mirror of
				https://git.proxmox.com/git/mirror_corosync
				synced 2025-11-04 01:35:08 +00:00 
			
		
		
		
	Signed-off-by: Angus Salkeld <asalkeld@redhat.com> Reviewed-by: Steven Dake <sdake@redhat.com>
		
			
				
	
	
		
			1341 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1341 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 | 
						|
 *
 | 
						|
 * LibTomCrypt is a library that provides various cryptographic
 | 
						|
 * algorithms in a highly modular and flexible manner.
 | 
						|
 *
 | 
						|
 * The library is free for all purposes without any express
 | 
						|
 * guarantee it works.
 | 
						|
 *
 | 
						|
 * Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.com
 | 
						|
 */
 | 
						|
 | 
						|
#include <config.h>
 | 
						|
 | 
						|
#include <assert.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <sys/types.h>
 | 
						|
#include <sys/stat.h>
 | 
						|
#include <sys/poll.h>
 | 
						|
#if defined(COROSYNC_BSD)
 | 
						|
#include <sys/endian.h>
 | 
						|
#endif
 | 
						|
#include <fcntl.h>
 | 
						|
#include <unistd.h>
 | 
						|
#include <stdint.h>
 | 
						|
 | 
						|
#include "crypto.h"
 | 
						|
 | 
						|
#define CONST64(n) n ## ULL
 | 
						|
 | 
						|
typedef uint32_t ulong32;
 | 
						|
typedef uint64_t ulong64;
 | 
						|
 | 
						|
#if __BYTE_ORDER == __LITTLE_ENDIAN
 | 
						|
#define ENDIAN_LITTLE
 | 
						|
#elif __BYTE_ORDER == __BIG_ENDIAN
 | 
						|
#define ENDIAN_BIG
 | 
						|
#else
 | 
						|
#error "cannot detect byte order"
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(COROSYNC_LINUX)
 | 
						|
#if __WORDSIZE == 64
 | 
						|
#define ENDIAN_64BITWORD
 | 
						|
#endif
 | 
						|
#if __WORDSIZE == 32
 | 
						|
#define ENDIAN_32BITWORD
 | 
						|
#endif
 | 
						|
#else
 | 
						|
/* XXX need to find a better default
 | 
						|
 */
 | 
						|
#define ENDIAN_32BITWORD
 | 
						|
#endif
 | 
						|
 | 
						|
/* ---- HELPER MACROS ---- */
 | 
						|
#ifdef ENDIAN_NEUTRAL
 | 
						|
 | 
						|
#define STORE32L(x, y)                                                                     \
 | 
						|
     { (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255);   \
 | 
						|
       (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD32L(x, y)                            \
 | 
						|
     { x = ((unsigned long)((y)[3] & 255)<<24) | \
 | 
						|
           ((unsigned long)((y)[2] & 255)<<16) | \
 | 
						|
           ((unsigned long)((y)[1] & 255)<<8)  | \
 | 
						|
           ((unsigned long)((y)[0] & 255)); }
 | 
						|
 | 
						|
#define STORE64L(x, y)                                                                     \
 | 
						|
     { (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255);   \
 | 
						|
       (y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255);   \
 | 
						|
       (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255);   \
 | 
						|
       (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD64L(x, y)                                                       \
 | 
						|
     { x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \
 | 
						|
           (((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \
 | 
						|
           (((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \
 | 
						|
           (((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
 | 
						|
 | 
						|
#define STORE32H(x, y)                                                                     \
 | 
						|
     { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255);   \
 | 
						|
       (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD32H(x, y)                            \
 | 
						|
     { x = ((unsigned long)((y)[0] & 255)<<24) | \
 | 
						|
           ((unsigned long)((y)[1] & 255)<<16) | \
 | 
						|
           ((unsigned long)((y)[2] & 255)<<8)  | \
 | 
						|
           ((unsigned long)((y)[3] & 255)); }
 | 
						|
 | 
						|
#define STORE64H(x, y)                                                                     \
 | 
						|
   { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255);     \
 | 
						|
     (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255);     \
 | 
						|
     (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255);     \
 | 
						|
     (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD64H(x, y)                                                      \
 | 
						|
   { x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \
 | 
						|
         (((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \
 | 
						|
         (((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \
 | 
						|
         (((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); }
 | 
						|
 | 
						|
#endif /* ENDIAN_NEUTRAL */
 | 
						|
 | 
						|
#ifdef ENDIAN_LITTLE
 | 
						|
 | 
						|
#define STORE32H(x, y)                                                                     \
 | 
						|
     { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255);   \
 | 
						|
       (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD32H(x, y)                            \
 | 
						|
     { x = ((unsigned long)((y)[0] & 255)<<24) | \
 | 
						|
           ((unsigned long)((y)[1] & 255)<<16) | \
 | 
						|
           ((unsigned long)((y)[2] & 255)<<8)  | \
 | 
						|
           ((unsigned long)((y)[3] & 255)); }
 | 
						|
 | 
						|
#define STORE64H(x, y)                                                                     \
 | 
						|
   { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255);     \
 | 
						|
     (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255);     \
 | 
						|
     (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255);     \
 | 
						|
     (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD64H(x, y)                                                      \
 | 
						|
   { x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \
 | 
						|
         (((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \
 | 
						|
         (((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \
 | 
						|
         (((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); }
 | 
						|
 | 
						|
#ifdef ENDIAN_32BITWORD
 | 
						|
 | 
						|
#define STORE32L(x, y)        \
 | 
						|
     { unsigned long __t = (x); memcpy(y, &__t, 4); }
 | 
						|
 | 
						|
#define LOAD32L(x, y)         \
 | 
						|
     memcpy(&(x), y, 4);
 | 
						|
 | 
						|
#define STORE64L(x, y)                                                                     \
 | 
						|
     { (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255);   \
 | 
						|
       (y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255);   \
 | 
						|
       (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255);   \
 | 
						|
       (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD64L(x, y)                                                       \
 | 
						|
     { x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \
 | 
						|
           (((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \
 | 
						|
           (((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \
 | 
						|
           (((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
 | 
						|
 | 
						|
#else /* 64-bit words then  */
 | 
						|
 | 
						|
#define STORE32L(x, y)        \
 | 
						|
     { unsigned long __t = (x); memcpy(y, &__t, 4); }
 | 
						|
 | 
						|
#define LOAD32L(x, y)         \
 | 
						|
     { memcpy(&(x), y, 4); x &= 0xFFFFFFFF; }
