_TOKEN_RECEIVED:
list_add (&handle->list, &token_callback_received_listhead);
break;
case TOTEM_CALLBACK_TOKEN_SENT:
list_add (&handle->list, &token_callback_sent_listhead);
break;
}
return (0);
}
void totemsrp_callback_token_destroy (void **handle_out)
{
struct token_callback_instance *h;
if (*handle_out) {
h = (struct token_callback_instance *)*handle_out;
list_del (&h->list);
free (h);
h = NULL;
*handle_out = 0;
}
}
void totem_callback_token_type (void *handle)
{
struct token_callback_instance *token_callback_instance = (struct token_callback_instance *)handle;
list_del (&token_callback_instance->list);
free (token_callback_instance);
}
static void token_callbacks_execute (enum totem_callback_token_type type)
{
struct list_head *list;
struct list_head *list_next;
struct list_head *callback_listhead = 0;
struct token_callback_instance *token_callback_instance;
int res;
int del;
switch (type) {
case TOTEM_CALLBACK_TOKEN_RECEIVED:
callback_listhead = &token_callback_received_listhead;
break;
case TOTEM_CALLBACK_TOKEN_SENT:
callback_listhead = &token_callback_sent_listhead;
break;
default:
assert (0);
}
for (list = callback_listhead->next; list != callback_listhead;
list = list_next) {
token_callback_instance = list_entry (list, struct token_callback_instance, list);
list_next = list->next;
del = token_callback_instance->delete;
if (del == 1) {
list_del (list);
}
res = token_callback_instance->callback_fn (
token_callback_instance->callback_type,
token_callback_instance->data);
/*
* This callback failed to execute, try it again on the next token
*/
if (res == -1 && del == 1) {
list_add (list, callback_listhead);
} else if (del) {
free (token_callback_instance);
}
}
}
/*
* Message Handlers
*/
int my_last_seq = 0;
struct timeval tv_old;
/*
* message handler called when TOKEN message type received
*/
static int message_handler_orf_token (
struct sockaddr_in *system_from,
struct iovec *iovec,
int iov_len,
int bytes_received,
int endian_conversion_needed)
{
char token_storage[1500];
char token_convert[1500];
struct orf_token *token;
int prio = UINT_MAX;
struct pollfd ufd;
int nfds;
struct orf_token *token_ref = (struct orf_token *)iovec->iov_base;
int transmits_allowed;
int forward_token;
int mcasted;
int last_aru;
int low_water;
#ifdef GIVEINFO
struct timeval tv_current;
struct timeval tv_diff;
gettimeofday (&tv_current, NULL);
timersub (&tv_current, &tv_old, &tv_diff);
memcpy (&tv_old, &tv_current, sizeof (struct timeval));
if ((((float)tv_diff.tv_usec) / 100.0) > 5.0) {
printf ("OTHERS %0.4f ms\n", ((float)tv_diff.tv_usec) / 100.0);
}
#endif
my_do_delivery = 0;
#ifdef RANDOM_DROP
if (random () % 100 < 10) {
return (0);
}
#endif
/*
* Handle merge detection timeout
*/
if (token_ref->seq == my_last_seq) {
start_merge_detect_timeout ();
my_seq_unchanged += 1;
} else {
cancel_merge_detect_timeout ();
cancel_token_hold_retransmit_timeout ();
my_seq_unchanged = 0;
}
my_last_seq = token_ref->seq;
assert (bytes_received >= sizeof (struct orf_token));
// assert (bytes_received == sizeof (struct orf_token) +
// (sizeof (struct rtr_item) * token_ref->rtr_list_entries);
/*
* Make copy of token and retransmit list in case we have
* to flush incoming messages from the kernel queue
*/
token = (struct orf_token *)token_storage;
memcpy (token, iovec->iov_base, sizeof (struct orf_token));
memcpy (&token->rtr_list[0], iovec->iov_base + sizeof (struct orf_token),
