/* * Copyright (c) 2003-2004 MontaVista Software, Inc. * * All rights reserved. * * Author: Steven Dake (sdake@mvista.com) * * This software licensed under BSD license, the text of which follows: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the MontaVista Software, Inc. nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /* * This code implements the ring protocol specified in Yair Amir's PhD thesis: * http://www.cs.jhu.edu/~yairamir/phd.ps) (ch4,5). * * Some changes have been made to the design to support things like fragmentation, * multiple I/O queues, encryption, and authentication. * * Fragmentation Assembly Algorithm: * Messages are read from the rtr list and stored in assembly queues * identified by the ip address of the source of the mcast message. Every * time a fragmented message has been fully assembled, it is added to the * pending delivery queue. * Every time an item is added to the pending delivery queue: * The pending delivery queue with the smallest starting sequence number * is found. If a message is waiting on that pending delivery queue, it will * be delivered. This process will be repeated until the pending delivery queue * with the smallest sequence number has no pending messages. * This ensures VS semantics because an assembled message is ordered vs other * assembled messages based upon the first sequence number of the collection of * packets. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "aispoll.h" #include "gmi.h" #include "../include/queue.h" #include "../include/sq.h" #include "crypto.h" #define AUTHENTICATION 1 /* use authentication */ #define ENCRYPTION 1 /* use encryption */ #define LOCALHOST_IP inet_addr("127.0.0.1") #define QUEUE_PEND_SIZE_MAX 51 #define QUEUE_ASSEMBLY_SIZE_MAX ((MESSAGE_SIZE_MAX / 1472) + 1) #define QUEUE_RTR_ITEMS_SIZE_MAX 256 #define QUEUE_PEND_TRANS_SIZE_MAX ((MESSAGE_SIZE_MAX / 1472) + 1) #define MAXIOVS 8 #define RTR_TOKEN_SIZE_MAX 32 #define MISSING_MCAST_WINDOW 64 #define TIMEOUT_STATE_GATHER 100 #define TIMEOUT_TOKEN 1500 #define TIMEOUT_TOKEN_RETRANSMIT 750 #define TIMEOUT_STATE_COMMIT 100 #define MAX_MEMBERS 16 #define HOLE_LIST_MAX MISSING_MCAST_WINDOW #define PRIORITY_MAX 4 #define PACKET_SIZE_MAX 1500 /* * Authentication of messages */ hmac_state gmi_hmac_state; prng_state gmi_prng_state; unsigned char gmi_private_key[1024]; unsigned int gmi_private_key_len; int stats_sent = 0; int stats_recv = 0; int stats_delv = 0; int stats_remcasts = 0; int stats_orf_token = 0; int stats_form_token = 0; struct timeval stats_tv_start = { 0, 0 }; /* * Flow control mcasts and remcasts on last and current orf_token */ int fcc_remcast_last = 0; int fcc_mcast_last = 0; int fcc_mcast_current = 0; int fcc_remcast_current = 0; enum message_type { MESSAGE_TYPE_ORF_TOKEN = 0, /* Ordering, Reliability, Flow (ORF) control Token */ MESSAGE_TYPE_MCAST = 1, /* ring ordered multicast message */ MESSAGE_TYPE_MEMB_ATTEMPT_JOIN = 2, /* membership join attempt message */ MESSAGE_TYPE_MEMB_JOIN = 3, /* membership join message */ MESSAGE_TYPE_MEMB_FORM_TOKEN = 4 /* membership FORM token */ }; /* * In-order pending transmit queue */ struct queue queues_pend_trans[PRIORITY_MAX]; /* * In-order pending delivery queue */ struct assembly_queue_item { struct iovec iovec[MAXIOVS]; int iov_len; }; struct assembly_queue { int seqid; int first_delivery; struct queue queue; }; struct pend_queue_item { int seqid; struct iovec iovec[256]; int iov_len; }; struct queue_frag { int seqid; struct in_addr source_addr; struct assembly_queue assembly; struct queue pend_queue; }; struct queue_frag queues_frag[MAX_MEMBERS]; /* * Sorted delivery/retransmit queue */ struct sq queue_rtr_items; /* * Multicast address */ struct sockaddr_in sockaddr_in_mcast; struct gmi_socket { int mcast; int token; }; /* * File descriptors in use by GMI */ struct gmi_socket gmi_sockets[2]; /* * Received up to and including */ int gmi_arut = 0; /* * Delivered up to and including */ int gmi_adut = 0; int gmi_adut_old = 0; int gmi_original_arut = 0; int gmi_highest_seq = 0; int gmi_highest_seq_old = 0; int gmi_barrier_seq = 0; int gmi_last_seqid = 0; int gmi_fragment = 0; int gmi_pend_queue_priority = 0; struct orf_token orf_token_retransmit; int gmi_token_seqid = 0; /* * Timers */ poll_timer_handle timer_orf_token_timeout = 0; poll_timer_handle timer_orf_token_retransmit_timeout = 0; poll_timer_handle timer_form_token_timeout = 0; poll_timer_handle timer_memb_state_gather_timeout = 0; poll_timer_handle timer_memb_state_commit_timeout = 0; poll_timer_handle timer_single_member = 0; /* * Function called when new message received */ int (*gmi_recv) (char *group, struct iovec *iovec, int iov_len); /* * Function and data used to log messages */ static void (*gmi_log_printf) (int level, char *format, ...); int gmi_log_level_security; int gmi_log_level_error; int gmi_log_level_warning; int gmi_log_level_notice; int gmi_log_level_debug; #define HMAC_HASH_SIZE 20 struct security_header { unsigned char hash_digest[HMAC_HASH_SIZE]; /* The hash *MUST* be first in the data structure */ unsigned char salt[16]; /* random number */ }; struct message_header { struct security_header security_header; int type; int seqid; }; struct memb_conf_id { struct in_addr rep; struct timeval tv; }; struct mcast { struct message_header header; char priority; struct memb_conf_id memb_conf_id; short packet_number; short packet_count; int packet_seq; struct in_addr source; struct gmi_groupname groupname; }; struct rtr_item { struct memb_conf_id conf_id; int seqid; }; struct orf_token { struct message_header header; int token_seqid; int group_arut; struct in_addr addr_arut; short int fcc; struct rtr_item rtr_list[RTR_TOKEN_SIZE_MAX]; int rtr_list_entries; }; struct conf_desc { struct memb_conf_id conf_id; int highest_seq; int arut; #ifdef COMPLIE_OUT int hole_list[HOLE_LIST_MAX]; int hole_list_entries; #endif }; struct memb_form_token { struct message_header header; struct memb_conf_id conf_id; struct conf_desc conf_desc_list[MAX_MEMBERS]; /* SHOULD BE MAX_MEMBERS */ int conf_desc_list_entries; struct in_addr member_list[MAX_MEMBERS]; int member_list_entries; struct in_addr rep_list[MAX_MEMBERS]; int rep_list_entries; }; struct memb_attempt_join { struct message_header header; }; struct memb_join { struct message_header header; struct in_addr active_rep_list[MAX_MEMBERS]; int active_rep_list_entries; struct in_addr failed_rep_list[MAX_MEMBERS]; int failed_rep_list_entries; }; struct gmi_pend_trans_item { struct mcast *mcast; struct iovec iovec[MAXIOVS]; int iov_len; }; struct gmi_rtr_item { struct iovec iovec[MAXIOVS+2]; /* +2 is for mcast msg + group name TODO is this right */ int iov_len; }; enum memb_state { MEMB_STATE_OPERATIONAL, MEMB_STATE_GATHER, MEMB_STATE_COMMIT, MEMB_STATE_FORM, MEMB_STATE_EVS }; static enum memb_state memb_state = MEMB_STATE_GATHER; static struct sockaddr_in gmi_bound_to; static struct sockaddr_in memb_list[MAX_MEMBERS]; static int memb_list_entries = 1; static int memb_list_entries_confchg = 1; struct sockaddr_in memb_next; struct in_addr memb_gather_set[MAX_MEMBERS]; int memb_gather_set_entries = 0; struct memb_commit_set { struct sockaddr_in rep; struct in_addr join_rep_list[MAX_MEMBERS]; int join_rep_list_entries; struct in_addr member_list[MAX_MEMBERS]; int member_list_entries; }; static struct memb_commit_set memb_commit_set[MAX_MEMBERS]; static int memb_commit_set_entries = 0; static struct in_addr memb_failed_list[MAX_MEMBERS]; static int memb_failed_list_entries = 0; static struct sockaddr_in memb_local_sockaddr_in; static struct memb_conf_id memb_conf_id; static struct memb_conf_id memb_form_token_conf_id; static struct memb_join memb_join; static struct memb_form_token memb_form_token; static char iov_buffer[PACKET_SIZE_MAX]; static struct iovec gmi_iov_recv = { .iov_base = iov_buffer, .iov_len = sizeof (iov_buffer) }; static char iov_encrypted_buffer[PACKET_SIZE_MAX]; static struct iovec iov_encrypted = { .iov_base = iov_encrypted_buffer, .iov_len = sizeof (iov_encrypted_buffer) }; struct message_handlers { int count; int (*handler_functions[5]) (struct sockaddr_in *, struct iovec *, int, int); }; poll_handle *gmi_poll_handle; void (*gmi_deliver_fn) ( struct gmi_groupname *groupname, struct in_addr source_addr, struct iovec *iovec, int iov_len) = 0; void (*gmi_confchg_fn) ( struct sockaddr_in *member_list, int member_list_entries, struct sockaddr_in *left_list, int left_list_entries, struct sockaddr_in *joined_list, int joined_list_entries) = 0; /* * forward decls */ static int message_handler_orf_token (struct sockaddr_in *, struct iovec *, int, int); static int message_handler_mcast (struct sockaddr_in *, struct iovec *, int, int); static int message_handler_memb_attempt_join (struct sockaddr_in *, struct iovec *, int, int); static int message_handler_memb_join (struct sockaddr_in *, struct iovec *, int, int); static int message_handler_memb_form_token (struct sockaddr_in *, struct iovec *, int, int); static void memb_conf_id_build (struct memb_conf_id *, struct in_addr); static int recv_handler (poll_handle handle, int fd, int revents, void *data, unsigned int *prio); static int netif_determine (struct sockaddr_in *bindnet, struct sockaddr_in *bound_to); static