 | 
						|
 | 
						|
#define STORE64L(x, y)        \
 | 
						|
     { ulong64 __t = (x); memcpy(y, &__t, 8); }
 | 
						|
 | 
						|
#define LOAD64L(x, y)         \
 | 
						|
    { memcpy(&(x), y, 8); }
 | 
						|
 | 
						|
#endif /* ENDIAN_64BITWORD */
 | 
						|
 | 
						|
#endif /* ENDIAN_LITTLE */
 | 
						|
 | 
						|
#ifdef ENDIAN_BIG
 | 
						|
#define STORE32L(x, y)                                                                     \
 | 
						|
     { (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255);   \
 | 
						|
       (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD32L(x, y)                            \
 | 
						|
     { x = ((unsigned long)((y)[3] & 255)<<24) | \
 | 
						|
           ((unsigned long)((y)[2] & 255)<<16) | \
 | 
						|
           ((unsigned long)((y)[1] & 255)<<8)  | \
 | 
						|
           ((unsigned long)((y)[0] & 255)); }
 | 
						|
 | 
						|
#define STORE64L(x, y)                                                                     \
 | 
						|
   { (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255);     \
 | 
						|
     (y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255);     \
 | 
						|
     (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255);     \
 | 
						|
     (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD64L(x, y)                                                      \
 | 
						|
   { x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48) | \
 | 
						|
         (((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32) | \
 | 
						|
         (((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16) | \
 | 
						|
         (((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
 | 
						|
 | 
						|
#ifdef ENDIAN_32BITWORD
 | 
						|
 | 
						|
#define STORE32H(x, y)        \
 | 
						|
     { unsigned long __t = (x); memcpy(y, &__t, 4); }
 | 
						|
 | 
						|
#define LOAD32H(x, y)         \
 | 
						|
     memcpy(&(x), y, 4);
 | 
						|
 | 
						|
#define STORE64H(x, y)                                                                     \
 | 
						|
     { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255);   \
 | 
						|
       (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255);   \
 | 
						|
       (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255);   \
 | 
						|
       (y)[6] = (unsigned char)(((x)>>8)&255);  (y)[7] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD64H(x, y)                                                       \
 | 
						|
     { x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48)| \
 | 
						|
           (((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32)| \
 | 
						|
           (((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16)| \
 | 
						|
           (((ulong64)((y)[6] & 255))<<8)| (((ulong64)((y)[7] & 255))); }
 | 
						|
 | 
						|
#else /* 64-bit words then  */
 | 
						|
 | 
						|
#define STORE32H(x, y)        \
 | 
						|
     { unsigned long __t = (x); memcpy(y, &__t, 4); }
 | 
						|
 | 
						|
#define LOAD32H(x, y)         \
 | 
						|
     { memcpy(&(x), y, 4); x &= 0xFFFFFFFF; }
 | 
						|
 | 
						|
#define STORE64H(x, y)        \
 | 
						|
     { ulong64 __t = (x); memcpy(y, &__t, 8); }
 | 
						|
 | 
						|
#define LOAD64H(x, y)         \
 | 
						|
    { memcpy(&(x), y, 8); }
 | 
						|
 | 
						|
#endif /* ENDIAN_64BITWORD */
 | 
						|
#endif /* ENDIAN_BIG */
 | 
						|
 | 
						|
#define BSWAP(x)  ( ((x>>24)&0x000000FFUL) | ((x<<24)&0xFF000000UL)  | \
 | 
						|
                    ((x>>8)&0x0000FF00UL)  | ((x<<8)&0x00FF0000UL) )
 | 
						|
 | 
						|
#if defined(__GNUC__) && defined(__i386__) && !defined(INTEL_CC)
 | 
						|
 | 
						|
static inline unsigned long ROL(unsigned long word, int i)
 | 
						|
{
 | 
						|
   __asm__("roll %%cl,%0"
 | 
						|
      :"=r" (word)
 | 
						|
      :"0" (word),"c" (i));
 | 
						|
   return word;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned long ROR(unsigned long word, int i)
 | 
						|
{
 | 
						|
   __asm__("rorl %%cl,%0"
 | 
						|
      :"=r" (word)
 | 
						|
      :"0" (word),"c" (i));
 | 
						|
   return word;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
/* rotates the hard way */
 | 
						|
#define ROL(x, y) ( (((unsigned long)(x)<<(unsigned long)((y)&31)) | (((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
 | 
						|
#define ROR(x, y) ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#define ROL64(x, y) \
 | 
						|
    ( (((x)<<((ulong64)(y)&63)) | \
 | 
						|
      (((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)64-((y)&63)))) & CONST64(0xFFFFFFFFFFFFFFFF))
 | 
						|
 | 
						|
#define ROR64(x, y) \
 | 
						|
    ( ((((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)(y)&CONST64(63))) | \
 | 
						|
      ((x)<<((ulong64)(64-((y)&CONST64(63)))))) & CONST64(0xFFFFFFFFFFFFFFFF))
 | 
						|
 | 
						|
#undef MAX
 | 
						|
#undef MIN
 | 
						|
#define MAX(x, y) ( ((x)>(y))?(x):(y) )
 | 
						|
#define MIN(x, y) ( ((x)<(y))?(x):(y) )
 | 
						|
 | 
						|
/* extract a byte portably */
 | 
						|
#define byte(x, n) (((x) >> (8 * (n))) & 255)
 | 
						|
 | 
						|
#define CONST64(n) n ## ULL
 | 
						|
 | 
						|
/* a simple macro for making hash "process" functions */
 | 
						|
#define HASH_PROCESS(func_name, compress_name, state_var, block_size)                       \
 | 
						|
int func_name (hash_state * md, const unsigned char *buf, unsigned long len)               \
 | 
						|
{                                                                                           \
 | 
						|
    unsigned long n;                                                                        \
 | 
						|
    if (md-> state_var .curlen > sizeof(md-> state_var .buf)) {                             \
 | 
						|
       return CRYPT_INVALID_ARG;                                                            \
 | 
						|
    }                                                                                       \
 | 
						|
    while (len > 0) {                                                                       \
 | 
						|
        if (md-> state_var .curlen == 0 && len >= block_size) {                             \
 | 
						|
           compress_name (md, (unsigned char *)buf);                                        \
 | 
						|
           md-> state_var .length += block_size * 8;                                        \
 | 
						|
           buf             += block_size;                                                   \
 | 
						|
           len             -= block_size;                                                   \
 | 
						|
        } else {                                                                            \
 | 
						|
           n = MIN(len, (block_size - md-> state_var .curlen));                             \
 | 
						|
           memcpy(md-> state_var .buf + md-> state_var.curlen, buf, (size_t)n);             \
 | 
						|
           md-> state_var .curlen += n;                                                     \
 | 
						|
           buf             += n;                                                            \
 | 
						|
           len             -= n;                                                            \
 | 
						|
           if (md-> state_var .curlen == block_size) {                                      \
 | 
						|
              compress_name (md, md-> state_var .buf);                                      \
 | 
						|