sizeof (struct rtr_item) * RETRANSMIT_ENTRIES_MAX);
if (endian_conversion_needed) {
orf_token_endian_convert (token, (struct orf_token *)token_convert);
token = (struct orf_token *)token_convert;
}
/*
* flush incoming queue from kernel
*/
do {
ufd.fd = totemsrp_sockets[0].mcast;
ufd.events = POLLIN;
nfds = poll (&ufd, 1, 0);
if (nfds == 1 && ufd.revents & POLLIN) {
totemsrp_iov_recv.iov_len = PACKET_SIZE_MAX;
recv_handler (0, totemsrp_sockets[0].mcast, ufd.revents, 0,
&prio);
}
} while (nfds == 1);
/*
* Determine if we should hold (in reality drop) the token
*/
my_token_held = 0;
if (my_ring_id.rep.s_addr == my_id.sin_addr.s_addr &&
my_seq_unchanged > SEQNO_UNCHANGED_CONST) {
my_token_held = 1;
} else
if (my_ring_id.rep.s_addr != my_id.sin_addr.s_addr &&
my_seq_unchanged >= SEQNO_UNCHANGED_CONST) {
my_token_held = 1;
}
/*
* Hold onto token when there is no activity on ring and
* this processor is the ring rep
*/
forward_token = 1;
if (my_ring_id.rep.s_addr == my_id.sin_addr.s_addr) {
if (my_token_held) {
forward_token = 0;
}
}
token_callbacks_execute (TOTEM_CALLBACK_TOKEN_RECEIVED);
switch (memb_state) {
case MEMB_STATE_COMMIT:
/* Discard token */
break;
case MEMB_STATE_OPERATIONAL:
messages_free (token->aru);
case MEMB_STATE_GATHER:
/*
* DO NOT add break, we use different free mechanism in recovery state
*/
case MEMB_STATE_RECOVERY:
last_aru = my_last_aru;
my_last_aru = token->aru;
/*
* Discard tokens from another configuration
*/
if (memcmp (&token->ring_id, &my_ring_id,
sizeof (struct memb_ring_id)) != 0) {
return (0); /* discard token */
}
/*
* Discard retransmitted tokens
*/
if (my_token_seq >= token->token_seq) {
reset_token_retransmit_timeout ();
reset_token_timeout ();
return (0); /* discard token */
}
transmits_allowed = 30;
mcasted = orf_token_rtr (token, &transmits_allowed);
if ((last_aru + MISSING_MCAST_WINDOW) < token->seq) {
transmits_allowed = 0;
}
mcasted = orf_token_mcast (token, transmits_allowed, system_from);
if (my_aru < token->aru ||
my_id.sin_addr.s_addr == token->aru_addr.s_addr ||
token->aru_addr.s_addr == 0) {
token->aru = my_aru;
if (token->aru == token->seq) {
token->aru_addr.s_addr = 0;
} else {
token->aru_addr.s_addr = my_id.sin_addr.s_addr;
}
}
if (token->aru == last_aru && token->aru_addr.s_addr != 0) {
my_aru_count += 1;
} else {
my_aru_count = 0;
}
if (my_aru_count > fail_to_recv_const &&
token->aru_addr.s_addr != my_id.sin_addr.s_addr) {
printf ("FAILED TO RECEIVE\n");
// TODO if we fail to receive, it may be possible to end with a gather
// state of proc == failed = 0 entries
memb_set_merge (&token->aru_addr, 1,
my_failed_list, &my_failed_list_entries);
ring_state_restore ();
memb_state_gather_enter ();
} else {
my_token_seq = token->token_seq;
token->token_seq += 1;
if (memb_state == MEMB_STATE_RECOVERY) {
/*
* my_aru == my_high_seq_received means this processor
* has recovered all messages it can recover
* (ie: its retrans queue is empty)
*/
low_water = my_aru;
if (low_water > last_aru) {
low_water = last_aru;
}
// TODO is this code right
if (queue_is_empty (&retrans_message_queue) == 0 ||
low_water != my_high_seq_received) {
if (token->retrans_flg == 0) {
token->retrans_flg = 1;
my_set_retrans_flg = 1;
}
} else
if (token->retrans_flg == 1 && my_set_retrans_flg) {
token->retrans_flg = 0;
}
totemsrp_log_printf (totemsrp_log_level_debug,
"token retrans flag is %d my set retrans flag%d retrans queue empty %d count %d, low_water %d aru %d\n",