int gmi_build_sockets (struct sockaddr_in *sockaddr_mcast, struct sockaddr_in *sockaddr_bindnet, struct gmi_socket *sockets, struct sockaddr_in *bound_to); static int memb_state_gather_enter (void); static void pending_queues_deliver (void); static int orf_token_mcast (struct orf_token *orf_token, int fcc_mcasts_allowed, struct sockaddr_in *system_from); static void queues_queue_frag_memb_new (); static void calculate_group_arut (struct orf_token *orf_token); static int messages_free (int group_arut); static int orf_token_send (struct orf_token *orf_token, int reset_timer); static void encrypt_and_sign (struct iovec *iovec, int iov_len); static int authenticate_and_decrypt (struct iovec *iov); static int recv_handler (poll_handle handle, int fd, int revents, void *data, unsigned int *prio); struct message_handlers gmi_message_handlers = { 5, { message_handler_orf_token, message_handler_mcast, message_handler_memb_attempt_join, message_handler_memb_join, message_handler_memb_form_token } }; void gmi_log_printf_init ( void (*log_printf) (int , char *, ...), int log_level_security, int log_level_error, int log_level_warning, int log_level_notice, int log_level_debug) { gmi_log_level_security = log_level_security; gmi_log_level_error = log_level_error; gmi_log_level_warning = log_level_warning; gmi_log_level_notice = log_level_notice; gmi_log_level_debug = log_level_debug; gmi_log_printf = log_printf; } #ifdef PRINTDIGESTS void print_digest (char *where, unsigned char *digest) { int i; printf ("DIGEST %s:\n", where); for (i = 0; i < 16; i++) { printf ("%x ", digest[i]); } printf ("\n"); } #endif /* * Exported interfaces */ int gmi_init ( struct sockaddr_in *sockaddr_mcast, struct gmi_interface *interfaces, int interface_count, poll_handle *poll_handle, unsigned char *private_key, int private_key_len) { int i; int res; int interface_no; /* * Initialize random number generator for later use to generate salt */ memcpy (gmi_private_key, private_key, private_key_len); gmi_private_key_len = private_key_len; rng_make_prng (128, PRNG_SOBER, &gmi_prng_state, NULL); /* * Initialize local variables for gmi */ memcpy (&sockaddr_in_mcast, sockaddr_mcast, sizeof (struct sockaddr_in)); memset (&memb_next, 0, sizeof (struct sockaddr_in)); memset (iov_buffer, 0, PACKET_SIZE_MAX); for (i = 0; i < PRIORITY_MAX; i++) { queue_init (&queues_pend_trans[i], QUEUE_PEND_TRANS_SIZE_MAX, sizeof (struct gmi_pend_trans_item)); } sq_init (&queue_rtr_items, QUEUE_RTR_ITEMS_SIZE_MAX, sizeof (struct gmi_rtr_item), 0); /* * Build sockets for every interface */ for (interface_no = 0; interface_no < interface_count; interface_no++) { /* * Create and bind the multicast and unicast sockets */ res = gmi_build_sockets (sockaddr_mcast, &interfaces[interface_no].bindnet, &gmi_sockets[interface_no], &interfaces[interface_no].boundto); if (res == -1) { return (res); } gmi_poll_handle = poll_handle; poll_dispatch_add (*gmi_poll_handle, gmi_sockets[interface_no].mcast, POLLIN, 0, recv_handler, UINT_MAX); poll_dispatch_add (*gmi_poll_handle, gmi_sockets[interface_no].token, POLLIN, 0, recv_handler, UINT_MAX); } memcpy (&gmi_bound_to, &interfaces->boundto, sizeof (struct sockaddr_in)); /* * This stuff depends on gmi_build_sockets */ memcpy (&memb_list[0], &interfaces->boundto, sizeof (struct sockaddr_in)); memb_conf_id_build (&memb_conf_id, interfaces->boundto.sin_addr); memcpy (&memb_form_token_conf_id, &memb_conf_id, sizeof (struct memb_conf_id)); memb_state_gather_enter (); memset (&memb_next, 0, sizeof (struct sockaddr_in)); queues_queue_frag_memb_new (); return (0); } int gmi_join ( struct gmi_groupname *groupname, void (*deliver_fn) ( struct gmi_groupname *groupname, struct in_addr source_addr, struct iovec *iovec, int iov_len), void (*confchg_fn) ( struct sockaddr_in *member_list, int member_list_entries, struct sockaddr_in *left_list, int left_list_entries, struct sockaddr_in *joined_list, int joined_list_entries), gmi_join_handle *handle_out) { gmi_deliver_fn = deliver_fn; gmi_confchg_fn = confchg_fn; *handle_out = 0; return (0); } int local_host_seq_count = 0; int gmi_leave ( gmi_join_handle handle_join); static int gmi_pend_trans_item_store ( struct gmi_groupname *groupname, struct iovec *iovec, int iov_len, int priority, short packet_number, short packet_count) { int i, j; struct gmi_pend_trans_item gmi_pend_trans_item; memset (&gmi_pend_trans_item, 0, sizeof (struct gmi_pend_trans_item)); /* * Store pending item */ gmi_pend_trans_item.mcast = malloc (sizeof (struct mcast)); if (gmi_pend_trans_item.mcast == 0) { goto error_mcast; } /* * Set mcast header */ gmi_pend_trans_item.mcast->header.type = MESSAGE_TYPE_MCAST; gmi_pend_trans_item.mcast->priority = priority; gmi_pend_trans_item.mcast->packet_number = packet_number; gmi_pend_trans_item.mcast->packet_count = packet_count; gmi_pend_trans_item.mcast->packet_seq = local_host_seq_count++; gmi_pend_trans_item.mcast->source.s_addr = gmi_bound_to.sin_addr.s_addr; memcpy (&gmi_pend_trans_item.mcast->groupname, groupname, sizeof (struct gmi_groupname)); for (i = 0; i < iov_len; i++) { gmi_pend_trans_item.iovec[i].iov_base = malloc (iovec[i].iov_len); if (gmi_pend_trans_item.iovec[i].iov_base == 0) { goto error_iovec; } memset (gmi_pend_trans_item.iovec[i].iov_base, 0, iovec[i].iov_len); memcpy (gmi_pend_trans_item.iovec[i].iov_base, iovec[i].iov_base, iovec[i].iov_len); gmi_pend_trans_item.iovec[i].iov_len = iovec[i].iov_len; } gmi_pend_trans_item.iov_len = iov_len; gmi_log_printf (gmi_log_level_debug, "mcasted message added to pending queue\n"); queue_item_add (&queues_pend_trans[priority], &gmi_pend_trans_item); return (0); error_iovec: for (j = 0; j < i; j++) { free (gmi_pend_trans_item.iovec[j].iov_base); } return (-1); error_mcast: return (0); } static void encrypt_and_sign (struct iovec *iovec, int iov_len) { char *addr = iov_encrypted.iov_base + sizeof (struct security_header); int i; iov_encrypted.iov_len = 0; char keys[48]; struct security_header *header = iov_encrypted.iov_base; prng_state keygen_prng_state; prng_state stream_prng_state; char *hmac_key = &keys[32]; char *cipher_key = &keys[16]; char *initial_vector = &keys[0]; unsigned long len; memset (keys, 0, sizeof (keys)); memset (header->salt, 0, sizeof (header->salt)); #if (defined(ENCRYPTION) || defined(AUTHENITCATION)) /* * Generate MAC, CIPHER, IV keys from private key */ sober128_read (header->salt, sizeof (header->salt), &gmi_prng_state); sober128_start (&keygen_prng_state); sober128_add_entropy (gmi_private_key, gmi_private_key_len, &keygen_prng_state); sober128_add_entropy (header->salt, sizeof (header->salt), &keygen_prng_state); sober128_read (keys, sizeof (keys), &keygen_prng_state); #endif #ifdef ENCRYPTION /* * Setup stream cipher */ sober128_start (&stream_prng_state); sober128_add_entropy (cipher_key, 16, &stream_prng_state); sober128_add_entropy (initial_vector, 16, &stream_prng_state); #endif #ifdef PRINTDIGESTS printf ("New encryption\n"); print_digest ("salt", header->salt); print_digest ("initial_vector", initial_vector); print_digest ("cipher_key", cipher_key); print_digest ("hmac_key", hmac_key); #endif /* * Copy header of message, then remainder of message, then encrypt it */ memcpy (addr, iovec[0].iov_base + sizeof (struct security_header), iovec[0].iov_len - sizeof (struct security_header)); addr += iovec[0].iov_len - sizeof (struct security_header); iov_encrypted.iov_len += iovec[0].iov_len; for (i = 1; i < iov_len; i++) { memcpy (addr, iovec[i].iov_base, iovec[i].iov_len); addr += iovec[i].iov_len; iov_encrypted.iov_len += iovec[i].iov_len; } /* * Encrypt message by XORing stream cipher data */ #ifdef ENCRYPTION sober128_read (iov_encrypted.iov_base + sizeof (struct security_header), iov_encrypted.iov_len - sizeof (struct security_header), &stream_prng_state); #endif #ifdef AUTHENTICATION memset (&gmi_hmac_state, 0, sizeof (hmac_state)); /* * Sign the contents of the message with the hmac key and store signature in message */ hmac_init (&gmi_hmac_state, DIGEST_SHA1, hmac_key, 16); hmac_process (&gmi_hmac_state, iov_encrypted.iov_base + HMAC_HASH_SIZE, iov_encrypted.iov_len - HMAC_HASH_SIZE); len = hash_descriptor[DIGEST_SHA1]->hashsize; hmac_done (&gmi_hmac_state, header->hash_digest, &len); #endif } /* * Only designed to work with a message with one iov */ static int authenticate_and_decrypt (struct iovec *iov) { iov_encrypted.iov_len = 0; char keys[48]; struct security_header *header = iov[0].iov_base; prng_state keygen_prng_state; prng_state stream_prng_state; char *hmac_key = &keys[32]; char *cipher_key = &keys[16]; char *initial_vector = &keys[0]; char digest_comparison[HMAC_HASH_SIZE]; unsigned long len; #if (defined(ENCRYPTION) || defined(AUTHENITCATION)) /* * Generate MAC, CIPHER, IV keys from private key */ memset (keys, 0, sizeof (keys)); sober128_start (&keygen_prng_state); sober128_add_entropy (gmi_private_key, gmi_private_key_len, &keygen_prng_state); sober128_add_entropy (header->salt, sizeof (header->salt), &keygen_prng_state); sober128_read (keys, sizeof (keys), &keygen_prng_state); #endif #ifdef ENCRYPTION /* * Setup stream cipher */ sober128_start (&stream_prng_state); sober128_add_entropy (cipher_key, 16, &stream_prng_state); sober128_add_entropy (initial_vector, 16, &stream_prng_state); #endif #ifdef PRINTDIGESTS printf ("New decryption\n"); print_digest ("salt", header->salt); print_digest ("initial_vector", initial_vector); print_digest ("cipher_key", cipher_key); print_digest ("hmac_key", hmac_key); #endif #ifdef AUTHENTICATION /* * Authenticate contents of message */ hmac_init (&gmi_hmac_state, DIGEST_SHA1, hmac_key, 16); hmac_process (&gmi_hmac_state, iov->iov_base + HMAC_HASH_SIZE, iov->iov_len - HMAC_HASH_SIZE); len = hash_descriptor[DIGEST_SHA1]->hashsize; assert (HMAC_HASH_SIZE >= len); hmac_done (&gmi_hmac_state, digest_comparison, &len); #ifdef PRINTDIGESTS print_digest ("sent digest", header->hash_digest); print_digest ("calculated digest", digest_comparison); #endif if (memcmp (digest_comparison, header->hash_digest, len) != 0) { gmi_log_printf (gmi_log_level_security, "Received message has invalid digest... ignoring.