              md-> state_var .length += 8*block_size;                                       \
 | 
						|
              md-> state_var .curlen = 0;                                                   \
 | 
						|
           }                                                                                \
 | 
						|
       }                                                                                    \
 | 
						|
    }                                                                                       \
 | 
						|
    return CRYPT_OK;                                                                        \
 | 
						|
}
 | 
						|
 | 
						|
#define MAXBLOCKSIZE 128
 | 
						|
 | 
						|
/*
 | 
						|
 * The mycrypt_macros.h file
 | 
						|
 */
 | 
						|
 | 
						|
/* ---- HELPER MACROS ---- */
 | 
						|
#ifdef ENDIAN_NEUTRAL
 | 
						|
 | 
						|
#define STORE32L(x, y)                                                                     \
 | 
						|
     { (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255);   \
 | 
						|
       (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD32L(x, y)                            \
 | 
						|
     { x = ((unsigned long)((y)[3] & 255)<<24) | \
 | 
						|
           ((unsigned long)((y)[2] & 255)<<16) | \
 | 
						|
           ((unsigned long)((y)[1] & 255)<<8)  | \
 | 
						|
           ((unsigned long)((y)[0] & 255)); }
 | 
						|
 | 
						|
#define STORE64L(x, y)                                                                     \
 | 
						|
     { (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255);   \
 | 
						|
       (y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255);   \
 | 
						|
       (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255);   \
 | 
						|
       (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD64L(x, y)                                                       \
 | 
						|
     { x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \
 | 
						|
           (((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \
 | 
						|
           (((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \
 | 
						|
           (((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
 | 
						|
 | 
						|
#define STORE32H(x, y)                                                                     \
 | 
						|
     { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255);   \
 | 
						|
       (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD32H(x, y)                            \
 | 
						|
     { x = ((unsigned long)((y)[0] & 255)<<24) | \
 | 
						|
           ((unsigned long)((y)[1] & 255)<<16) | \
 | 
						|
           ((unsigned long)((y)[2] & 255)<<8)  | \
 | 
						|
           ((unsigned long)((y)[3] & 255)); }
 | 
						|
 | 
						|
#define STORE64H(x, y)                                                                     \
 | 
						|
   { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255);     \
 | 
						|
     (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255);     \
 | 
						|
     (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255);     \
 | 
						|
     (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD64H(x, y)                                                      \
 | 
						|
   { x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \
 | 
						|
         (((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \
 | 
						|
         (((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \
 | 
						|
         (((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); }
 | 
						|
 | 
						|
#endif /* ENDIAN_NEUTRAL */
 | 
						|
 | 
						|
#ifdef ENDIAN_LITTLE
 | 
						|
 | 
						|
#define STORE32H(x, y)                                                                     \
 | 
						|
     { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255);   \
 | 
						|
       (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD32H(x, y)                            \
 | 
						|
     { x = ((unsigned long)((y)[0] & 255)<<24) | \
 | 
						|
           ((unsigned long)((y)[1] & 255)<<16) | \
 | 
						|
           ((unsigned long)((y)[2] & 255)<<8)  | \
 | 
						|
           ((unsigned long)((y)[3] & 255)); }
 | 
						|
 | 
						|
#define STORE64H(x, y)                                                                     \
 | 
						|
   { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255);     \
 | 
						|
     (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255);     \
 | 
						|
     (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255);     \
 | 
						|
     (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD64H(x, y)                                                      \
 | 
						|
   { x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \
 | 
						|
         (((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \
 | 
						|
         (((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \
 | 
						|
         (((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); }
 | 
						|
 | 
						|
#ifdef ENDIAN_32BITWORD
 | 
						|
 | 
						|
#define STORE32L(x, y)        \
 | 
						|
     { unsigned long __t = (x); memcpy(y, &__t, 4); }
 | 
						|
 | 
						|
#define LOAD32L(x, y)         \
 | 
						|
     memcpy(&(x), y, 4);
 | 
						|
 | 
						|
#define STORE64L(x, y)                                                                     \
 | 
						|
     { (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255);   \
 | 
						|
       (y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255);   \
 | 
						|
       (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255);   \
 | 
						|
       (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD64L(x, y)                                                       \
 | 
						|
     { x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \
 | 
						|
           (((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \
 | 
						|
           (((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \
 | 
						|
           (((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
 | 
						|
 | 
						|
#else /* 64-bit words then  */
 | 
						|
 | 
						|
#define STORE32L(x, y)        \
 | 
						|
     { unsigned long __t = (x); memcpy(y, &__t, 4); }
 | 
						|
 | 
						|
#define LOAD32L(x, y)         \
 | 
						|
     { memcpy(&(x), y, 4); x &= 0xFFFFFFFF; }
 | 
						|
 | 
						|
#define STORE64L(x, y)        \
 | 
						|
     { ulong64 __t = (x); memcpy(y, &__t, 8); }
 | 
						|
 | 
						|
#define LOAD64L(x, y)         \
 | 
						|
    { memcpy(&(x), y, 8); }
 | 
						|
 | 
						|
#endif /* ENDIAN_64BITWORD */
 | 
						|
 | 
						|
#endif /* ENDIAN_LITTLE */
 | 
						|
 | 
						|
#ifdef ENDIAN_BIG
 | 
						|
#define STORE32L(x, y)                                                                     \
 | 
						|
     { (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255);   \
 | 
						|
       (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD32L(x, y)                            \
 | 
						|
     { x = ((unsigned long)((y)[3] & 255)<<24) | \
 | 
						|
           ((unsigned long)((y)[2] & 255)<<16) | \
 | 
						|
           ((unsigned long)((y)[1] & 255)<<8)  | \
 | 
						|
           ((unsigned long)((y)[0] & 255)); }
 | 
						|
 | 
						|
#define STORE64L(x, y)                                                                     \
 | 
						|
   { (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255);     \
 | 
						|
     (y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255);     \
 | 