token->retrans_flg, my_set_retrans_flg,
queue_is_empty (&retrans_message_queue),
my_retrans_flg_count, low_water, token->aru);
if (token->retrans_flg == 0) {
my_retrans_flg_count += 1;
} else {
my_retrans_flg_count = 0;
}
if (my_retrans_flg_count == 2) {
my_install_seq = token->seq;
}
totemsrp_log_printf (totemsrp_log_level_debug,
"install seq %d aru %d high seq received %d\n",
my_install_seq, my_aru, my_high_seq_received);
if (my_retrans_flg_count >= 2 && my_aru >= my_install_seq && my_received_flg == 0) {
my_received_flg = 1;
my_deliver_memb_entries = my_trans_memb_entries;
memcpy (my_deliver_memb_list, my_trans_memb_list,
sizeof (struct in_addr) * my_trans_memb_entries);
}
if (my_retrans_flg_count >= 3 && token->aru >= my_install_seq) {
my_rotation_counter += 1;
} else {
my_rotation_counter = 0;
}
if (my_rotation_counter == 2) {
totemsrp_log_printf (totemsrp_log_level_debug,
"retrans flag count %d token aru %d install seq %d aru %d %d\n",
my_retrans_flg_count, token->aru, my_install_seq,
my_aru, token->seq);
memb_state_operational_enter ();
my_rotation_counter = 0;
my_retrans_flg_count = 0;
}
}
token_send (token, forward_token);
#ifdef GIVEINFO
gettimeofday (&tv_current, NULL);
timersub (&tv_current, &tv_old, &tv_diff);
memcpy (&tv_old, &tv_current, sizeof (struct timeval));
if ((((float)tv_diff.tv_usec) / 100.0) > 5.0) {
printf ("I held %0.4f ms\n", ((float)tv_diff.tv_usec) / 100.0);
}
#endif
if (my_do_delivery) {
if (memb_state == MEMB_STATE_OPERATIONAL) {
messages_deliver_to_app (0, my_high_seq_received);
}
}
/*
* Deliver messages after token has been transmitted
* to improve performance
*/
reset_token_timeout (); // REVIEWED
reset_token_retransmit_timeout (); // REVIEWED
if (my_id.sin_addr.s_addr == my_ring_id.rep.s_addr &&
my_token_held == 1) {
start_token_hold_retransmit_timeout ();
}
token_callbacks_execute (TOTEM_CALLBACK_TOKEN_SENT);
}
break;
}
return (0);
}
static void messages_deliver_to_app (int skip, int end_point)
{
struct sort_queue_item *sort_queue_item_p;
int i;
int res;
struct mcast *mcast;
totemsrp_log_printf (totemsrp_log_level_debug,
"Delivering %d to %d\n", my_high_delivered + 1,
end_point);
/*
* Deliver messages in order from rtr queue to pending delivery queue
*/
for (i = my_high_delivered + 1; i <= end_point; i++) {
void *ptr;
res = sq_item_get (&regular_sort_queue, i, &ptr);
if (res != 0 && skip) {
printf ("-skipping %d-\n", i);
my_high_delivered = i;
continue;
}
/*
* If hole, stop assembly
*/
if (res != 0) {
break;
}
sort_queue_item_p = ptr;
mcast = sort_queue_item_p->iovec[0].iov_base;
assert (mcast != (struct mcast *)0xdeadbeef);
// XXX printf ("[%s.%d-%d]\n", inet_ntoa (mcast->source),
// XXX mcast->seq, mcast->this_seqno);
/*
* Skip messages not originated in my_deliver_memb
*/
if (skip &&
memb_set_subset (&mcast->source,
1,
my_deliver_memb_list,
my_deliver_memb_entries) == 0) {
printf ("-skipping %d - wrong ip", i);
my_high_delivered = i;
continue;
}
my_high_delivered = i;
/*
* Message found
*/
totemsrp_log_printf (totemsrp_log_level_debug,
"Delivering MCAST message with seq %d to pending delivery queue\n",
mcast->seq);
/*
* Message is locally originated multicast
*/
if (sort_queue_item_p->iov_len > 1 &&
sort_queue_item_p->iovec[0].iov_len == sizeof (struct mcast)) {
totemsrp_deliver_fn (
mcast->source,
&sort_queue_item_p->iovec[1],
sort_queue_item_p->iov_len - 1,
mcast->header.endian_detector != ENDIAN_LOCAL);
} else {