\n"); return (-1); } #endif /* AUTHENTICATION */ /* * Decrypt the contents of the message with the cipher key */ #ifdef ENCRYPTION sober128_read (iov->iov_base + sizeof (struct security_header), iov->iov_len - sizeof (struct security_header), &stream_prng_state); #endif return (0); } /* * MTU - multicast message header - IP header - UDP header * * On lossy switches, making use of the DF UDP flag can lead to loss of * forward progress. So the packets must be fragmented by the algorithm * and reassembled at the receiver. */ #define FRAGMENT_SIZE (PACKET_SIZE_MAX - sizeof (struct mcast) - 20 - 8) static void timer_function_single_member (void *data); /* * With only a single member, multicast messages as if an orf token was * delivered. This is done as part of the main event loop by specifying * a timer with an immediate expiration. This is a little suboptimal * since poll starts afresh. If more messages are waiting to be * self-delivered, queue the timer function again until there are no * more waiting messages. */ static void single_member_deliver (void) { poll_timer_delete (*gmi_poll_handle, timer_single_member); timer_single_member = 0; poll_timer_add (*gmi_poll_handle, 0, 0, timer_function_single_member, &timer_single_member); } static void timer_function_single_member (void *data) { struct orf_token orf_token; int more_messages; memset (&orf_token, 0, sizeof (struct orf_token)); orf_token.header.seqid = gmi_arut; orf_token.header.type = MESSAGE_TYPE_ORF_TOKEN; orf_token.group_arut = gmi_arut; orf_token.rtr_list_entries = 0; more_messages = orf_token_mcast (&orf_token, 99, &memb_local_sockaddr_in); calculate_group_arut (&orf_token); messages_free (gmi_arut); /* * Queue delivery again if more messages are available */ if (more_messages) { single_member_deliver (); } } int gmi_mcast ( struct gmi_groupname *groupname, struct iovec *iovec, int iov_len, int priority) { int res; struct iovec copied_iovec; struct iovec pending_iovecs[MAXIOVS]; int pending_iovec_entries = 0; int iovec_entry = 0; int total_size; int packet_size; int i; int packet_number = 0; int packet_count = 0; packet_size = FRAGMENT_SIZE; gmi_log_printf (gmi_log_level_debug, "MCASTING MESSAGE\n"); memset (pending_iovecs, 0, sizeof (struct iovec) * MAXIOVS); /* * Determine size of total message */ total_size = 0; for (i = 0; i < iov_len; i++) { total_size += iovec[i].iov_len; assert (iovec[i].iov_len < MESSAGE_SIZE_MAX); } packet_count = (total_size / packet_size); gmi_log_printf (gmi_log_level_debug, "Message size is %d\n", total_size); /* * Break message up into individual packets and publish them */ copied_iovec.iov_base = iovec[0].iov_base; copied_iovec.iov_len = iovec[0].iov_len; packet_size = 0; pending_iovec_entries = 0; iovec_entry = 0; do { if (copied_iovec.iov_len + packet_size > FRAGMENT_SIZE) { pending_iovecs[pending_iovec_entries].iov_base = copied_iovec.iov_base; pending_iovecs[pending_iovec_entries].iov_len = FRAGMENT_SIZE - packet_size; copied_iovec.iov_base += FRAGMENT_SIZE - packet_size; copied_iovec.iov_len -= FRAGMENT_SIZE - packet_size; packet_size += pending_iovecs[pending_iovec_entries].iov_len; } else { pending_iovecs[pending_iovec_entries].iov_base = copied_iovec.iov_base; pending_iovecs[pending_iovec_entries].iov_len = copied_iovec.iov_len; packet_size += copied_iovec.iov_len; iovec_entry += 1; /* this must be before copied_iovec */ copied_iovec.iov_base = iovec[iovec_entry].iov_base; copied_iovec.iov_len = iovec[iovec_entry].iov_len; } pending_iovec_entries += 1; if (packet_size >= FRAGMENT_SIZE || packet_size == total_size) { #ifdef DEBUGa for (i = 0; i < pending_iovec_entries; i++) { assert (pending_iovecs[i].iov_len < MESSAGE_SIZE_MAX); assert (pending_iovecs[i].iov_len >= 0); printf ("iovecs[%d] %x %d\n", i, pending_iovecs[i].iov_base, pending_iovecs[i].iov_len); calced_total += pending_iovecs[i].iov_len; } printf ("CALCULATED TOTAL is %d\n", calced_total); #endif total_size -= packet_size; assert (total_size >= 0); res = gmi_pend_trans_item_store (groupname, pending_iovecs, pending_iovec_entries, priority, packet_number, packet_count); pending_iovec_entries = 0; iovec_entry = 0; packet_size = 0; packet_number += 1; } } while (total_size > 0); /* * The queued messages are sent in orf_token_mcast, not this function * But if this processor is the only node, it must deliver the messages * for self-delivery requirements because orf_token_mcast is only called * on reception of a token */ if (memb_list_entries == 1) { single_member_deliver (); } return (0); } /* * Determine if there is room to queue a message for transmission */ int gmi_send_ok ( int priority, int msg_size) { int avail; queue_avail (&queues_pend_trans[priority], &avail); if (avail <= (msg_size / FRAGMENT_SIZE)) { return (0); } return (1); } static int netif_determine (struct sockaddr_in *bindnet, struct sockaddr_in *bound_to) { struct sockaddr_in *sockaddr_in; int id_fd; struct ifconf ifc; int numreqs = 0; int res; int i; in_addr_t mask_addr; /* * Generate list of local interfaces in ifc.ifc_req structure */ id_fd = socket (AF_INET, SOCK_STREAM, 0); ifc.ifc_buf = 0; do { numreqs += 32; ifc.ifc_len = sizeof (struct ifreq) * numreqs; ifc.ifc_buf = (void *)realloc(ifc.ifc_buf, ifc.ifc_len); res = ioctl (id_fd, SIOCGIFCONF, &ifc); if (res < 0) { close (id_fd); return -1; } } while (ifc.ifc_len == sizeof (struct ifreq) * numreqs); res = -1; /* * Find interface address to bind to */ for (i = 0; i < ifc.ifc_len / sizeof (struct ifreq); i++) { sockaddr_in = (struct sockaddr_in *)&ifc.ifc_ifcu.ifcu_req[i].ifr_ifru.ifru_addr; mask_addr = inet_addr ("255.255.255.0"); if ((sockaddr_in->sin_family == AF_INET) && (sockaddr_in->sin_addr.s_addr & mask_addr) == (bindnet->sin_addr.s_addr & mask_addr)) { bound_to->sin_addr.s_addr = sockaddr_in->sin_addr.s_addr; res = i; break; /* for */ } } free (ifc.ifc_buf); close (id_fd); return (res); } static int gmi_build_sockets (struct sockaddr_in *sockaddr_mcast, struct sockaddr_in *sockaddr_bindnet, struct gmi_socket *sockets, struct sockaddr_in *bound_to) { struct ip_mreq mreq; struct sockaddr_in sockaddr_in; char flag; int res; memset (&mreq, 0, sizeof (struct ip_mreq)); /* * Determine the ip address bound to and the interface name */ res = netif_determine (sockaddr_bindnet, bound_to); if (res == -1) { return (-1); } /* TODO this should be somewhere else */ memb_local_sockaddr_in.sin_addr.s_addr = bound_to->sin_addr.s_addr; memb_local_sockaddr_in.sin_family = AF_INET; memb_local_sockaddr_in.sin_port = sockaddr_mcast->sin_port; /* * Create multicast socket */ sockets->mcast = socket (AF_INET, SOCK_DGRAM, 0); if (sockets->mcast == -1) { perror ("socket"); return (-1); } if (setsockopt (sockets->mcast, SOL_IP, IP_MULTICAST_IF, &bound_to->sin_addr, sizeof (struct in_addr)) < 0) { gmi_log_printf (gmi_log_level_warning, "Could not bind to device for multicast, group messaging may not work properly. (%s)\n", strerror (errno)); } /* * Bind to multicast socket used for multicast send/receives */ sockaddr_in.sin_family = AF_INET; sockaddr_in.sin_addr.s_addr = sockaddr_mcast->sin_addr.s_addr; sockaddr_in.sin_port = sockaddr_mcast->sin_port; res = bind (sockets->mcast, (struct sockaddr *)&sockaddr_in, sizeof (struct sockaddr_in)); if (res == -1) { perror ("bind failed"); return (-1); } /* * Setup unicast socket */ sockets->token = socket (AF_INET, SOCK_DGRAM, 0); if (sockets->token == -1) { perror ("socket2"); return (-1); } /* * Bind to unicast socket used for token send/receives * This has the side effect of binding to the correct interface */ sockaddr_in.sin_addr.s_addr = bound_to->sin_addr.s_addr; res = bind (sockets->token, (struct sockaddr *)&sockaddr_in, sizeof (struct sockaddr_in)); if (res == -1) { perror ("bind2 failed"); return (-1); } #ifdef CONFIG_USE_BROADCAST /* This config option doesn't work */ { int on = 1; setsockopt (sockets->mcast, SOL_SOCKET, SO_BROADCAST, (char *)&on, sizeof (on)); } #else /* * Join group membership on socket */ mreq.imr_multiaddr.s_addr = sockaddr_mcast->sin_addr.s_addr; mreq.imr_interface.s_addr = bound_to->sin_addr.s_addr; res = setsockopt (sockets->mcast, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof (mreq)); if (res == -1) { perror ("join multicast group failed"); return (-1); } #endif /* * Turn off multicast loopback since we know what