						|
     (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255);     \
 | 
						|
     (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD64L(x, y)                                                      \
 | 
						|
   { x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48) | \
 | 
						|
         (((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32) | \
 | 
						|
         (((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16) | \
 | 
						|
         (((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
 | 
						|
 | 
						|
#ifdef ENDIAN_32BITWORD
 | 
						|
 | 
						|
#define STORE32H(x, y)        \
 | 
						|
     { unsigned long __t = (x); memcpy(y, &__t, 4); }
 | 
						|
 | 
						|
#define LOAD32H(x, y)         \
 | 
						|
     memcpy(&(x), y, 4);
 | 
						|
 | 
						|
#define STORE64H(x, y)                                                                     \
 | 
						|
     { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255);   \
 | 
						|
       (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255);   \
 | 
						|
       (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255);   \
 | 
						|
       (y)[6] = (unsigned char)(((x)>>8)&255);  (y)[7] = (unsigned char)((x)&255); }
 | 
						|
 | 
						|
#define LOAD64H(x, y)                                                       \
 | 
						|
     { x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48)| \
 | 
						|
           (((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32)| \
 | 
						|
           (((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16)| \
 | 
						|
           (((ulong64)((y)[6] & 255))<<8)| (((ulong64)((y)[7] & 255))); }
 | 
						|
 | 
						|
#else /* 64-bit words then  */
 | 
						|
 | 
						|
#define STORE32H(x, y)        \
 | 
						|
     { unsigned long __t = (x); memcpy(y, &__t, 4); }
 | 
						|
 | 
						|
#define LOAD32H(x, y)         \
 | 
						|
     { memcpy(&(x), y, 4); x &= 0xFFFFFFFF; }
 | 
						|
 | 
						|
#define STORE64H(x, y)        \
 | 
						|
     { ulong64 __t = (x); memcpy(y, &__t, 8); }
 | 
						|
 | 
						|
#define LOAD64H(x, y)         \
 | 
						|
    { memcpy(&(x), y, 8); }
 | 
						|
 | 
						|
#endif /* ENDIAN_64BITWORD */
 | 
						|
#endif /* ENDIAN_BIG */
 | 
						|
 | 
						|
#define BSWAP(x)  ( ((x>>24)&0x000000FFUL) | ((x<<24)&0xFF000000UL)  | \
 | 
						|
                    ((x>>8)&0x0000FF00UL)  | ((x<<8)&0x00FF0000UL) )
 | 
						|
 | 
						|
 | 
						|
#define ROL64(x, y) \
 | 
						|
    ( (((x)<<((ulong64)(y)&63)) | \
 | 
						|
      (((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)64-((y)&63)))) & CONST64(0xFFFFFFFFFFFFFFFF))
 | 
						|
 | 
						|
#define ROR64(x, y) \
 | 
						|
    ( ((((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)(y)&CONST64(63))) | \
 | 
						|
      ((x)<<((ulong64)(64-((y)&CONST64(63)))))) & CONST64(0xFFFFFFFFFFFFFFFF))
 | 
						|
 | 
						|
#undef MAX
 | 
						|
#undef MIN
 | 
						|
#define MAX(x, y) ( ((x)>(y))?(x):(y) )
 | 
						|
#define MIN(x, y) ( ((x)<(y))?(x):(y) )
 | 
						|
 | 
						|
/* extract a byte portably */
 | 
						|
#define byte(x, n) (((x) >> (8 * (n))) & 255)
 | 
						|
 | 
						|
/* $Id: s128multab.h 213 2003-12-16 04:27:12Z ggr $ */
 | 
						|
/* @(#)TuringMultab.h	1.3 (QUALCOMM) 02/09/03 */
 | 
						|
/* Multiplication table for Turing using 0xD02B4367 */
 | 
						|
 | 
						|
static const ulong32 Multab[256] = {
 | 
						|
    0x00000000, 0xD02B4367, 0xED5686CE, 0x3D7DC5A9,
 | 
						|
    0x97AC41D1, 0x478702B6, 0x7AFAC71F, 0xAAD18478,
 | 
						|
    0x631582EF, 0xB33EC188, 0x8E430421, 0x5E684746,
 | 
						|
    0xF4B9C33E, 0x24928059, 0x19EF45F0, 0xC9C40697,
 | 
						|
    0xC62A4993, 0x16010AF4, 0x2B7CCF5D, 0xFB578C3A,
 | 
						|
    0x51860842, 0x81AD4B25, 0xBCD08E8C, 0x6CFBCDEB,
 | 
						|
    0xA53FCB7C, 0x7514881B, 0x48694DB2, 0x98420ED5,
 | 
						|
    0x32938AAD, 0xE2B8C9CA, 0xDFC50C63, 0x0FEE4F04,
 | 
						|
    0xC154926B, 0x117FD10C, 0x2C0214A5, 0xFC2957C2,
 | 
						|
    0x56F8D3BA, 0x86D390DD, 0xBBAE5574, 0x6B851613,
 | 
						|
    0xA2411084, 0x726A53E3, 0x4F17964A, 0x9F3CD52D,
 | 
						|
    0x35ED5155, 0xE5C61232, 0xD8BBD79B, 0x089094FC,
 | 
						|
    0x077EDBF8, 0xD755989F, 0xEA285D36, 0x3A031E51,
 | 
						|
    0x90D29A29, 0x40F9D94E, 0x7D841CE7, 0xADAF5F80,
 | 
						|
    0x646B5917, 0xB4401A70, 0x893DDFD9, 0x59169CBE,
 | 
						|
    0xF3C718C6, 0x23EC5BA1, 0x1E919E08, 0xCEBADD6F,
 | 
						|
    0xCFA869D6, 0x1F832AB1, 0x22FEEF18, 0xF2D5AC7F,
 | 
						|
    0x58042807, 0x882F6B60, 0xB552AEC9, 0x6579EDAE,
 | 
						|
    0xACBDEB39, 0x7C96A85E, 0x41EB6DF7, 0x91C02E90,
 | 
						|
    0x3B11AAE8, 0xEB3AE98F, 0xD6472C26, 0x066C6F41,
 | 
						|
    0x09822045, 0xD9A96322, 0xE4D4A68B, 0x34FFE5EC,
 | 
						|
    0x9E2E6194, 0x4E0522F3, 0x7378E75A, 0xA353A43D,
 | 
						|
    0x6A97A2AA, 0xBABCE1CD, 0x87C12464, 0x57EA6703,
 | 
						|
    0xFD3BE37B, 0x2D10A01C, 0x106D65B5, 0xC04626D2,
 | 
						|
    0x0EFCFBBD, 0xDED7B8DA, 0xE3AA7D73, 0x33813E14,
 | 
						|
    0x9950BA6C, 0x497BF90B, 0x74063CA2, 0xA42D7FC5,
 | 
						|
    0x6DE97952, 0xBDC23A35, 0x80BFFF9C, 0x5094BCFB,
 | 
						|
    0xFA453883, 0x2A6E7BE4, 0x1713BE4D, 0xC738FD2A,
 | 
						|
    0xC8D6B22E, 0x18FDF149, 0x258034E0, 0xF5AB7787,
 | 
						|
    0x5F7AF3FF, 0x8F51B098, 0xB22C7531, 0x62073656,
 | 
						|
    0xABC330C1, 0x7BE873A6, 0x4695B60F, 0x96BEF568,
 | 
						|
    0x3C6F7110, 0xEC443277, 0xD139F7DE, 0x0112B4B9,
 | 
						|
    0xD31DD2E1, 0x03369186, 0x3E4B542F, 0xEE601748,
 | 
						|
    0x44B19330, 0x949AD057, 0xA9E715FE, 0x79CC5699,
 | 
						|
    0xB008500E, 0x60231369, 0x5D5ED6C0, 0x8D7595A7,
 | 
						|
    0x27A411DF, 0xF78F52B8, 0xCAF29711, 0x1AD9D476,
 | 
						|
    0x15379B72, 0xC51CD815, 0xF8611DBC, 0x284A5EDB,
 | 
						|
    0x829BDAA3, 0x52B099C4, 0x6FCD5C6D, 0xBFE61F0A,
 | 
						|
    0x7622199D, 0xA6095AFA, 0x9B749F53, 0x4B5FDC34,
 | 
						|
    0xE18E584C, 0x31A51B2B, 0x0CD8DE82, 0xDCF39DE5,
 | 
						|
    0x1249408A, 0xC26203ED, 0xFF1FC644, 0x2F348523,
 | 
						|
    0x85E5015B, 0x55CE423C, 0x68B38795, 0xB898C4F2,
 | 
						|
    0x715CC265, 0xA1778102, 0x9C0A44AB, 0x4C2107CC,
 | 
						|
    0xE6F083B4, 0x36DBC0D3, 0x0BA6057A, 0xDB8D461D,
 | 
						|
    0xD4630919, 0x04484A7E, 0x39358FD7, 0xE91ECCB0,
 | 
						|
    0x43CF48C8, 0x93E40BAF, 0xAE99CE06, 0x7EB28D61,
 | 
						|
    0xB7768BF6, 0x675DC891, 0x5A200D38, 0x8A0B4E5F,
 | 
						|
    0x20DACA27, 0xF0F18940, 0xCD8C4CE9, 0x1DA70F8E,
 | 
						|
    0x1CB5BB37, 0xCC9EF850, 0xF1E33DF9, 0x21C87E9E,
 | 
						|
    0x8B19FAE6, 0x5B32B981, 0x664F7C28, 0xB6643F4F,
 | 
						|
    0x7FA039D8, 0xAF8B7ABF, 0x92F6BF16, 0x42DDFC71,
 | 
						|
    0xE80C7809, 0x38273B6E, 0x055AFEC7, 0xD571BDA0,
 | 
						|
    0xDA9FF2A4, 0x0AB4B1C3, 0x37C9746A, 0xE7E2370D,
 | 
						|
    0x4D33B375, 0x9D18F012, 0xA06535BB, 0x704E76DC,
 | 
						|
    0xB98A704B, 0x69A1332C, 0x54DCF685, 0x84F7B5E2,
 | 
						|
    0x2E26319A, 0xFE0D72FD, 0xC370B754, 0x135BF433,
 | 
						|
    0xDDE1295C, 0x0DCA6A3B, 0x30B7AF92, 0xE09CECF5,
 | 
						|
    0x4A4D688D, 0x9A662BEA, 0xA71BEE43, 0x7730AD24,
 | 
						|
    0xBEF4ABB3, 0x6EDFE8D4, 0x53A22D7D, 0x83896E1A,
 | 
						|
    0x2958EA62, 0xF973A905, 0xC40E6CAC, 0x14252FCB,
 | 
						|
    0x1BCB60CF, 0xCBE023A8, 0xF69DE601, 0x26B6A566,
 | 
						|
    0x8C67211E, 0x5C4C6279, 0x6131A7D0, 0xB11AE4B7,
 | 
						|
    0x78DEE220, 0xA8F5A147, 0x958864EE, 0x45A32789,
 | 
						|
    0xEF72A3F1, 0x3F59E096, 0x0224253F, 0xD20F6658,
 | 
						|
};
 | 
						|
 | 
						|