sort_queue_item_p->iovec[0].iov_len -= sizeof (struct mcast);
sort_queue_item_p->iovec[0].iov_base += sizeof (struct mcast);
totemsrp_deliver_fn (
mcast->source,
sort_queue_item_p->iovec,
sort_queue_item_p->iov_len,
mcast->header.endian_detector != ENDIAN_LOCAL);
sort_queue_item_p->iovec[0].iov_len += sizeof (struct mcast);
sort_queue_item_p->iovec[0].iov_base -= sizeof (struct mcast);
}
stats_delv += 1;
}
my_received_flg = 0;
if (my_aru == my_high_seq_received) {
// totemsrp_log_printf (totemsrp_log_level_debug,
// "setting received flag to TRUE %d %d\n",
// my_aru, my_high_seq_received);
my_received_flg = 1;
}
}
/*
* recv message handler called when MCAST message type received
*/
static int message_handler_mcast (
struct sockaddr_in *system_from,
struct iovec *iovec,
int iov_len,
int bytes_received,
int endian_conversion_needed)
{
struct sort_queue_item sort_queue_item;
struct sq *sort_queue;
struct mcast mcast_header;
if (endian_conversion_needed) {
mcast_endian_convert (iovec[0].iov_base, &mcast_header);
} else {
memcpy (&mcast_header, iovec[0].iov_base, sizeof (struct mcast));
}
if (mcast_header.header.encapsulated == 1) {
sort_queue = &recovery_sort_queue;
} else {
sort_queue = &regular_sort_queue;
}
assert (bytes_received < PACKET_SIZE_MAX);
#ifdef RANDOM_DROP
if (random()%100 < 50) {
return (0);
}
#endif
if (system_from->sin_addr.s_addr != my_id.sin_addr.s_addr) {
cancel_token_retransmit_timeout ();
}
/*
* If the message is foreign execute the switch below
*/
if (memcmp (&my_ring_id, &mcast_header.ring_id,
sizeof (struct memb_ring_id)) != 0) {
switch (memb_state) {
case MEMB_STATE_OPERATIONAL:
memb_set_merge (&system_from->sin_addr, 1,
my_proc_list, &my_proc_list_entries);
memb_state_gather_enter ();
break;
case MEMB_STATE_GATHER:
if (!memb_set_subset (&system_from->sin_addr,
1,
my_proc_list,
my_proc_list_entries)) {
memb_set_merge (&system_from->sin_addr, 1,
my_proc_list, &my_proc_list_entries);
memb_state_gather_enter ();
return (0);
}
break;
case MEMB_STATE_COMMIT:
/* discard message */
break;
case MEMB_STATE_RECOVERY:
/* discard message */
break;
}
return (0);
}
totemsrp_log_printf (totemsrp_log_level_debug,
"Received ringid(%s:%lld) seq %d\n",
inet_ntoa (mcast_header.ring_id.rep),
mcast_header.ring_id.seq,
mcast_header.seq);
/*
* Add mcast message to rtr queue if not already in rtr queue
* otherwise free io vectors
*/
if (bytes_received > 0 && bytes_received < PACKET_SIZE_MAX &&
my_aru < mcast_header.seq &&
sq_item_inuse (sort_queue, mcast_header.seq) == 0) {
/*
* Allocate new multicast memory block
*/
// TODO LEAK
sort_queue_item.iovec[0].iov_base = malloc (bytes_received);
if (sort_queue_item.iovec[0].iov_base == 0) {
return (-1); /* error here is corrected by the algorithm */
}
memcpy (sort_queue_item.iovec[0].iov_base, iovec[0].iov_base,
bytes_received);
sort_queue_item.iovec[0].iov_len = bytes_received;
assert (sort_queue_item.iovec[0].iov_len > 0);
assert (sort_queue_item.iovec[0].iov_len < PACKET_SIZE_MAX);
sort_queue_item.iov_len = 1;
if (mcast_header.seq > my_high_seq_received) {
my_high_seq_received = mcast_header.seq;
}
sq_item_add (sort_queue, &sort_queue_item, mcast_header.seq);
}
// update_aru ();
if (my_token_held) {
my_do_delivery = 1;
} else {
if (memb_state == MEMB_STATE_OPERATIONAL) {
update_aru ();
messages_deliver_to_app (0, my_high_seq_received);
}
}
/* TODO remove from retrans message queue for old ring in recovery state */
return (0);
}