messages we have sent */ flag = 0; res = setsockopt (sockets->mcast, IPPROTO_IP, IP_MULTICAST_LOOP, &flag, sizeof (flag)); if (res == -1) { perror ("turn off loopback"); return (-1); } return (0); } /* * Misc Management */ int in_addr_compare (const void *a, const void *b) { struct in_addr *in_addr_a = (struct in_addr *)a; struct in_addr *in_addr_b = (struct in_addr *)b; return (in_addr_a->s_addr > in_addr_b->s_addr); } /* * ORF Token Management */ /* * Recast message to mcast group if it is available */ int orf_token_remcast (int seqid) { struct msghdr msg_mcast; struct gmi_rtr_item *gmi_rtr_item; int res; struct mcast *mcast; #ifdef DEBUG printf ("remulticasting %d\n", seqid); #endif /* * Get RTR item at seqid, if not available, return */ res = sq_item_get (&queue_rtr_items, seqid, (void **)&gmi_rtr_item); if (res != 0) { return -1; } mcast = (struct mcast *)gmi_rtr_item->iovec[0].iov_base; encrypt_and_sign (gmi_rtr_item->iovec, gmi_rtr_item->iov_len); /* * Build multicast message */ msg_mcast.msg_name = (caddr_t)&sockaddr_in_mcast; msg_mcast.msg_namelen = sizeof (struct sockaddr_in); msg_mcast.msg_iov = &iov_encrypted; msg_mcast.msg_iovlen = 1; msg_mcast.msg_control = 0; msg_mcast.msg_controllen = 0; msg_mcast.msg_flags = 0; /* * Multicast message */ res = sendmsg (gmi_sockets[0].mcast, &msg_mcast, MSG_NOSIGNAL | MSG_DONTWAIT); if (res == -1) { printf ("error during remulticast %d %d %d\n", seqid, errno, gmi_rtr_item->iov_len); return (-1); } stats_sent += res; return (0); } int last_group_arut = 0; int last_released = 0; int set_arut = -1; /* * Brake output multicasts if the missing window is too large */ int gmi_brake; static int messages_free (int group_arut) { struct gmi_rtr_item *gmi_rtr_item_p; int i, j; int res; int lesser; // TODO printf ("group arut %d last_group-arut %d gmi_dut %d barrier %d\n", group_arut, last_group_arut, gmi_dut, gmi_barrier_seq); /* * Determine braking value (when messages + MISSING_MCAST_WINDOW, stop sending messages) */ gmi_brake = group_arut; if (gmi_brake > last_group_arut) { gmi_brake = last_group_arut; } /* * Determine low water mark for messages to be freed */ lesser = gmi_brake; if (lesser > gmi_adut) { lesser = gmi_adut; } //printf ("Freeing lesser %d %d %d\n", lesser, group_arut, last_group_arut); //printf ("lesser %d gropu arut %d last group arut %d\n", lesser, group_arut, last_group_arut); /* * return early if no messages can be freed */ /* if (last_released + 1 == lesser) { return (0); } */ /* * Release retransmit list items if group arut indicates they are transmitted */ for (i = last_released; i <= lesser; i++) { res = sq_item_get (&queue_rtr_items, i, (void **)&gmi_rtr_item_p); if (res == 0) { for (j = 0; j < gmi_rtr_item_p->iov_len; j++) { free (gmi_rtr_item_p->iovec[j].iov_base); gmi_rtr_item_p->iovec[j].iov_base = (void *)0xdeadbeef; gmi_rtr_item_p->iovec[j].iov_len = i; } } last_released = i + 1; } sq_items_release (&queue_rtr_items, lesser); gmi_log_printf (gmi_log_level_debug, "releasing messages up to and including %d\n", lesser); return (0); } /* * Multicasts pending messages onto the ring (requires orf_token possession) */ static int orf_token_mcast ( struct orf_token *orf_token, int fcc_mcasts_allowed, struct sockaddr_in *system_from) { struct msghdr msg_mcast; struct gmi_rtr_item gmi_rtr_item; struct gmi_pend_trans_item *gmi_pend_trans_item = 0; int res = 0; int orf_token_seqid; struct mcast *mcast; int last_packet = 1; struct queue *queue_pend_trans; /* * Disallow multicasts unless state is operational */ if (memb_state != MEMB_STATE_OPERATIONAL) { return (0); } /* * If received a token with a higher sequence number, * set highest seq so retransmits can happen at end of * message stream */ if (orf_token->header.seqid > gmi_highest_seq) { gmi_highest_seq = orf_token->header.seqid; } orf_token_seqid = orf_token->header.seqid; queue_pend_trans = &queues_pend_trans[gmi_pend_queue_priority]; for (fcc_mcast_current = 0; fcc_mcast_current < fcc_mcasts_allowed; fcc_mcast_current++) { /* * determine which pending queue to take message * from if this is not a message fragment */ if (gmi_fragment == 0) { gmi_pend_queue_priority = 0; do { queue_pend_trans = &queues_pend_trans[gmi_pend_queue_priority]; if (queue_is_empty (queue_pend_trans)) { gmi_pend_queue_priority++; } else { break; /* from do - found first queue with data */ } } while (gmi_pend_queue_priority < PRIORITY_MAX); } if (gmi_pend_queue_priority == PRIORITY_MAX) { break; /* all queues are empty, break from for */ } // printf ("selecting pending queue %d\n", gmi_pend_queue_priority); gmi_pend_trans_item = (struct gmi_pend_trans_item *)queue_item_get (queue_pend_trans); /* preincrement required by algo */ gmi_pend_trans_item->mcast->header.seqid = ++orf_token->header.seqid; // UNDO printf ("multicasting seqid %d\n", gmi_pend_trans_item->mcast->header.seqid); last_packet = (gmi_pend_trans_item->mcast->packet_number == gmi_pend_trans_item->mcast->packet_count); //printf ("last packet is %d current mcast %d\n", last_packet, fcc_mcast_current); /* * Build IO vector */ memset (&gmi_rtr_item, 0, sizeof (struct gmi_rtr_item)); gmi_rtr_item.iovec[0].iov_base = gmi_pend_trans_item->mcast; gmi_rtr_item.iovec[0].iov_len = sizeof (struct mcast); mcast = gmi_rtr_item.iovec[0].iov_base; /* * Is this a fragment of a message */ if (mcast->packet_number == mcast->packet_count) { gmi_fragment = 0; } else { gmi_fragment = 1; } memcpy (&mcast->memb_conf_id, &memb_form_token_conf_id, sizeof (struct memb_conf_id)); memcpy (&gmi_rtr_item.iovec[1], gmi_pend_trans_item->iovec, gmi_pend_trans_item->iov_len * sizeof (struct iovec)); gmi_rtr_item.iov_len = gmi_pend_trans_item->iov_len + 1; assert (gmi_rtr_item.iov_len < 16); /* * Add message to retransmit queue */ sq_item_add (&queue_rtr_items, &gmi_rtr_item, gmi_pend_trans_item->mcast->header.seqid); /* * Delete item from pending queue */ queue_item_remove (queue_pend_trans); /* * Encrypt and digest the message */ encrypt_and_sign (gmi_rtr_item.iovec, gmi_rtr_item.iov_len); /* * Build multicast message */ msg_mcast.msg_name = &sockaddr_in_mcast; msg_mcast.msg_namelen = sizeof (struct sockaddr_in); msg_mcast.msg_iov = &iov_encrypted; msg_mcast.msg_iovlen = 1; msg_mcast.msg_control = 0; msg_mcast.msg_controllen = 0; msg_mcast.msg_flags = 0; /* * Multicast message */ res = sendmsg (gmi_sockets[0].mcast, &msg_mcast, MSG_NOSIGNAL | MSG_DONTWAIT); iov_encrypted.iov_len = PACKET_SIZE_MAX; /* * An error here is recovered by the multicast algorithm */ // TODO stats_sent isn't right below stats_sent += res; } assert (fcc_mcast_current < 100); #ifdef OUTA if (fcc_mcast_current > fcc_mcasts_allowed) { fcc_mcast_current = fcc_mcasts_allowed; } #endif /* * If messages mcasted, deliver any new messages to pending queues */ if (fcc_mcast_current) { if (gmi_pend_trans_item->mcast->header.seqid > gmi_highest_seq) { gmi_highest_seq = gmi_pend_trans_item->mcast->header.seqid; } pending_queues_deliver (); //printf ("orf Token seqid is %d group %d\n", orf_token_seqid, orf_token->group_arut); #ifdef COMPILE_OUT if (orf_token_seqid == orf_token->group_arut) { //printf ("previous group arut #1 %d\n", orf_token->group_arut); orf_token->group_arut = orf_token_seqid + fcc_mcast_current; orf_token->addr_arut.s_addr = 0; } //printf ("reasing group arut to %d\n", orf_token->group_arut); #endif } /* * Return 1 if more messages are available for single node clusters */ return (fcc_mcast_current == fcc_mcasts_allowed); } /* * Remulticasts messages in orf_token's retransmit list (requires orf_token) * Modify's orf_token's rtr to include retransmits required by this process */ static void orf_token_rtr ( struct orf_token *orf_token, int *fcc_allowed) { int res; int i, j; int found; #ifdef COMPLE_OUT printf ("Retransmit List %d\n", orf_token->rtr_list_entries); for (i = 0; i < orf_token->rtr_list_entries; i++) { printf ("%d ", orf_token->rtr_list[i].seqid); } printf ("\n"); #endif /* * Retransmit messages on orf_token's RTR list from RTR queue */ for (fcc_remcast_current = 0, i = 0; fcc_remcast_current <= *fcc_allowed && i < orf_token->rtr_list_entries;) { #ifdef COMPILE_OUT printf ("%d.%d.%d vs %d.%d.