/* $Id: s128sbox.h 213 2003-12-16 04:27:12Z ggr $ */
 | 
						|
/* Sbox for SOBER-128 */
 | 
						|
/*
 | 
						|
 * This is really the combination of two SBoxes; the least significant
 | 
						|
 * 24 bits comes from:
 | 
						|
 * 8->32 Sbox generated by Millan et. al. at Queensland University of
 | 
						|
 * Technology. See: E. Dawson, W. Millan, L. Burnett, G. Carter,
 | 
						|
 * "On the Design of 8*32 S-boxes". Unpublished report, by the
 | 
						|
 * Information Systems Research Centre,
 | 
						|
 * Queensland University of Technology, 1999.
 | 
						|
 *
 | 
						|
 * The most significant 8 bits are the Skipjack "F table", which can be
 | 
						|
 * found at http://csrc.nist.gov/CryptoToolkit/skipjack/skipjack.pdf .
 | 
						|
 * In this optimised table, though, the intent is to XOR the word from
 | 
						|
 * the table selected by the high byte with the input word. Thus, the
 | 
						|
 * high byte is actually the Skipjack F-table entry XORED with its
 | 
						|
 * table index.
 | 
						|
 */
 | 
						|
static const ulong32 Sbox[256] = {
 | 
						|
    0xa3aa1887, 0xd65e435c, 0x0b65c042, 0x800e6ef4,
 | 
						|
    0xfc57ee20, 0x4d84fed3, 0xf066c502, 0xf354e8ae,
 | 
						|
    0xbb2ee9d9, 0x281f38d4, 0x1f829b5d, 0x735cdf3c,
 | 
						|
    0x95864249, 0xbc2e3963, 0xa1f4429f, 0xf6432c35,
 | 
						|
    0xf7f40325, 0x3cc0dd70, 0x5f973ded, 0x9902dc5e,
 | 
						|
    0xda175b42, 0x590012bf, 0xdc94d78c, 0x39aab26b,
 | 
						|
    0x4ac11b9a, 0x8c168146, 0xc3ea8ec5, 0x058ac28f,
 | 
						|
    0x52ed5c0f, 0x25b4101c, 0x5a2db082, 0x370929e1,
 | 
						|
    0x2a1843de, 0xfe8299fc, 0x202fbc4b, 0x833915dd,
 | 
						|
    0x33a803fa, 0xd446b2de, 0x46233342, 0x4fcee7c3,
 | 
						|
    0x3ad607ef, 0x9e97ebab, 0x507f859b, 0xe81f2e2f,
 | 
						|
    0xc55b71da, 0xd7e2269a, 0x1339c3d1, 0x7ca56b36,
 | 
						|
    0xa6c9def2, 0xb5c9fc5f, 0x5927b3a3, 0x89a56ddf,
 | 
						|
    0xc625b510, 0x560f85a7, 0xace82e71, 0x2ecb8816,
 | 
						|
    0x44951e2a, 0x97f5f6af, 0xdfcbc2b3, 0xce4ff55d,
 | 
						|
    0xcb6b6214, 0x2b0b83e3, 0x549ea6f5, 0x9de041af,
 | 
						|
    0x792f1f17, 0xf73b99ee, 0x39a65ec0, 0x4c7016c6,
 | 
						|
    0x857709a4, 0xd6326e01, 0xc7b280d9, 0x5cfb1418,
 | 
						|
    0xa6aff227, 0xfd548203, 0x506b9d96, 0xa117a8c0,
 | 
						|
    0x9cd5bf6e, 0xdcee7888, 0x61fcfe64, 0xf7a193cd,
 | 
						|
    0x050d0184, 0xe8ae4930, 0x88014f36, 0xd6a87088,
 | 
						|
    0x6bad6c2a, 0x1422c678, 0xe9204de7, 0xb7c2e759,
 | 
						|
    0x0200248e, 0x013b446b, 0xda0d9fc2, 0x0414a895,
 | 
						|
    0x3a6cc3a1, 0x56fef170, 0x86c19155, 0xcf7b8a66,
 | 
						|
    0x551b5e69, 0xb4a8623e, 0xa2bdfa35, 0xc4f068cc,
 | 
						|
    0x573a6acd, 0x6355e936, 0x03602db9, 0x0edf13c1,
 | 
						|
    0x2d0bb16d, 0x6980b83c, 0xfeb23763, 0x3dd8a911,
 | 
						|
    0x01b6bc13, 0xf55579d7, 0xf55c2fa8, 0x19f4196e,
 | 
						|
    0xe7db5476, 0x8d64a866, 0xc06e16ad, 0xb17fc515,
 | 
						|
    0xc46feb3c, 0x8bc8a306, 0xad6799d9, 0x571a9133,
 | 
						|
    0x992466dd, 0x92eb5dcd, 0xac118f50, 0x9fafb226,
 | 
						|
    0xa1b9cef3, 0x3ab36189, 0x347a19b1, 0x62c73084,
 | 
						|
    0xc27ded5c, 0x6c8bc58f, 0x1cdde421, 0xed1e47fb,
 | 
						|
    0xcdcc715e, 0xb9c0ff99, 0x4b122f0f, 0xc4d25184,
 | 
						|
    0xaf7a5e6c, 0x5bbf18bc, 0x8dd7c6e0, 0x5fb7e420,
 | 
						|
    0x521f523f, 0x4ad9b8a2, 0xe9da1a6b, 0x97888c02,
 | 
						|
    0x19d1e354, 0x5aba7d79, 0xa2cc7753, 0x8c2d9655,
 | 
						|
    0x19829da1, 0x531590a7, 0x19c1c149, 0x3d537f1c,
 | 
						|
    0x50779b69, 0xed71f2b7, 0x463c58fa, 0x52dc4418,
 | 
						|
    0xc18c8c76, 0xc120d9f0, 0xafa80d4d, 0x3b74c473,
 | 
						|
    0xd09410e9, 0x290e4211, 0xc3c8082b, 0x8f6b334a,
 | 
						|
    0x3bf68ed2, 0xa843cc1b, 0x8d3c0ff3, 0x20e564a0,
 | 
						|
    0xf8f55a4f, 0x2b40f8e7, 0xfea7f15f, 0xcf00fe21,
 | 
						|
    0x8a6d37d6, 0xd0d506f1, 0xade00973, 0xefbbde36,
 | 
						|
    0x84670fa8, 0xfa31ab9e, 0xaedab618, 0xc01f52f5,
 | 
						|
    0x6558eb4f, 0x71b9e343, 0x4b8d77dd, 0x8cb93da6,
 | 
						|
    0x740fd52d, 0x425412f8, 0xc5a63360, 0x10e53ad0,
 | 
						|
    0x5a700f1c, 0x8324ed0b, 0xe53dc1ec, 0x1a366795,
 | 
						|
    0x6d549d15, 0xc5ce46d7, 0xe17abe76, 0x5f48e0a0,
 | 
						|
    0xd0f07c02, 0x941249b7, 0xe49ed6ba, 0x37a47f78,
 | 
						|
    0xe1cfffbd, 0xb007ca84, 0xbb65f4da, 0xb59f35da,
 | 
						|
    0x33d2aa44, 0x417452ac, 0xc0d674a7, 0x2d61a46a,
 | 
						|
    0xdc63152a, 0x3e12b7aa, 0x6e615927, 0xa14fb118,
 | 
						|
    0xa151758d, 0xba81687b, 0xe152f0b3, 0x764254ed,
 | 
						|
    0x34c77271, 0x0a31acab, 0x54f94aec, 0xb9e994cd,
 | 
						|
    0x574d9e81, 0x5b623730, 0xce8a21e8, 0x37917f0b,
 | 
						|
    0xe8a9b5d6, 0x9697adf8, 0xf3d30431, 0x5dcac921,
 | 
						|
    0x76b35d46, 0xaa430a36, 0xc2194022, 0x22bca65e,
 | 
						|
    0xdaec70ba, 0xdfaea8cc, 0x777bae8b, 0x242924d5,
 | 
						|
    0x1f098a5a, 0x4b396b81, 0x55de2522, 0x435c1cb8,
 | 
						|
    0xaeb8fe1d, 0x9db3c697, 0x5b164f83, 0xe0c16376,
 | 
						|
    0xa319224c, 0xd0203b35, 0x433ac0fe, 0x1466a19a,
 | 
						|
    0x45f0b24f, 0x51fda998, 0xc0d52d71, 0xfa0896a8,
 | 
						|
    0xf9e6053f, 0xa4b0d300, 0xd499cbcc, 0xb95e3d40,
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* Implementation of SOBER-128 by Tom St Denis.
 | 
						|
 * Based on s128fast.c reference code supplied by Greg Rose of QUALCOMM.
 | 
						|
 */
 | 
						|
 | 
						|
const struct _prng_descriptor sober128_desc =
 | 
						|
{
 | 
						|
   "sober128", 64,
 | 
						|
    &sober128_start,
 | 
						|
    &sober128_add_entropy,
 | 
						|
    &sober128_ready,
 | 
						|
    &sober128_read,
 | 
						|
};
 | 
						|
 | 
						|
const struct _prng_descriptor *prng_descriptor[] = {
 | 
						|
	&sober128_desc
 | 
						|
};
 | 
						|
 | 
						|
/* don't change these... */
 | 
						|
#define N                        17
 | 
						|
#define FOLD                      N /* how many iterations of folding to do */
 | 
						|
#define INITKONST        0x6996c53a /* value of KONST to use during key loading */
 | 
						|
#define KEYP                     15 /* where to insert key words */
 | 
						|
#define FOLDP                     4 /* where to insert non-linear feedback */
 | 
						|
 | 
						|
#define B(x,i) ((unsigned char)(((x) >> (8*i)) & 0xFF))
 | 
						|
 | 
						|
static ulong32 BYTE2WORD(const unsigned char *b)
 | 
						|
{
 | 
						|
   ulong32 t;
 | 
						|
   LOAD32L(t, b);
 | 
						|
   return t;
 | 
						|
}
 | 
						|
 | 
						|
#define WORD2BYTE(w, b) STORE32L(b, w)
 | 
						|
 | 
						|
static void XORWORD(ulong32 w, unsigned char *b)
 | 
						|
{
 | 
						|
   ulong32 t;
 | 
						|
   LOAD32L(t, b);
 | 
						|
   t ^= w;
 | 
						|
   STORE32L(t, b);
 | 
						|
}
 | 
						|
 | 
						|
/* give correct offset for the current position of the register,
 | 
						|
 * where logically R[0] is at position "zero".
 | 
						|
 */
 | 
						|
#define OFF(zero, i) (((zero)+(i)) % N)
 | 
						|
 | 
						|
/* step the LFSR */
 | 
						|
/* After stepping, "zero" moves right one place */
 | 
						|
#define STEP(R,z) \
 | 
						|
    R[OFF(z,0)] = R[OFF(z,15)] ^ R[OFF(z,4)] ^ (R[OFF(z,0)] << 8) ^ Multab[(R[OFF(z,0)] >> 24) & 0xFF];
 | 
						|
 | 
						|
static void cycle(ulong32 *R)
 | 
						|
{
 | 
						|
    ulong32 t;
 | 
						|
    int     i;
 | 
						|
 | 
						|
    STEP(R,0);
 | 
						|
    t = R[0];
 | 
						|
    for (i = 1; i < N; ++i) {
 | 
						|
        R[i-1] = R[i];
 | 
						|
    }
 | 
						|
    R[N-1] = t;
 | 
						|
}
 | 
						|
 | 
						|
/* Return a non-linear function of some parts of the register.