static int message_handler_memb_merge_detect (
struct sockaddr_in *system_from,
struct iovec *iovec,
int iov_len,
int bytes_received,
int endian_conversion_needed)
{
struct memb_merge_detect *memb_merge_detect = iovec[0].iov_base;
/*
* do nothing if this is a merge detect from this configuration
*/
if (memcmp (&my_ring_id, &memb_merge_detect->ring_id,
sizeof (struct memb_ring_id)) == 0) {
return (0);
}
/*
* Execute merge operation
*/
switch (memb_state) {
case MEMB_STATE_OPERATIONAL:
memb_set_merge (&system_from->sin_addr, 1,
my_proc_list, &my_proc_list_entries);
memb_state_gather_enter ();
break;
case MEMB_STATE_GATHER:
if (!memb_set_subset (&system_from->sin_addr,
1,
my_proc_list,
my_proc_list_entries)) {
memb_set_merge (&system_from->sin_addr, 1,
my_proc_list, &my_proc_list_entries);
memb_state_gather_enter ();
return (0);
}
break;
case MEMB_STATE_COMMIT:
/* do nothing in commit */
break;
case MEMB_STATE_RECOVERY:
/* do nothing in recovery */
break;
}
return (0);
}
int memb_join_process (struct memb_join *memb_join, struct sockaddr_in *system_from)
{
struct memb_commit_token my_commit_token;
if (memb_set_equal (memb_join->proc_list,
memb_join->proc_list_entries,
my_proc_list,
my_proc_list_entries) &&
memb_set_equal (memb_join->failed_list,
memb_join->failed_list_entries,
my_failed_list,
my_failed_list_entries)) {
memb_consensus_set (&system_from->sin_addr);
if (memb_consensus_agreed () &&
memb_lowest_in_config ()) {
memb_state_commit_token_create (&my_commit_token);
memb_state_commit_enter (&my_commit_token);
} else {
return (0);
}
} else
if (memb_set_subset (memb_join->proc_list,
memb_join->proc_list_entries,
my_proc_list,
my_proc_list_entries) &&
memb_set_subset (memb_join->failed_list,
memb_join->failed_list_entries,
my_failed_list,
my_failed_list_entries)) {
return (0);
} else
if (memb_set_subset (&system_from->sin_addr, 1,
my_failed_list, my_failed_list_entries)) {
return (0);
} else {
memb_set_merge (memb_join->proc_list,
memb_join->proc_list_entries,
my_proc_list, &my_proc_list_entries);
if (memb_set_subset (&my_id.sin_addr, 1,
memb_join->failed_list, memb_join->failed_list_entries)) {
memb_set_merge (&system_from->sin_addr, 1,
my_failed_list, &my_failed_list_entries);
} else {
memb_set_merge (memb_join->failed_list,
memb_join->failed_list_entries,
my_failed_list, &my_failed_list_entries);
}
memb_state_gather_enter ();
return (1); /* gather entered */
}
return (0); /* gather not entered */
}
static void memb_join_endian_convert (struct memb_join *in, struct memb_join *out)
{
int i;
out->header.type = in->header.type;
out->header.endian_detector = ENDIAN_LOCAL;
out->proc_list_entries = swab32 (in->proc_list_entries);
out->failed_list_entries = swab32 (in->failed_list_entries);
out->ring_seq = swab64 (in->ring_seq);
for (i = 0; i < out->proc_list_entries; i++) {
out->proc_list[i].s_addr = in->proc_list[i].s_addr;
}
for (i = 0; i < out->failed_list_entries; i++) {
out->failed_list[i].s_addr = in->failed_list[i].s_addr;
}
}
static void memb_commit_token_endian_convert (struct memb_commit_token *in, struct memb_commit_token *out)
{
int i;
out->header.type = in->header.type;
out->header.endian_detector = ENDIAN_LOCAL;
out->token_seq = swab32 (in->token_seq);
out->ring_id.rep.s_addr = in->ring_id.rep.s_addr;
out->ring_id.seq = swab64 (in->ring_id.seq);
out->retrans_flg = swab32 (in->retrans_flg);
out->memb_index = swab32 (in->memb_index);
out->addr_entries = swab32 (in->addr_entries);