%d\n", orf_token->rtr_list[i].conf_id.rep.s_addr, orf_token->rtr_list[i].conf_id.tv.tv_sec, orf_token->rtr_list[i].conf_id.tv.tv_usec, memb_form_token_conf_id.rep.s_addr, memb_form_token_conf_id.tv.tv_sec, memb_form_token_conf_id.tv.tv_usec); #endif /* * If this retransmit request isn't from this configuration, * try next rtr entry */ if (memcmp (&orf_token->rtr_list[i].conf_id, &memb_form_token_conf_id, sizeof (struct memb_conf_id)) != 0) { i++; continue; } assert (orf_token->rtr_list[i].seqid > 0); res = orf_token_remcast (orf_token->rtr_list[i].seqid); if (res == 0) { orf_token->rtr_list_entries -= 1; assert (orf_token->rtr_list_entries >= 0); memmove (&orf_token->rtr_list[i], &orf_token->rtr_list[i + 1], sizeof (struct rtr_item) * (orf_token->rtr_list_entries)); fcc_remcast_current++; stats_remcasts++; } else { i++; //printf ("couldn't remcast %d\n", i); } } *fcc_allowed = *fcc_allowed - fcc_remcast_current - 1; #ifdef COMPILE_OUT for (i = 0; i < orf_token->rtr_list_entries; i++) { assert (orf_token->rtr_list[i].seqid != -1); } #endif /* * Add messages to retransmit to RTR list * but only retry if there is room in the retransmit list */ for (i = gmi_arut + 1; orf_token->rtr_list_entries < RTR_TOKEN_SIZE_MAX && // i <= orf_token->header.seqid; /* TODO this worked previously but not correct for EVS */ i <= gmi_highest_seq; i++) { res = sq_item_inuse (&queue_rtr_items, i); if (res == 0) { found = 0; for (j = 0; j < orf_token->rtr_list_entries; j++) { if (i == orf_token->rtr_list[j].seqid) { found = 1; } } if (found == 0) { memcpy (&orf_token->rtr_list[orf_token->rtr_list_entries].conf_id, &memb_form_token_conf_id, sizeof (struct memb_conf_id)); orf_token->rtr_list[orf_token->rtr_list_entries].seqid = i; orf_token->rtr_list_entries++; //printf ("adding to retransmit list %d\n", i); } } } } /* * Calculate flow control count */ static void orf_token_fcc ( struct orf_token *orf_token) { orf_token->fcc = orf_token->fcc - fcc_mcast_last - fcc_remcast_last + fcc_mcast_current + fcc_remcast_current; //printf ("orf token fcc is %d %d %d %d %d\n", orf_token->fcc, fcc_mcast_last, // fcc_remcast_last, fcc_mcast_current, fcc_remcast_current); fcc_mcast_last = fcc_mcast_current; fcc_remcast_last = fcc_remcast_current; fcc_mcast_current = 0; fcc_remcast_current = 0; } static void queues_queue_frag_memb_new (void) { struct queue_frag queues_frag_new[MAX_MEMBERS]; int item_index = 0; int i, j; int found; memset (queues_frag_new, 0, sizeof (struct queue_frag) * MAX_MEMBERS); /* * Build new pending list */ for (i = 0; i < memb_list_entries_confchg; i++) { found = 0; for (j = 0; j < MAX_MEMBERS; j++) { /* * If membership item in queues pending delivery list, copy it */ if (memb_list[i].sin_addr.s_addr == queues_frag[j].source_addr.s_addr) { memcpy (&queues_frag_new[item_index], &queues_frag[j], sizeof (struct queue_frag)); item_index += 1; found = 1; break; /* for j = */ } } /* * If membership item not found in pending delivery list, make new entry */ if (found == 0) { queue_init (&queues_frag_new[item_index].assembly.queue, QUEUE_ASSEMBLY_SIZE_MAX, sizeof (struct assembly_queue_item)); queue_init (&queues_frag_new[item_index].pend_queue, QUEUE_PEND_SIZE_MAX, sizeof (struct pend_queue_item)); queues_frag_new[item_index].assembly.seqid = 0; queues_frag_new[item_index].source_addr.s_addr = memb_list[i].sin_addr.s_addr; printf ("New queue for ip %s\n", inet_ntoa (queues_frag_new[item_index].source_addr)); item_index += 1; } } /* * Copy new list into system list */ memcpy (queues_frag, queues_frag_new, sizeof (struct queue_frag) * MAX_MEMBERS); for (i = 0; i < memb_list_entries_confchg; i++) { queues_frag[i].seqid = 0; queues_frag[i].assembly.seqid = 0; } #ifdef TODO for (i = 0; i < memb_list_entries_confchg; i++) { /* * If queue not empty, mark it for first delivery * otherwise reset seqno */ if (queue_is_empty (&queues_pend_delv[i].queue) == 0) { queues_pend_delv[i].first_delivery = 1; } else { queues_pend_delv[i].seqid = 0; } } #endif } static int orf_token_evs ( struct orf_token *orf_token, int starting_group_arut) { int i, j; struct sockaddr_in trans_memb_list[MAX_MEMBERS]; struct sockaddr_in left_list[MAX_MEMBERS]; struct sockaddr_in joined_list[MAX_MEMBERS]; int trans_memb_list_entries = 0; int left_list_entries = 0; int joined_list_entries = 0; int found; //printf ("group arut is %d %d %d %d\n", orf_token->header.seqid, orf_token->group_arut, gmi_arut, gmi_highest_seq); /* * We should only execute this function if we are in EVS membership state */ if (memb_state != MEMB_STATE_EVS) { return (0); } memset (trans_memb_list, 0, sizeof (struct sockaddr_in) * MAX_MEMBERS); /* * Delete form token timer since the token has been swallowed */ poll_timer_delete (*gmi_poll_handle, timer_form_token_timeout); timer_form_token_timeout = 0; printf ("EVS STATE group arut %d gmi arut %d highest %d barrier %d starting group arut %d\n", orf_token->group_arut, gmi_arut, gmi_highest_seq, gmi_barrier_seq, starting_group_arut); /* * This node has reached highest seq, set local arut to barrier */ if (gmi_arut == gmi_highest_seq) { //printf ("setting arut to barrier %d\n", gmi_barrier_seq); gmi_arut = gmi_barrier_seq; } /* * Determine when EVS recovery has completed */ //printf ("group arut is %d %d %d\n", orf_token->group_arut, gmi_arut, gmi_highest_seq); // TODO if (memb_state == MEMB_STATE_EVS && gmi_arut == gmi_barrier_seq && orf_token->group_arut == gmi_barrier_seq) { gmi_log_printf (gmi_log_level_notice, "EVS recovery of messages complete, transitioning to operational.\n"); /* * EVS recovery complete, reset local variables */ gmi_arut = 0; gmi_adut_old = gmi_adut; gmi_adut = 0; // gmi_token_seqid = 0; gmi_highest_seq_old = gmi_highest_seq; gmi_highest_seq = 0; last_group_arut = 0; sq_reinit (&queue_rtr_items, 0); memb_failed_list_entries = 0; memb_state = MEMB_STATE_OPERATIONAL; qsort (memb_form_token.member_list, memb_form_token.member_list_entries, sizeof (struct in_addr), in_addr_compare); printf ("CONFCHG ENTRIES %d\n", memb_list_entries_confchg); /* * Determine transitional configuration */ for (i = 0; i < memb_list_entries_confchg; i++) { for (found = 0, j = 0; j < memb_form_token.member_list_entries; j++) { if (memb_list[i].sin_addr.s_addr == memb_form_token.member_list[j].s_addr) { found = 1; break; } } if (found == 1) { trans_memb_list[trans_memb_list_entries].sin_addr.s_addr = memb_list[i].sin_addr.s_addr; trans_memb_list[trans_memb_list_entries].sin_family = AF_INET; trans_memb_list[trans_memb_list_entries].sin_port = sockaddr_in_mcast.sin_port; trans_memb_list_entries += 1; } } /* * Determine nodes that left the configuration */ for (i = 0; i < memb_list_entries_confchg; i++) { for (found = 0, j = 0; j < memb_form_token.member_list_entries; j++) { if (memb_list[i].sin_addr.s_addr == memb_form_token.member_list[j].s_addr) { found = 1; break; /* for j = 0 */ } } /* * Node left membership, add it to list */ if (found == 0) { left_list[left_list_entries].sin_addr.s_addr = memb_list[i].sin_addr.s_addr; left_list[left_list_entries].sin_family = AF_INET; left_list[left_list_entries].sin_port = sockaddr_in_mcast.sin_port; left_list_entries += 1; } } /* * MAIN STEP: * Deliver transitional configuration */ if (gmi_confchg_fn && (trans_memb_list_entries != memb_list_entries || (memcmp (trans_memb_list, memb_list, sizeof (struct sockaddr_in) * memb_list_entries) != 0))) { gmi_confchg_fn (trans_memb_list, trans_memb_list_entries, left_list, left_list_entries, 0, 0); } /* * Determine nodes that joined the configuration */ for (i = 0; i < memb_form_token.member_list_entries; i++) { for (found = 0, j = 0; j < memb_list_entries_confchg; j++) { if (memb_form_token.member_list[i].s_addr == memb_list[j].sin_addr.s_addr) { found = 1; break; /* for j = 0 */ } } /* * Node joined membership, add it to list */ if (found == 0) { joined_list[joined_list_entries].sin_addr.s_addr = memb_form_token.member_list[i].s_addr; joined_list[joined_list_entries].sin_family = AF_INET; joined_list[joined_list_entries].sin_port = sockaddr_in_mcast.sin_port; joined_list_entries += 1; } } /* * Install the form token's configuration into the local membership */ for (i = 0; i < memb_form_token.member_list_entries; i++) { memb_list[i].sin_addr.s_addr = memb_form_token.member_list[i].s_addr; memb_list[i].sin_family = AF_INET; memb_list[i].sin_port = sockaddr_in_mcast.sin_port; } /* * Install pending delivery queues */ memb_list_entries = memb_form_token.member_list_entries; memb_list_entries_confchg = memb_list_entries; queues_queue_frag_memb_new (); /* * Install new conf id */ memcpy (&memb_conf_id, &memb_form_token.conf_id, sizeof (struct memb_conf_id)); memcpy (&memb_form_token_conf_id, &memb_form_token.conf_id, sizeof (struct memb_conf_id)); /* * Deliver regular configuration */ if (gmi_confchg_fn) { gmi_confchg_fn (memb_list, memb_list_entries, left_list, 0, joined_list, joined_list_entries); } } return (0); } int gwin = 80; int pwin = 20; static int orf_fcc_allowed (struct orf_token *token) { int allowed; if (memb_state != MEMB_STATE_OPERATIONAL) { return (0); } allowed = gwin + pwin - token->fcc; if (allowed < 0) { allowed = 0; } if (allowed > gwin) { allowed = gwin; } if (allowed > pwin) { allowed = pwin; } return (allowed); } /* * Retransmit the regular token if no mcast or token has * been received in retransmit token period retransmit * the token to the next processor */ void timer_function_token_retransmit_timeout (void *data) { gmi_log_printf (gmi_log_level_warning, "Token being retransmitted.\n"); orf_token_send (&orf_token_retransmit, 0); } void timer_function_form_token_timeout (void *data) { gmi_log_printf (gmi_log_level_warning, "Token loss in FORM state\n"); memb_list_entries = 1; /* * Add highest rep to failed list to ensure termination */ memb_failed_list[memb_failed_list_entries++].s_addr = memb_form_token.rep_list[memb_form_token.rep_list_entries].s_addr; memb_state_gather_enter (); } void orf_timer_function_token_timeout (void *data) { switch (memb_state) { case MEMB_STATE_OPERATIONAL: gmi_log_printf (gmi_log_level_warning, "Token loss in OPERATIONAL.\n"); memb_conf_id.rep.s_addr = memb_local_sockaddr_in.sin_addr.s_addr; memb_list_entries = 1; memb_state_gather_enter (); break; case MEMB_STATE_GATHER: case MEMB_STATE_COMMIT: gmi_log_printf (gmi_log_level_warning, "Token loss in GATHER or COMMIT.