 | 
						|
 */
 | 
						|
#define NLFUNC(c,z) \
 | 
						|
{ \
 | 
						|
    t = c->R[OFF(z,0)] + c->R[OFF(z,16)]; \
 | 
						|
    t ^= Sbox[(t >> 24) & 0xFF]; \
 | 
						|
    t = ROR(t, 8); \
 | 
						|
    t = ((t + c->R[OFF(z,1)]) ^ c->konst) + c->R[OFF(z,6)]; \
 | 
						|
    t ^= Sbox[(t >> 24) & 0xFF]; \
 | 
						|
    t = t + c->R[OFF(z,13)]; \
 | 
						|
}
 | 
						|
 | 
						|
static ulong32 nltap(struct sober128_prng *c)
 | 
						|
{
 | 
						|
    ulong32 t;
 | 
						|
    NLFUNC(c, 0);
 | 
						|
    return t;
 | 
						|
}
 | 
						|
 | 
						|
/* initialise to known state
 | 
						|
 */
 | 
						|
int sober128_start(prng_state *prng)
 | 
						|
{
 | 
						|
    int                   i;
 | 
						|
    struct sober128_prng *c;
 | 
						|
 | 
						|
    c = &(prng->sober128);
 | 
						|
 | 
						|
    /* Register initialised to Fibonacci numbers */
 | 
						|
    c->R[0] = 1;
 | 
						|
    c->R[1] = 1;
 | 
						|
    for (i = 2; i < N; ++i) {
 | 
						|
       c->R[i] = c->R[i-1] + c->R[i-2];
 | 
						|
    }
 | 
						|
    c->konst = INITKONST;
 | 
						|
 | 
						|
    /* next add_entropy will be the key */
 | 
						|
    c->flag  = 1;
 | 
						|
    c->set   = 0;
 | 
						|
 | 
						|
    return CRYPT_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* Save the current register state
 | 
						|
 */
 | 
						|
static void s128_savestate(struct sober128_prng *c)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    for (i = 0; i < N; ++i) {
 | 
						|
        c->initR[i] = c->R[i];
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* initialise to previously saved register state
 | 
						|
 */
 | 
						|
static void s128_reloadstate(struct sober128_prng *c)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < N; ++i) {
 | 
						|
        c->R[i] = c->initR[i];
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Initialise "konst"
 | 
						|
 */
 | 
						|
static void s128_genkonst(struct sober128_prng *c)
 | 
						|
{
 | 
						|
    ulong32 newkonst;
 | 
						|
 | 
						|
    do {
 | 
						|
       cycle(c->R);
 | 
						|
       newkonst = nltap(c);
 | 
						|
    } while ((newkonst & 0xFF000000) == 0);
 | 
						|
    c->konst = newkonst;
 | 
						|
}
 | 
						|
 | 
						|
/* Load key material into the register
 | 
						|
 */
 | 
						|
#define ADDKEY(k) \
 | 
						|
   c->R[KEYP] += (k);
 | 
						|
 | 
						|
#define XORNL(nl) \
 | 
						|
   c->R[FOLDP] ^= (nl);
 | 
						|
 | 
						|
/* nonlinear diffusion of register for key */
 | 
						|
#define DROUND(z) STEP(c->R,z); NLFUNC(c,(z+1)); c->R[OFF((z+1),FOLDP)] ^= t;
 | 
						|
static void s128_diffuse(struct sober128_prng *c)
 | 
						|
{
 | 
						|
    ulong32 t;
 | 
						|
    /* relies on FOLD == N == 17! */
 | 
						|
    DROUND(0);
 | 
						|
    DROUND(1);
 | 
						|
    DROUND(2);
 | 
						|
    DROUND(3);
 | 
						|
    DROUND(4);
 | 
						|
    DROUND(5);
 | 
						|
    DROUND(6);
 | 
						|
    DROUND(7);
 | 
						|
    DROUND(8);
 | 
						|
    DROUND(9);
 | 
						|
    DROUND(10);
 | 
						|
    DROUND(11);
 | 
						|
    DROUND(12);
 | 
						|
    DROUND(13);
 | 
						|
    DROUND(14);
 | 
						|
    DROUND(15);
 | 
						|
    DROUND(16);
 | 
						|
}
 | 
						|
 | 
						|
int sober128_add_entropy(const unsigned char *buf, unsigned long len, prng_state *prng)
 | 
						|
{
 | 
						|
    struct sober128_prng *c;
 | 
						|
    ulong32               i, k;
 | 
						|
 | 
						|
    c = &(prng->sober128);
 | 
						|
 | 
						|
    if (c->flag == 1) {
 | 
						|
       /* this is the first call to the add_entropy so this input is the key */
 | 
						|
       /* len must be multiple of 4 bytes */
 | 
						|
       assert ((len & 3) == 0);
 | 
						|
 | 
						|
       for (i = 0; i < len; i += 4) {
 | 
						|
           k = BYTE2WORD(&buf[i]);
 | 
						|
          ADDKEY(k);
 | 
						|
          cycle(c->R);
 | 
						|
          XORNL(nltap(c));
 | 
						|
       }
 | 
						|
 | 
						|
       /* also fold in the length of the key */
 | 
						|
       ADDKEY(len);
 | 
						|
 | 
						|
       /* now diffuse */
 | 
						|
       s128_diffuse(c);
 | 
						|
 | 
						|
       s128_genkonst(c);
 | 
						|
       s128_savestate(c);
 | 
						|
       c->nbuf = 0;
 | 
						|
       c->flag = 0;
 | 
						|
       c->set  = 1;
 | 
						|
    } else {
 | 
						|
       /* ok we are adding an IV then... */
 | 
						|
       s128_reloadstate(c);
 | 
						|
 | 
						|
       /* len must be multiple of 4 bytes */
 | 
						|
       assert ((len & 3) == 0);
 | 
						|
 | 
						|
       for (i = 0; i < len; i += 4) {
 | 
						|
           k = BYTE2WORD(&buf[i]);
 | 
						|
          ADDKEY(k);
 | 
						|
          cycle(c->R);
 | 
						|
          XORNL(nltap(c));
 | 
						|
       }
 | 
						|
 | 
						|
       /* also fold in the length of the key */
 | 
						|
       ADDKEY(len);
 | 
						|
 | 
						|
       /* now diffuse */
 | 
						|
       s128_diffuse(c);
 | 
						|
       c->nbuf = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return CRYPT_OK;
 | 
						|
}
 | 
						|
 | 
						|
int sober128_ready(prng_state *prng)
 | 
						|
{
 | 
						|
   return prng->sober128.set == 1 ? CRYPT_OK : CRYPT_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
/* XOR pseudo-random bytes into buffer
 | 
						|
 */
 | 
						|
#define SROUND(z) STEP(c->R,z); NLFUNC(c,(z+1)); XORWORD(t, buf+(z*4));
 | 
						|
 | 
						|
unsigned long sober128_read(unsigned char *buf, unsigned long nbytes, prng_state *prng)
 | 
						|
{
 | 
						|
   struct sober128_prng *c;
 | 
						|
   ulong32               t, tlen;
 | 
						|
 | 
						|
   c = &(prng->sober128);
 | 
						|
   t = 0;
 | 
						|
   tlen = nbytes;
 | 
						|
 | 
						|
   /* handle any previously buffered bytes */
 | 
						|
   while (c->nbuf != 0 && nbytes != 0) {
 | 
						|
      *buf++ ^= c->sbuf & 0xFF;
 | 
						|
       c->sbuf >>= 8;
 | 
						|
       c->nbuf -= 8;
 | 
						|
       --nbytes;
 | 
						|
   }
 | 
						|
 | 
						|
#ifndef SMALL_CODE
 | 
						|
    /* do lots at a time, if there's enough to do */
 | 
						|
    while (nbytes >= N*4) {
 | 
						|
      SROUND(0);
 | 
						|
      SROUND(1);
 | 
						|
      SROUND(2);
 | 
						|
      SROUND(3);
 | 
						|
      SROUND(4);
 | 
						|
      SROUND(5);
 | 
						|
      SROUND(6);
 | 
						|
      SROUND(7);
 | 
						|
      SROUND(8);
 | 
						|
      SROUND(9);
 | 
						|
      SROUND(10);
 | 
						|
      SROUND(11);
 | 
						|
      SROUND(12);
 | 
						|
      SROUND(13);
 | 
						|
      SROUND(14);
 | 
						|
      SROUND(15);
 | 
						|
      SROUND(16);
 | 
						|
      buf    += 4*N;
 | 
						|
      nbytes -= 4*N;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    /* do small or odd size buffers the slow way */
 | 
						|
    while (4 <= nbytes) {
 | 
						|
      cycle(c->R);
 | 
						|
      t = nltap(c);
 | 
						|
      XORWORD(t, buf);
 | 
						|
      buf    += 4;