for (i = 0; i < out->addr_entries; i++) {
out->addr[i].s_addr = in->addr[i].s_addr;
out->memb_list[i].ring_id.rep.s_addr =
in->memb_list[i].ring_id.rep.s_addr;
out->memb_list[i].ring_id.seq =
swab64 (in->memb_list[i].ring_id.seq);
out->memb_list[i].aru = swab32 (in->memb_list[i].aru);
out->memb_list[i].high_delivered = swab32 (in->memb_list[i].high_delivered);
out->memb_list[i].received_flg = swab32 (in->memb_list[i].received_flg);
}
}
static void orf_token_endian_convert (struct orf_token *in, struct orf_token *out)
{
int i;
out->header.type = in->header.type;
out->header.endian_detector = ENDIAN_LOCAL;
out->seq = swab32 (in->seq);
out->token_seq = swab32 (in->token_seq);
out->aru = swab32 (in->aru);
out->ring_id.rep.s_addr = in->ring_id.rep.s_addr;
out->ring_id.seq = swab64 (in->ring_id.seq);
out->fcc = swab32 (in->fcc);
out->retrans_flg = swab32 (in->retrans_flg);
out->rtr_list_entries = swab32 (in->rtr_list_entries);
for (i = 0; i < out->rtr_list_entries; i++) {
out->rtr_list[i].ring_id.rep.s_addr = in->rtr_list[i].ring_id.rep.s_addr;
out->rtr_list[i].ring_id.seq = swab64 (in->rtr_list[i].ring_id.seq);
out->rtr_list[i].seq = swab32 (in->rtr_list[i].seq);
}
}
static void mcast_endian_convert (struct mcast *in, struct mcast *out)
{
out->header.type = in->header.type;
out->header.endian_detector = ENDIAN_LOCAL;
out->seq = swab32 (in->seq);
out->ring_id.rep.s_addr = in->ring_id.rep.s_addr;
out->ring_id.seq = swab64 (in->ring_id.seq);
out->source = in->source;
out->guarantee = in->guarantee;
}
static int message_handler_memb_join (
struct sockaddr_in *system_from,
struct iovec *iovec,
int iov_len,
int bytes_received,
int endian_conversion_needed)
{
struct memb_join *memb_join;
struct memb_join memb_join_convert;
int gather_entered;
if (endian_conversion_needed) {
memb_join = &memb_join_convert;
memb_join_endian_convert (iovec->iov_base, &memb_join_convert);
} else {
memb_join = (struct memb_join *)iovec->iov_base;
}
if (token_ring_id_seq < memb_join->ring_seq) {
token_ring_id_seq = memb_join->ring_seq;
}
switch (memb_state) {
case MEMB_STATE_OPERATIONAL:
gather_entered = memb_join_process (memb_join, system_from);
if (gather_entered == 0) {
memb_state_gather_enter ();
}
break;
case MEMB_STATE_GATHER:
memb_join_process (memb_join, system_from);
break;
case MEMB_STATE_COMMIT:
if (memb_set_subset (&system_from->sin_addr,
1,
my_new_memb_list,
my_new_memb_entries) &&
memb_join->ring_seq >= my_ring_id.seq) {
memb_join_process (memb_join, system_from);
memb_state_gather_enter ();
}
break;
case MEMB_STATE_RECOVERY:
if (memb_set_subset (&system_from->sin_addr,
1,
my_new_memb_list,
my_new_memb_entries) &&
memb_join->ring_seq >= my_ring_id.seq) {
ring_state_restore ();
memb_join_process (memb_join, system_from);
memb_state_gather_enter ();
}
break;
}
return (0);
}
static int message_handler_memb_commit_token (
struct sockaddr_in *system_from,
struct iovec *iovec,
int iov_len,
int bytes_received,
int endian_conversion_needed)
{
struct memb_commit_token memb_commit_token_convert;
struct memb_commit_token *memb_commit_token;
struct in_addr sub[PROCESSOR_COUNT_MAX];
int sub_entries;
if (endian_conversion_needed) {
memb_commit_token = &memb_commit_token_convert;
memb_commit_token_endian_convert (iovec->iov_base, memb_commit_token);
} else {
memb_commit_token = (struct memb_commit_token *)iovec->iov_base;
}
/* TODO do we need to check for a duplicate token?