\n"); memb_conf_id.rep.s_addr = memb_local_sockaddr_in.sin_addr.s_addr; memb_list_entries = 1; break; case MEMB_STATE_EVS: gmi_log_printf (gmi_log_level_warning, "Token loss in EVS state\n"); memb_list_entries = 1; memb_state_gather_enter (); break; default: printf ("token loss in form state doesn't make sense here\n"); break; } } /* * Send orf_token to next member (requires orf_token) */ static int orf_token_send ( struct orf_token *orf_token, int reset_timer) { struct msghdr msg_orf_token; struct iovec iovec_orf_token; int res; if (reset_timer) { poll_timer_delete (*gmi_poll_handle, timer_orf_token_timeout); poll_timer_add (*gmi_poll_handle, TIMEOUT_TOKEN, 0, orf_timer_function_token_timeout, &timer_orf_token_timeout); } iovec_orf_token.iov_base = (char *)orf_token; iovec_orf_token.iov_len = sizeof (struct orf_token); encrypt_and_sign (&iovec_orf_token, 1); msg_orf_token.msg_name = (caddr_t)&memb_next; msg_orf_token.msg_namelen = sizeof (struct sockaddr_in); msg_orf_token.msg_iov = &iov_encrypted; msg_orf_token.msg_iovlen = 1; msg_orf_token.msg_control = 0; msg_orf_token.msg_controllen = 0; msg_orf_token.msg_flags = 0; // THIS IS FOR TESTING ERRORS IN THE EVS STATE //if ((memb_state == MEMB_STATE_EVS) && ((random () % 3) == 0)) { //gmi_log_printf (gmi_log_level_debug, "CAUSING TOKEN LOSS AT EVS STATE\n"); // return (1); //} res = sendmsg (gmi_sockets[0].token, &msg_orf_token, MSG_NOSIGNAL); assert (res != -1); /* * res not used here errors are handled by algorithm */ // TODO do we need a test here of some sort gmi_last_seqid = orf_token->header.seqid; stats_sent += res; return (res); } int orf_token_send_initial (void) { struct orf_token orf_token; int res; orf_token.header.seqid = 0; orf_token.header.type = MESSAGE_TYPE_ORF_TOKEN; orf_token.token_seqid = 0; orf_token.group_arut = gmi_highest_seq; orf_token.addr_arut.s_addr = gmi_bound_to.sin_addr.s_addr; orf_token.fcc = 0; orf_token.rtr_list_entries = 0; memset (orf_token.rtr_list, 0, sizeof (struct rtr_item) * RTR_TOKEN_SIZE_MAX); res = orf_token_send (&orf_token, 1); return (res); } /* * Membership Management */ static int memb_join_send (void) { struct msghdr msghdr_join; struct iovec iovec_join; int res; memb_join.header.seqid = 0; memb_join.header.type = MESSAGE_TYPE_MEMB_JOIN; /* * copy current gather list to representatives list */ if ((memb_gather_set_entries == memb_join.active_rep_list_entries) && (memcmp (memb_join.active_rep_list, memb_gather_set, sizeof (struct in_addr) * memb_gather_set_entries) == 0) && (memb_failed_list_entries == memb_join.failed_rep_list_entries) && (memcmp (memb_join.failed_rep_list, memb_failed_list, sizeof (struct in_addr) * memb_failed_list_entries) == 0)) { return (0); } /* * Copy active reps */ memcpy (memb_join.active_rep_list, memb_gather_set, sizeof (struct in_addr) * memb_gather_set_entries); memb_join.active_rep_list_entries = memb_gather_set_entries; /* * Copy failed reps */ memcpy (memb_join.failed_rep_list, memb_failed_list, sizeof (struct in_addr) * memb_failed_list_entries); memb_join.failed_rep_list_entries = memb_failed_list_entries; iovec_join.iov_base = (char *)&memb_join; iovec_join.iov_len = sizeof (struct memb_join); encrypt_and_sign (&iovec_join, 1); msghdr_join.msg_name = (caddr_t)&sockaddr_in_mcast; msghdr_join.msg_namelen = sizeof (struct sockaddr_in); msghdr_join.msg_iov = &iov_encrypted; msghdr_join.msg_iovlen = 1; msghdr_join.msg_control = 0; msghdr_join.msg_controllen = 0; msghdr_join.msg_flags = 0; res = sendmsg (gmi_sockets[0].mcast, &msghdr_join, MSG_NOSIGNAL | MSG_DONTWAIT); return (res); } static int memb_state_commit_enter (void); /* * Update gather_set[0].join_reps with list of failed members */ void memb_gather_set_update_failed (struct in_addr *list, int list_entries) { int i; int j; /* * Remove failed members from gather set */ for (i = 0; i < list_entries; i++) { for (j = 0; j < memb_gather_set_entries; j++) { if (list[i].s_addr == memb_gather_set[j].s_addr) { memb_gather_set_entries -= 1; memcpy (&memb_gather_set[j], &memb_gather_set[j + 1], memb_gather_set_entries * sizeof (struct in_addr)); break; /* for j = 0 */ } } } } static void memb_timer_function_state_commit_timeout (void *data) { int i; int j; int k; int found; int add_to_failed = 1; struct sockaddr_in left_list[MAX_MEMBERS]; int left_list_entries = 0; memb_failed_list_entries = 0; /* * No entries responded in commit timeout period */ if (memb_commit_set_entries == 0) { /* * memb_list_entries only set to 0 when token times out, in which case * send a configuration change because no messages can be recovered in EVS */ if (memb_list_entries == 1) { gmi_log_printf (gmi_log_level_notice, "I am the only member.\n"); if (gmi_confchg_fn) { /* * Determine nodes that left the configuration */ for (i = 0; i < memb_list_entries_confchg; i++) { if (memb_local_sockaddr_in.sin_addr.s_addr != memb_list[i].sin_addr.s_addr) { left_list[left_list_entries].sin_addr.s_addr = memb_list[i].sin_addr.s_addr; left_list[left_list_entries].sin_family = AF_INET; left_list[left_list_entries].sin_port = sockaddr_in_mcast.sin_port; left_list_entries += 1; } } gmi_confchg_fn (&memb_local_sockaddr_in, 1, left_list, left_list_entries, 0, 0); memb_list_entries_confchg = 1; memb_list[0].sin_addr.s_addr = memb_local_sockaddr_in.sin_addr.s_addr; } queues_queue_frag_memb_new (); poll_timer_delete (*gmi_poll_handle, timer_single_member); timer_single_member = 0; poll_timer_add (*gmi_poll_handle, 0, 0, timer_function_single_member, &timer_single_member); } else { gmi_log_printf (gmi_log_level_notice, "No members sent join, keeping old ring and transitioning to operational.\n"); } memb_state = MEMB_STATE_OPERATIONAL; return; } /* * Find all failed members */ for (i = 0; i < memb_gather_set_entries; i++) { add_to_failed = 1; for (j = 0; j < memb_commit_set_entries; j++) { /* * If gather entry not in commit rep list, add to failed */ if (memb_gather_set[i].s_addr == memb_commit_set[j].rep.sin_addr.s_addr) { add_to_failed = 0; break; /* for found = 0 */ } } /* * If gather entry not in commit set, add to failed set */ for (found = 0, j = 0; j < memb_commit_set_entries; j++) { for (k = 0; k < memb_commit_set[j].join_rep_list_entries; k++) { if (memb_gather_set[i].s_addr == memb_commit_set[j].join_rep_list[k].s_addr) { found = 1; break; } } if (found == 0) { add_to_failed = 1; break; } } /* * If local address, item found */ if (memb_gather_set[i].s_addr == memb_local_sockaddr_in.sin_addr.s_addr) { add_to_failed = 0; } if (add_to_failed == 1) { memb_failed_list[memb_failed_list_entries++].s_addr = memb_gather_set[i].s_addr; } } memb_gather_set_update_failed (memb_failed_list, memb_failed_list_entries); memb_state_commit_enter (); } static int memb_state_commit_enter (void) { int res; memb_state = MEMB_STATE_COMMIT; memb_commit_set_entries = 0; res = memb_join_send(); poll_timer_delete (*gmi_poll_handle, timer_memb_state_gather_timeout); timer_memb_state_gather_timeout = 0; poll_timer_add (*gmi_poll_handle, TIMEOUT_STATE_COMMIT, 0, memb_timer_function_state_commit_timeout, &timer_memb_state_commit_timeout); return (res); } static void memb_timer_function_state_gather (void *data) { int i; /* * GATHER period expired, sort gather sets and send JOIN */ memb_state_commit_enter (); gmi_log_printf (gmi_log_level_debug, "GATHER timeout:\n"); for (i = 0; i < memb_gather_set_entries; i++) { gmi_log_printf (gmi_log_level_debug, "host %d attempted to join %s\n", i, inet_ntoa (memb_gather_set[i])); } } static void memb_print_commit_set (void) { int i, j; gmi_log_printf (gmi_log_level_debug, "Gather list\n"); for (i = 0; i < memb_gather_set_entries; i++) { gmi_log_printf (gmi_log_level_debug, "\tmember %d %s\n", i, inet_ntoa (memb_gather_set[i])); } for (i = 0; i < memb_commit_set_entries; i++) { gmi_log_printf (gmi_log_level_debug, "Join from rep %d %s\n", i, inet_ntoa (memb_commit_set[i].rep.sin_addr)); for (j = 0; j < memb_commit_set[i].join_rep_list_entries; j++) { gmi_log_printf (gmi_log_level_debug, "\tmember %d %s\n", j, inet_ntoa (memb_commit_set[i].join_rep_list[j])); } } } /* * Determine if the commit phase has reached consensus */ static int memb_state_consensus_commit (void) { int found; int res; int i, j; /* * Determine consensus */ /* * If all commit sets don't match gather set, no consensus */ for (i = 0; i < memb_commit_set_entries; i++) { /* * If not same number of entries, no consensus */ res = memb_gather_set_entries - memb_commit_set[i].join_rep_list_entries; if (res != 0) { return (0); /* no consensus */ } /* * If entries dont match, no consensus */ res = memcmp (memb_gather_set, memb_commit_set[i].join_rep_list, memb_gather_set_entries * sizeof (struct in_addr)); if (res != 0) { return (0); /* no consensus */ } } /* * If all reps from gather set represented in commit set, consensus */ for (i = 0; i < memb_gather_set_entries; i++) { found = 0; for (j = 0; j < memb_commit_set_entries; j++) { if (memb_gather_set[i].s_addr == memb_local_sockaddr_in.sin_addr.s_addr) { found = 1; break; } if (memb_gather_set[i].s_addr == memb_commit_set[j].rep.sin_addr.s_addr) { found = 1; break; } } if (found == 0) { return (0); /* no consensus, rep not found from gather set */ } } return (1); /* got consensus! */ } /* * Union commit_set_entry into gather set */ static void memb_state_commit_union (int commit_set_entry) { int found; int i, j; for (i = 0; i < memb_commit_set[commit_set_entry].join_rep_list_entries; i++) { for (found = 0, j = 0; j < memb_gather_set_entries; j++) { if (memb_commit_set[commit_set_entry].join_rep_list[i].s_addr == memb_gather_set[j].s_addr) { found = 1; break; } } if (found == 0) { memb_gather_set[memb_gather_set_entries++].s_addr = memb_commit_set[commit_set_entry].join_rep_list[i].s_addr; /* * Sort gather set */ qsort (memb_gather_set, memb_gather_set_entries, sizeof (struct in_addr), in_addr_compare); } } } static void memb_conf_id_build ( struct memb_conf_id *memb_conf_id, struct in_addr memb_local_rep) { gettimeofday (&memb_conf_id->tv, NULL); memb_conf_id->rep.s_addr = memb_local_rep.s_addr; } static void memb_form_token_update_highest_seq ( struct memb_form_token *form_token) { struct conf_desc *conf_desc; int entry; int found = 0; for (entry = 0; entry < form_token->conf_desc_list_entries; entry++) { if (memcmp (&form_token->conf_desc_list[entry].conf_id, &memb_form_token_conf_id, sizeof (struct memb_conf_id)) == 0) { found = 1; break; } } conf_desc = &form_token->conf_desc_list[entry]; if (found && gmi_highest_seq < conf_desc->highest_seq) { gmi_highest_seq = conf_desc->highest_seq; } } static void memb_form_token_conf_desc_build ( struct memb_form_token *form_token) { struct conf_desc *conf_desc; int found = 0; int entry = 0; /* * Determine if local configuration id is already present in form token */ for (entry = 0; entry < form_token->conf_desc_list_entries; entry++) { if (memcmp (&form_token->conf_desc_list[entry].conf_id, &memb_form_token_conf_id, sizeof (struct memb_conf_id)) == 0) { found = 1; break; } } conf_desc = &form_token->conf_desc_list[entry]; if (found == 0) { /* * Item not present, add item */ conf_desc->highest_seq = gmi_highest_seq; conf_desc->arut = gmi_arut; // TODO holes not currently implemented conf_desc->hole_list_entries = 0; memcpy (&conf_desc->conf_id, &memb_form_token_conf_id, sizeof (struct memb_conf_id)); form_token->conf_desc_list_entries += 1; } else { /* * Item already present, update arut, highest seq */ if (conf_desc->arut > gmi_arut) { conf_desc->arut = gmi_arut; } if (gmi_highest_seq > conf_desc->highest_seq) { conf_desc->highest_seq = gmi_highest_seq; } } #ifdef COMPILE_OUT /* * Build conf_desc->hole_list */ printf ("conf desc build %d %d\n", gmi_arut, gmi_highest_seq); conf_desc->hole_list_entries = 0; for (i = gmi_arut; i < gmi_highest_seq; i++) { assert (conf_desc->hole_list_entries < HOLE_LIST_MAX); res = sq_item_get (&queue_rtr_items, i, (void **)&gmi_rtr_item_p); if (res == 0) { /* * If item present, delete from hole list if it exists */ for (j = 0; j < conf_desc->hole_list_entries; j++) { if (conf_desc->hole_list[j] == i) { memmove (&conf_desc->hole_list[j], &conf_desc->hole_list[j + 1], sizeof (int) * (conf_desc->hole_list_entries - j - 1)); conf_desc->hole_list_entries -= 1; printf ("reducing setting desc entries to %d\n", conf_desc->hole_list_entries); break; /* from for (j = ... ) */ } } } else { /* * If item not present, add to hole list */ conf_desc->hole_list[conf_desc->hole_list_entries] = i; conf_desc->hole_list_entries += 1; printf ("increasing setting desc entries to %d %d\n", conf_desc->hole_list_entries, i); } } printf ("Conf desc build done\n"); #endif } static int memb_form_token_send ( struct memb_form_token *form_token) { struct msghdr msg_form_token; struct iovec iovec_form_token; int res; /* * Build message for sendmsg */ iovec_form_token.iov_base = (char *)form_token; iovec_form_token.iov_len = sizeof (struct memb_form_token); encrypt_and_sign (&iovec_form_token, 1); msg_form_token.msg_name = (caddr_t)&memb_next; msg_form_token.msg_namelen = sizeof (struct sockaddr_in); msg_form_token.msg_iov = &iov_encrypted; msg_form_token.msg_iovlen = 1; msg_form_token.msg_control = 0; msg_form_token.msg_controllen = 0; msg_form_token.msg_flags = 0; res = sendmsg (gmi_sockets[0].token, &msg_form_token, MSG_NOSIGNAL | MSG_DONTWAIT); /* * res not used here, because orf token errors are handled by algorithm */ stats_sent += res; poll_timer_delete (*gmi_poll_handle, timer_orf_token_timeout); timer_orf_token_timeout = 0; /* * Delete retransmit timer since a new * membership is in progress */ poll_timer_delete (*gmi_poll_handle, timer_orf_token_retransmit_timeout); timer_orf_token_retransmit_timeout = 0; poll_timer_delete (*gmi_poll_handle, timer_form_token_timeout); poll_timer_add (*gmi_poll_handle, TIMEOUT_TOKEN, 0, timer_function_form_token_timeout, &timer_form_token_timeout); return (res); } int memb_form_token_send_initial (void) { struct memb_form_token form_token; int res; int i; memset (&form_token, 0x00, sizeof (struct memb_form_token)); memb_state = MEMB_STATE_FORM; /* * Build form token */ form_token.header.type = MESSAGE_TYPE_MEMB_FORM_TOKEN; memcpy (form_token.rep_list, memb_gather_set, memb_gather_set_entries * sizeof (struct in_addr)); form_token.rep_list_entries = memb_gather_set_entries; /* * Add local member to entry */ form_token.member_list[0].s_addr = memb_local_sockaddr_in.sin_addr.s_addr; form_token.member_list_entries = 1; memb_conf_id_build (&form_token.conf_id, memb_local_sockaddr_in.sin_addr); form_token.conf_desc_list_entries = 0; memb_form_token_conf_desc_build (&form_token); /* * Send FORM to next member, or if no members in this configuration * to next representative */ if (memb_list_entries <= 1) { memb_next.sin_addr.s_addr = memb_gather_set[1].s_addr; } else { for (i = 0; i < memb_list_entries; i++) { if (memb_list[i].sin_addr.s_addr == memb_local_sockaddr_in.sin_addr.s_addr) { memb_next.sin_addr.s_addr = memb_list[i + 1].sin_addr.s_addr; break; } } } // TODO assertion here about the 1 value memb_next.sin_family = AF_INET; memb_next.sin_port = sockaddr_in_mcast.sin_port; res = memb_form_token_send (&form_token); return (res); } void print_stats (void) { struct timeval tv_end; gettimeofday (&tv_end, NULL); gmi_log_printf (gmi_log_level_notice, "Bytes recv %d\n", stats_recv); gmi_log_printf (gmi_log_level_notice, "Bytes sent %d\n", stats_sent); gmi_log_printf (gmi_log_level_notice, "Messages delivered %d\n", stats_delv); gmi_log_printf (gmi_log_level_notice, "Re-Mcasts %d\n", stats_remcasts); gmi_log_printf (gmi_log_level_notice, "Tokens process %d\n", stats_orf_token); } int last_lowered = 1; static void calculate_group_arut (struct orf_token *orf_token) { //printf ("group arut %d local arut %d gmi_gmi_highest seq %d\n", orf_token->group_arut, gmi_arut, gmi_highest_seq); //printf ("last %d group arut %d last arut %d arut %d\n", last_lowered, orf_token->group_arut, last_group_arut, gmi_arut); /* * increase the group arut if we got back the same group * because everyone has these messages */ messages_free (orf_token->group_arut); if (orf_token->addr_arut.s_addr == gmi_bound_to.sin_addr.s_addr) { orf_token->group_arut = gmi_arut; } if (gmi_arut < orf_token->group_arut) { orf_token->group_arut = gmi_arut; orf_token->addr_arut.s_addr = gmi_bound_to.sin_addr.s_addr; } last_group_arut = orf_token->group_arut; } /* * Message Handlers */ /* * message handler called when TOKEN message type received */ static int message_handler_orf_token ( struct sockaddr_in *system_from, struct iovec *iovec, int iov_len, int bytes_received) { struct orf_token orf_token; int transmits_allowed; int starting_group_arut; int prio = UINT_MAX; struct pollfd ufd; int nfds; assert (bytes_received == sizeof (struct orf_token)); memcpy (&orf_token, iovec->iov_base, sizeof (struct orf_token)); /* * flush multicast messages */ do { ufd.fd = gmi_sockets[0].mcast; ufd.events = POLLIN; nfds = poll (&ufd, 1, 0); if (nfds == 1 && ufd.revents & POLLIN) { gmi_iov_recv.iov_len = PACKET_SIZE_MAX; recv_handler (0, gmi_sockets[0].mcast, ufd.revents, 0, &prio); } } while (nfds == 1); #ifdef TESTTOKENRETRANSMIT if ((random() % 500) == 0) { printf ("randomly dropping token to test token retransmit.\n"); return (0); } #endif /* * Already received this token, but it was retransmitted * to this processor because the retransmit timer on a previous * processor timed out, so ignore the token */ if (orf_token.token_seqid > 0 && gmi_token_seqid >= orf_token.token_seqid) { printf ("already received token %d %d\n", orf_token.token_seqid, gmi_token_seqid); //exit(1); return (0); } gmi_token_seqid = orf_token.token_seqid; poll_timer_delete (*gmi_poll_handle, timer_orf_token_retransmit_timeout); timer_orf_token_retransmit_timeout = 0; #ifdef PRINT_STATS if (orf_token.header.seqid > 10000) { print_stats (); } #endif if (memb_state == MEMB_STATE_FORM) { gmi_log_printf (gmi_log_level_notice, "swallowing ORF token %d.