 | 
						|
      nbytes -= 4;
 | 
						|
    }
 | 
						|
 | 
						|
    /* handle any trailing bytes */
 | 
						|
    if (nbytes != 0) {
 | 
						|
      cycle(c->R);
 | 
						|
      c->sbuf = nltap(c);
 | 
						|
      c->nbuf = 32;
 | 
						|
      while (c->nbuf != 0 && nbytes != 0) {
 | 
						|
          *buf++ ^= c->sbuf & 0xFF;
 | 
						|
          c->sbuf >>= 8;
 | 
						|
          c->nbuf -= 8;
 | 
						|
          --nbytes;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return tlen;
 | 
						|
}
 | 
						|
 | 
						|
/* SHA1 code by Tom St Denis */
 | 
						|
 | 
						|
const struct _hash_descriptor sha1_desc =
 | 
						|
{
 | 
						|
    "sha1",
 | 
						|
    2,
 | 
						|
    20,
 | 
						|
    64,
 | 
						|
 | 
						|
    /* DER identifier */
 | 
						|
    { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B, 0x0E,
 | 
						|
      0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14 },
 | 
						|
    15,
 | 
						|
 | 
						|
    &sha1_init,
 | 
						|
    &sha1_process,
 | 
						|
    &sha1_done,
 | 
						|
};
 | 
						|
 | 
						|
#define F0(x,y,z)  (z ^ (x & (y ^ z)))
 | 
						|
#define F1(x,y,z)  (x ^ y ^ z)
 | 
						|
#define F2(x,y,z)  ((x & y) | (z & (x | y)))
 | 
						|
#define F3(x,y,z)  (x ^ y ^ z)
 | 
						|
 | 
						|
static void sha1_compress(hash_state *md, const unsigned char *buf)
 | 
						|
{
 | 
						|
    ulong32 a,b,c,d,e,W[80],i;
 | 
						|
 | 
						|
    /* copy the state into 512-bits into W[0..15] */
 | 
						|
    for (i = 0; i < 16; i++) {
 | 
						|
        LOAD32H(W[i], buf + (4*i));
 | 
						|
    }
 | 
						|
 | 
						|
    /* copy state */
 | 
						|
    a = md->sha1.state[0];
 | 
						|
    b = md->sha1.state[1];
 | 
						|
    c = md->sha1.state[2];
 | 
						|
    d = md->sha1.state[3];
 | 
						|
    e = md->sha1.state[4];
 | 
						|
 | 
						|
    /* expand it */
 | 
						|
    for (i = 16; i < 80; i++) {
 | 
						|
        W[i] = ROL(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1);
 | 
						|
    }
 | 
						|
 | 
						|
    /* compress */
 | 
						|
    /* round one */
 | 
						|
    #define FF0(a,b,c,d,e,i) e = (ROL(a, 5) + F0(b,c,d) + e + W[i] + 0x5a827999UL); b = ROL(b, 30);
 | 
						|
    #define FF1(a,b,c,d,e,i) e = (ROL(a, 5) + F1(b,c,d) + e + W[i] + 0x6ed9eba1UL); b = ROL(b, 30);
 | 
						|
    #define FF2(a,b,c,d,e,i) e = (ROL(a, 5) + F2(b,c,d) + e + W[i] + 0x8f1bbcdcUL); b = ROL(b, 30);
 | 
						|
    #define FF3(a,b,c,d,e,i) e = (ROL(a, 5) + F3(b,c,d) + e + W[i] + 0xca62c1d6UL); b = ROL(b, 30);
 | 
						|
 | 
						|
    for (i = 0; i < 20; ) {
 | 
						|
       FF0(a,b,c,d,e,i++);
 | 
						|
       FF0(e,a,b,c,d,i++);
 | 
						|
       FF0(d,e,a,b,c,i++);
 | 
						|
       FF0(c,d,e,a,b,i++);
 | 
						|
       FF0(b,c,d,e,a,i++);
 | 
						|
    }
 | 
						|
 | 
						|
    /* round two */
 | 
						|
    for (; i < 40; )  {
 | 
						|
       FF1(a,b,c,d,e,i++);
 | 
						|
       FF1(e,a,b,c,d,i++);
 | 
						|
       FF1(d,e,a,b,c,i++);
 | 
						|
       FF1(c,d,e,a,b,i++);
 | 
						|
       FF1(b,c,d,e,a,i++);
 | 
						|
    }
 | 
						|
 | 
						|
    /* round three */
 | 
						|
    for (; i < 60; )  {
 | 
						|
       FF2(a,b,c,d,e,i++);
 | 
						|
       FF2(e,a,b,c,d,i++);
 | 
						|
       FF2(d,e,a,b,c,i++);
 | 
						|
       FF2(c,d,e,a,b,i++);
 | 
						|
       FF2(b,c,d,e,a,i++);
 | 
						|
    }
 | 
						|
 | 
						|
    /* round four */
 | 
						|
    for (; i < 80; )  {
 | 
						|
       FF3(a,b,c,d,e,i++);
 | 
						|
       FF3(e,a,b,c,d,i++);
 | 
						|
       FF3(d,e,a,b,c,i++);
 | 
						|
       FF3(c,d,e,a,b,i++);
 | 
						|
       FF3(b,c,d,e,a,i++);
 | 
						|
    }
 | 
						|
 | 
						|
    #undef FF0
 | 
						|
    #undef FF1
 | 
						|
    #undef FF2
 | 
						|
    #undef FF3
 | 
						|
 | 
						|
    /* store */
 | 
						|
    md->sha1.state[0] = md->sha1.state[0] + a;
 | 
						|
    md->sha1.state[1] = md->sha1.state[1] + b;
 | 
						|
    md->sha1.state[2] = md->sha1.state[2] + c;
 | 
						|
    md->sha1.state[3] = md->sha1.state[3] + d;
 | 
						|
    md->sha1.state[4] = md->sha1.state[4] + e;
 | 
						|
}
 | 
						|
 | 
						|
void sha1_init(hash_state * md)
 | 
						|
{
 | 
						|
   md->sha1.state[0] = 0x67452301UL;
 | 
						|
   md->sha1.state[1] = 0xefcdab89UL;
 | 
						|
   md->sha1.state[2] = 0x98badcfeUL;
 | 
						|
   md->sha1.state[3] = 0x10325476UL;
 | 
						|
   md->sha1.state[4] = 0xc3d2e1f0UL;
 | 
						|
   md->sha1.curlen = 0;
 | 
						|
   md->sha1.length = 0;
 | 
						|
}
 | 
						|
 | 
						|
HASH_PROCESS(sha1_process, sha1_compress, sha1, 64)
 | 
						|
 | 
						|
int sha1_done(hash_state * md, unsigned char *hash)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Assert there isn't an invalid argument
 | 
						|
	 */
 | 
						|
	assert (md->sha1.curlen < sizeof (md->sha1.buf));
 | 
						|
 | 
						|
    /* increase the length of the message */
 | 
						|
    md->sha1.length += md->sha1.curlen * 8;
 | 
						|
 | 
						|
    /* append the '1' bit */
 | 
						|
    md->sha1.buf[md->sha1.curlen++] = (unsigned char)0x80;
 | 
						|
 | 
						|
    /* if the length is currently above 56 bytes we append zeros
 | 
						|
     * then compress.  Then we can fall back to padding zeros and length
 | 
						|
     * encoding like normal.
 | 
						|
     */
 | 
						|
    if (md->sha1.curlen > 56) {
 | 
						|
        while (md->sha1.curlen < 64) {
 | 
						|
            md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
 | 
						|
        }
 | 
						|
        sha1_compress(md, md->sha1.buf);
 | 
						|
        md->sha1.curlen = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* pad upto 56 bytes of zeroes */
 | 
						|
    while (md->sha1.curlen < 56) {
 | 
						|
        md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* store length */
 | 
						|
    STORE64H(md->sha1.length, md->sha1.buf+56);
 | 
						|
    sha1_compress(md, md->sha1.buf);
 | 
						|
 | 
						|
    /* copy output */
 | 
						|
    for (i = 0; i < 5; i++) {
 | 
						|
        STORE32H(md->sha1.state[i], hash+(4*i));
 | 
						|
    }
 | 
						|
    return CRYPT_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* Submited by Dobes Vandermeer  (dobes@smartt.com) */
 | 
						|
 | 
						|
/*
 | 
						|
    (1) append zeros to the end of K to create a B byte string
 | 
						|
        (e.g., if K is of length 20 bytes and B=64, then K will be
 | 
						|
         appended with 44 zero bytes 0x00)
 | 
						|
    (2) XOR (bitwise exclusive-OR) the B byte string computed in step
 | 
						|
        (1) with ipad (ipad = the byte 0x36 repeated B times)
 | 
						|
    (3) append the stream of data 'text' to the B byte string resulting
 | 
						|
        from step (2)
 | 
						|
    (4) apply H to the stream generated in step (3)
 | 
						|
    (5) XOR (bitwise exclusive-OR) the B byte string computed in
 | 
						|
        step (1) with opad (opad = the byte 0x5C repeated B times.)