if (memb_commit_token->token_seq > 0 &&
my_token_seq >= memb_commit_token->token_seq) {
printf ("already received commit token %d %d\n",
memb_commit_token->token_seq, my_token_seq);
return (0);
}
*/
#ifdef RANDOM_DROP
if (random()%100 < 10) {
return (0);
}
#endif
switch (memb_state) {
case MEMB_STATE_OPERATIONAL:
/* discard token */
break;
case MEMB_STATE_GATHER:
memb_set_subtract (sub, &sub_entries,
my_proc_list, my_proc_list_entries,
my_failed_list, my_failed_list_entries);
if (memb_set_equal (memb_commit_token->addr,
memb_commit_token->addr_entries,
sub,
sub_entries) &&
memb_commit_token->ring_id.seq > my_ring_id.seq) {
memb_state_commit_enter (memb_commit_token);
}
break;
case MEMB_STATE_COMMIT:
if (memcmp (&memb_commit_token->ring_id, &my_ring_id,
sizeof (struct memb_ring_id)) == 0) {
// if (memb_commit_token->ring_id.seq == my_ring_id.seq) {
memb_state_recovery_enter (memb_commit_token);
}
break;
case MEMB_STATE_RECOVERY:
totemsrp_log_printf (totemsrp_log_level_notice,
"Sending initial ORF token\n");
if (my_id.sin_addr.s_addr == my_ring_id.rep.s_addr) {
// TODO convert instead of initiate
orf_token_send_initial ();
reset_token_timeout (); // REVIEWED
reset_token_retransmit_timeout (); // REVIEWED
}
break;
}
return (0);
}
static int message_handler_token_hold_cancel (
struct sockaddr_in *system_from,
struct iovec *iovec,
int iov_len,
int bytes_received,
int endian_conversion_needed)
{
struct token_hold_cancel *token_hold_cancel = (struct token_hold_cancel *)iovec->iov_base;
if (memcmp (&token_hold_cancel->ring_id, &my_ring_id,
sizeof (struct memb_ring_id)) == 0) {
my_seq_unchanged = 0;
if (my_ring_id.rep.s_addr == my_id.sin_addr.s_addr) {
timer_function_token_retransmit_timeout (0);
}
}
return (0);
}
static int recv_handler (poll_handle handle, int fd, int revents,
void *data, unsigned int *prio)
{
struct msghdr msg_recv;
struct message_header *message_header;
struct sockaddr_in system_from;
int res = 0;
int bytes_received;
*prio = UINT_MAX;
/*
* Receive datagram
*/
msg_recv.msg_name = &system_from;
msg_recv.msg_namelen = sizeof (struct sockaddr_in);
msg_recv.msg_iov = &totemsrp_iov_recv;
msg_recv.msg_iovlen = 1;
msg_recv.msg_control = 0;
msg_recv.msg_controllen = 0;
msg_recv.msg_flags = 0;
bytes_received = recvmsg (fd, &msg_recv, MSG_NOSIGNAL | MSG_DONTWAIT);
if (bytes_received == -1) {
return (0);
} else {
stats_recv += bytes_received;
}
if (bytes_received < sizeof (struct message_header)) {
totemsrp_log_printf (totemsrp_log_level_security, "Received message is too short... ignoring %d %d.\n", bytes_received);
return (0);
}
message_header = (struct message_header *)msg_recv.msg_iov->iov_base;
/*
* Authenticate and if authenticated, decrypt datagram
*/
totemsrp_iov_recv.iov_len = bytes_received;
res = authenticate_and_decrypt (&totemsrp_iov_recv);
log_digest = 0;
if (res == -1) {
totemsrp_iov_recv.iov_len = PACKET_SIZE_MAX;
return 0;
}
if (stats_tv_start.tv_usec == 0) {
gettimeofday (&stats_tv_start, NULL);
}
/*
* Handle incoming message
*/
message_header = (struct message_header *)msg_recv.msg_iov[0].iov_base;
totemsrp_message_handlers.handler_functions[(int)message_header->type] (
&system_from,
msg_recv.msg_iov,
msg_recv.msg_iovlen,
bytes_received,
message_header->endian_detector != ENDIAN_LOCAL);
totemsrp_iov_recv.iov_len = PACKET_SIZE_MAX;
return (0);
}