 | 
						|
    (6) append the H result from step (4) to the B byte string
 | 
						|
        resulting from step (5)
 | 
						|
    (7) apply H to the stream generated in step (6) and output
 | 
						|
        the result
 | 
						|
*/
 | 
						|
 | 
						|
int hmac_init(hmac_state *hmac, int hash, const unsigned char *key, unsigned long keylen)
 | 
						|
{
 | 
						|
    unsigned char buf[128];
 | 
						|
    unsigned long i;
 | 
						|
    int err;
 | 
						|
 | 
						|
    hmac->hash = hash;
 | 
						|
 | 
						|
    /* valid key length? */
 | 
						|
	assert (keylen > 0);
 | 
						|
	assert (keylen <= hash_descriptor[hash]->blocksize);
 | 
						|
 | 
						|
    memcpy(hmac->key, key, (size_t)keylen);
 | 
						|
    if(keylen < hash_descriptor[hash]->blocksize) {
 | 
						|
        memset((hmac->key) + keylen, 0, (size_t)(hash_descriptor[hash]->blocksize - keylen));
 | 
						|
    }
 | 
						|
 | 
						|
    // Create the initial vector for step (3)
 | 
						|
    for(i=0; i < hash_descriptor[hash]->blocksize;   i++) {
 | 
						|
       buf[i] = hmac->key[i] ^ 0x36;
 | 
						|
    }
 | 
						|
 | 
						|
    // Pre-pend that to the hash data
 | 
						|
    hash_descriptor[hash]->init(&hmac->md);
 | 
						|
    err = hash_descriptor[hash]->process(&hmac->md, buf, hash_descriptor[hash]->blocksize);
 | 
						|
 | 
						|
   return err;
 | 
						|
}
 | 
						|
 | 
						|
int hmac_process(hmac_state *hmac, const unsigned char *buf, unsigned long len)
 | 
						|
{
 | 
						|
    return hash_descriptor[hmac->hash]->process(&hmac->md, buf, len);
 | 
						|
}
 | 
						|
 | 
						|
/* Submited by Dobes Vandermeer  (dobes@smartt.com) */
 | 
						|
 | 
						|
/*
 | 
						|
    (1) append zeros to the end of K to create a B byte string
 | 
						|
        (e.g., if K is of length 20 bytes and B=64, then K will be
 | 
						|
         appended with 44 zero bytes 0x00)
 | 
						|
    (2) XOR (bitwise exclusive-OR) the B byte string computed in step
 | 
						|
        (1) with ipad (ipad = the byte 0x36 repeated B times)
 | 
						|
    (3) append the stream of data 'text' to the B byte string resulting
 | 
						|
        from step (2)
 | 
						|
    (4) apply H to the stream generated in step (3)
 | 
						|
    (5) XOR (bitwise exclusive-OR) the B byte string computed in
 | 
						|
        step (1) with opad (opad = the byte 0x5C repeated B times.)
 | 
						|
    (6) append the H result from step (4) to the B byte string
 | 
						|
        resulting from step (5)
 | 
						|
    (7) apply H to the stream generated in step (6) and output
 | 
						|
        the result
 | 
						|
*/
 | 
						|
 | 
						|
int hmac_done(hmac_state *hmac, unsigned char *hashOut, unsigned long *outlen)
 | 
						|
{
 | 
						|
    unsigned char buf[128];
 | 
						|
	unsigned char isha[256];
 | 
						|
    unsigned long hashsize, i;
 | 
						|
    int hash, err;
 | 
						|
 | 
						|
    /* test hash */
 | 
						|
    hash = hmac->hash;
 | 
						|
 | 
						|
    /* get the hash message digest size */
 | 
						|
    hashsize = hash_descriptor[hash]->hashsize;
 | 
						|
 | 
						|
    // Get the hash of the first HMAC vector plus the data
 | 
						|
    if ((err = hash_descriptor[hash]->done(&hmac->md, isha)) != CRYPT_OK) {
 | 
						|
       goto __ERR;
 | 
						|
    }
 | 
						|
 | 
						|
    // Create the second HMAC vector vector for step (3)
 | 
						|
    for(i=0; i < hash_descriptor[hash]->blocksize; i++) {
 | 
						|
        buf[i] = hmac->key[i] ^ 0x5C;
 | 
						|
    }
 | 
						|
 | 
						|
    // Now calculate the "outer" hash for step (5), (6), and (7)
 | 
						|
    hash_descriptor[hash]->init(&hmac->md);
 | 
						|
    if ((err = hash_descriptor[hash]->process(&hmac->md, buf, hash_descriptor[hash]->blocksize)) != CRYPT_OK) {
 | 
						|
       goto __ERR;
 | 
						|
    }
 | 
						|
    if ((err = hash_descriptor[hash]->process(&hmac->md, isha, hashsize)) != CRYPT_OK) {
 | 
						|
       goto __ERR;
 | 
						|
    }
 | 
						|
    if ((err = hash_descriptor[hash]->done(&hmac->md, buf)) != CRYPT_OK) {
 | 
						|
       goto __ERR;
 | 
						|
    }
 | 
						|
 | 
						|
    // copy to output
 | 
						|
    for (i = 0; i < hashsize && i < *outlen; i++) {
 | 
						|
        hashOut[i] = buf[i];
 | 
						|
    }
 | 
						|
    *outlen = i;
 | 
						|
 | 
						|
    err = CRYPT_OK;
 | 
						|
__ERR:
 | 
						|
 | 
						|
    return err;
 | 
						|
}
 | 
						|
 | 
						|
const struct _hash_descriptor *hash_descriptor[] =
 | 
						|
{
 | 
						|
	&sha1_desc
 | 
						|
};
 | 
						|
 | 
						|
/* portable way to get secure random bits to feed a PRNG */
 | 
						|
/* on *NIX read /dev/random */
 | 
						|
static unsigned long rng_nix(unsigned char *buf, unsigned long len,
 | 
						|
                             void (*callback)(void))
 | 
						|
{
 | 
						|
	int fd;
 | 
						|
	unsigned long rb = 0;
 | 
						|
 | 
						|
	fd = open ("/dev/urandom", O_RDONLY);
 | 
						|
 | 
						|
	if (fd >= 0) {
 | 
						|
		rb = (unsigned long)read (fd, buf, len);
 | 
						|
		close (fd);
 | 
						|
	}
 | 
						|
 | 
						|
	return (rb);
 | 
						|
}
 | 
						|
 | 
						|
/* on ANSI C platforms with 100 < CLOCKS_PER_SEC < 10000 */
 | 
						|
#if defined(XCLOCKS_PER_SEC)
 | 
						|
 | 
						|
#define ANSI_RNG
 | 
						|
 | 
						|
static unsigned long rng_ansic(unsigned char *buf, unsigned long len,
 | 
						|
                               void (*callback)(void))
 | 
						|
{
 | 
						|
   clock_t t1;
 | 
						|
   int l, acc, bits, a, b;
 | 
						|
 | 
						|
   if (XCLOCKS_PER_SEC < 100 || XCLOCKS_PER_SEC > 10000) {
 | 
						|
      return 0;
 | 
						|
   }
 | 
						|
 | 
						|
   l = len;
 | 
						|
   bits = 8;
 | 
						|
   acc  = a = b = 0;
 | 
						|
   while (len--) {
 | 
						|
       if (callback != NULL) callback();
 | 
						|
       while (bits--) {
 | 
						|
          do {
 | 
						|
             t1 = XCLOCK(); while (t1 == XCLOCK()) a ^= 1;
 | 
						|
             t1 = XCLOCK(); while (t1 == XCLOCK()) b ^= 1;
 | 
						|
          } while (a == b);
 | 
						|
          acc = (acc << 1) | a;
 | 
						|
       }
 | 
						|
       *buf++ = acc;
 | 
						|
       acc  = 0;
 | 
						|
       bits = 8;
 | 
						|
   }
 | 
						|
   acc = bits = a = b = 0;
 | 
						|
   return l;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
unsigned long rng_get_bytes(unsigned char *buf, unsigned long len,
 | 
						|
                            void (*callback)(void))
 | 
						|
{
 | 
						|
   unsigned long x;
 | 
						|
 | 
						|
   x = rng_nix(buf, len, callback);   if (x != 0) { return x; }
 | 
						|
#ifdef ANSI_RNG
 | 
						|
   x = rng_ansic(buf, len, callback); if (x != 0) { return x; }
 | 
						|
#endif
 | 
						|
   return 0;
 | 
						|
}
 | 
						|
 | 
						|
int rng_make_prng(int bits, int wprng, prng_state *prng,
 | 
						|
                  void (*callback)(void))
 | 
						|
{
 | 
						|
   unsigned char buf[258];
 | 
						|
   int err;
 | 
						|
 | 
						|
   if (bits < 64 || bits > 1024) {
 | 
						|
      return CRYPT_INVALID_PRNGSIZE;
 | 
						|
   }
 | 
						|
 | 
						|
   if ((err = prng_descriptor[wprng]->start(prng)) != CRYPT_OK) {
 | 
						|
      return err;
 | 
						|
   }
 | 
						|
 | 
						|
   bits = ((bits/8)+((bits&7)!=0?1:0)) * 2;
 | 
						|
   if (rng_get_bytes(buf, (unsigned long)bits, callback) != (unsigned long)bits) {
 | 
						|
      return CRYPT_ERROR_READPRNG;
 | 
						|
   }
 | 
						|
 | 
						|
   if ((err = prng_descriptor[wprng]->add_entropy(buf, (unsigned long)bits, prng)) != CRYPT_OK) {
 | 
						|
      return err;
 | 
						|
   }
 | 
						|
 | 
						|
   if ((err = prng_descriptor[wprng]->ready(prng)) != CRYPT_OK) {
 | 
						|
      return err;
 | 
						|
   }
 | 
						|
 | 
						|
   return CRYPT_OK;
 | 
						|
}
 |