\n", stats_orf_token); poll_timer_delete (*gmi_poll_handle, timer_orf_token_timeout); timer_orf_token_timeout = 0; /* * Delete retransmit timer since a new * membership is in progress */ poll_timer_delete (*gmi_poll_handle, timer_orf_token_retransmit_timeout); timer_orf_token_retransmit_timeout = 0; return (0); } //printf ("Got orf token from %s\n", inet_ntoa (system_from->sin_addr)); starting_group_arut = orf_token.group_arut; stats_orf_token++; transmits_allowed = orf_fcc_allowed (&orf_token); //printf ("retransmit allowed %d\n", transmits_allowed); /* * Retransmit failed messages and request retransmissions */ orf_token_rtr (&orf_token, &transmits_allowed); //printf ("multicasts allowed %d\n", transmits_allowed); /* * TODO Ok this is ugly and I dont like it. * * Flow control to limit number of missing multicast messages * on lossy switches, this could cause a large window between * what is delivered locally and what is delivered remotely. * This window could cause the hole list of the form token to * be overrun or cause the form token to be large. */ if ((gmi_brake + MISSING_MCAST_WINDOW) < orf_token.header.seqid) { transmits_allowed = 0; } /* * Set the group arut and free any messages that can be freed */ if (memb_state != MEMB_STATE_EVS) { calculate_group_arut (&orf_token); } /* * Multicast queued messages */ orf_token_mcast (&orf_token, transmits_allowed, system_from); /* * Calculate flow control count */ orf_token_fcc (&orf_token); /* * Deliver membership and messages required by EVS */ orf_token_evs (&orf_token, starting_group_arut); if (memb_state == MEMB_STATE_EVS) { calculate_group_arut (&orf_token); } /* * Increment the token seqid and store for later retransmit */ orf_token.token_seqid += 1; memcpy (&orf_token_retransmit, &orf_token, sizeof (struct orf_token)); poll_timer_delete (*gmi_poll_handle, timer_orf_token_retransmit_timeout); poll_timer_add (*gmi_poll_handle, TIMEOUT_TOKEN_RETRANSMIT, 0, timer_function_token_retransmit_timeout, &timer_orf_token_retransmit_timeout); /* * Transmit orf_token to next member */ orf_token_send (&orf_token, 1); return (0); } static int memb_state_gather_enter (void) { struct msghdr msghdr_attempt_join; struct iovec iovec_attempt_join; struct memb_attempt_join memb_attempt_join; int res = 0; gmi_log_printf (gmi_log_level_notice, "entering GATHER state.\n"); memb_state = MEMB_STATE_GATHER; /* * Join message starts with no entries */ memb_join.active_rep_list_entries = 0; memb_join.failed_rep_list_entries = 0; /* * Copy local host info */ memb_gather_set[0].s_addr = memb_local_sockaddr_in.sin_addr.s_addr; memb_gather_set_entries = 1; /* * If this node is the representative, send attempt join */ if (memb_local_sockaddr_in.sin_addr.s_addr == memb_conf_id.rep.s_addr) { gmi_log_printf (gmi_log_level_notice, "SENDING attempt join because this node is ring rep.\n"); memb_attempt_join.header.seqid = 0; memb_attempt_join.header.type = MESSAGE_TYPE_MEMB_ATTEMPT_JOIN; iovec_attempt_join.iov_base = &memb_attempt_join; iovec_attempt_join.iov_len = sizeof (struct memb_attempt_join); encrypt_and_sign (&iovec_attempt_join, 1); msghdr_attempt_join.msg_name = &sockaddr_in_mcast; msghdr_attempt_join.msg_namelen = sizeof (struct sockaddr_in); msghdr_attempt_join.msg_iov = &iov_encrypted; msghdr_attempt_join.msg_iovlen = 1; msghdr_attempt_join.msg_control = 0; msghdr_attempt_join.msg_controllen = 0; msghdr_attempt_join.msg_flags = 0; res = sendmsg (gmi_sockets[0].mcast, &msghdr_attempt_join, MSG_NOSIGNAL | MSG_DONTWAIT); /* * res not checked here, there is nothing that can be done * instead rely on the algorithm to recover from faults */ } poll_timer_delete (*gmi_poll_handle, timer_memb_state_gather_timeout); poll_timer_add (*gmi_poll_handle, TIMEOUT_STATE_GATHER, 0, memb_timer_function_state_gather, &timer_memb_state_gather_timeout); return (res); } struct queue_frag *queue_frag_delivery_find (void) { struct queue_frag *queue_frag = 0; int i; #ifdef ABBA /* * Find first_delivery queue that is not empty * this sets the first pend_delv */ for (i = 0; i < memb_list_entries_confchg; i++) { if (queues_frag[i].first_delivery && queue_is_empty (&queues_pend_delv[i].queue) == 0) { pend_delv = &queues_pend_delv[i]; // printf ("Selecting first queue %s\n", inet_ntoa (pend_delv->ip)); break; } } /* * Search remaining pend_delv for first deliveries with * smaller sequence numbers */ for (++i; i < memb_list_entries_confchg; i++) { assert (pend_delv); if (queues_frag[i].first_delivery && (queue_is_empty (&queues_frag[i].queue) == 0) && (queues_pend_delv[i].seqid < pend_delv->seqid)) { pend_delv = &queues_pend_delv[i]; // printf ("Selecting first from %d in second phase %s\n", i, inet_ntoa (pend_delv->ip)); } } /* * Found first_delivery queue that wasn't empty, return it */ if (pend_delv) { return (pend_delv); } #endif /* * No first delivery queues, repeat same * process looking for any queue */ for (i = 0; i < memb_list_entries_confchg; i++) { #ifdef DEBUG printf ("Queue empty[%d] %d queues seqid %d\n", i, queue_is_empty (&queues_frag[i].pend_queue), queues_frag[i].seqid); #endif if (queue_is_empty (&queues_frag[i].pend_queue) == 0 || queue_is_empty (&queues_frag[i].assembly.queue) == 0) { queue_frag = &queues_frag[i]; break; } } /* * Find lowest sequence number queue */ for (++i; i < memb_list_entries_confchg; i++) { assert (queue_frag); #ifdef DEBUG printf ("Queue empty[%d] %d queues seqid %d lowest so far %d\n", i, queue_is_empty (&queues_frag[i].pend_queue), queues_frag[i].seqid, queues_frag->seqid); #endif if (queue_is_empty (&queues_frag[i].pend_queue) == 0 && (queues_frag[i].seqid < queue_frag->seqid)) { queue_frag = &queues_frag[i]; } if (queue_is_empty (&queues_frag[i].assembly.queue) == 0 && (queues_frag[i].assembly.seqid < queue_frag->seqid)) { //printf ("assembly seqid is %d\n", // queues_frag[i].assembly.seqid); queue_frag = &queues_frag[i]; } } return (queue_frag); } /* * This delivers all available messages that can be delivered in VS semantics * from the fragmentation pend queue to the registered deliver function */ static void app_deliver (void) { struct queue_frag *queue_frag; struct pend_queue_item *pend_queue_item; do { queue_frag = queue_frag_delivery_find (); if (queue_frag == 0) { break; } assert (queue_frag); /* * There is an assembly taking place that was selected but its not completed */ if (queue_is_empty (&queue_frag->pend_queue) == 1) { break; } //printf ("Delivering from pending queue %s seq id %d\n", inet_ntoa (queue_frag->source_addr), queue_frag->seqid); pend_queue_item = queue_item_get (&queue_frag->pend_queue); assert (pend_queue_item); queue_item_remove (&queue_frag->pend_queue); //&mcast->groupname, /* TODO figure out how to pass this from the frag queue */ gmi_deliver_fn ( 0, queue_frag->source_addr, pend_queue_item->iovec, pend_queue_item->iov_len); /* * Release messages that can be freed */ gmi_adut = queue_frag->seqid; /* * Reset lowest seqid for this pending queue from next assembled message */ if (queue_is_empty (&queue_frag->pend_queue) == 0) { pend_queue_item = queue_item_get (&queue_frag->pend_queue); queue_frag->seqid = pend_queue_item->seqid; } } while (queue_frag); } /* * This delivers an assembled message into the fragmentation pend queue * This must only be called once the full message has been assembled */ static void assembly_deliver (struct queue_frag *queue_frag) { struct assembly_queue_item *assembly_queue_item; struct pend_queue_item pend_queue_item; int res = 0; struct iovec iovec_delv[256]; int iov_len_delv = 0; struct mcast *mcast = 0; memset (iovec_delv, 0, sizeof (iovec_delv)); queue_item_iterator_init (&queue_frag->assembly.queue); assert (queue_is_empty (&queue_frag->assembly.queue) == 0); assembly_queue_item = queue_item_iterator_get (&queue_frag->assembly.queue); /* * Assemble all of the message iovectors into one iovector for delivery */ do { assembly_queue_item = queue_item_iterator_get (&queue_frag->assembly.queue); /* * Assemble io vector */ if (assembly_queue_item->iov_len != 1 && assembly_queue_item->iovec[0].iov_len == sizeof (struct mcast)) { /* * Copy iovec from second iovec if this is self-delivered */ memcpy (&iovec_delv[iov_len_delv], &assembly_queue_item->iovec[1], sizeof (struct iovec) * assembly_queue_item->iov_len - 1); iov_len_delv += assembly_queue_item->iov_len - 1; } else { /* * Copy iovec from first iovec if this is an external message */ iovec_delv[iov_len_delv].iov_base = assembly_queue_item->iovec[0].iov_base + sizeof (struct mcast); iovec_delv[iov_len_delv].iov_len = assembly_queue_item->iovec[0].iov_len - sizeof (struct mcast); assert (iovec_delv[iov_len_delv].iov_len < MESSAGE_SIZE_MAX); iov_len_delv += 1; if (assembly_queue_item->iov_len > 1) { memcpy (&iovec_delv[iov_len_delv], &assembly_queue_item->iovec[1], sizeof (struct iovec) * assembly_queue_item->iov_len - 1); iov_len_delv += assembly_queue_item->iov_len - 1; } } assert (iov_len_delv < 256); assert (iov_len_delv > 0); res = queue_item_iterator_next (&queue_frag->assembly.queue); } while (res == 0); /* * assert that this really is the end of the packet */ mcast = assembly_queue_item->iovec[0].iov_base; assert (mcast->packet_number == mcast->packet_count); memcpy (pend_queue_item.iovec, iovec_delv, sizeof (pend_queue_item.iovec)); pend_queue_item.iov_len = iov_len_delv; pend_queue_item.seqid = queue_frag->assembly.seqid; /* * Add IO vector to pend queue */ //printf ("assembling message for %s\n", inet_ntoa (queue_frag->source_addr)); queue_item_add (&queue_frag->pend_queue, &pend_queue_item); queue_reinit (&queue_frag->assembly.queue); app_deliver (); } struct queue_frag *pend_delv_find (struct in_addr source) { struct queue_frag *queue_frag = 0; int i; for (i = 0; i < memb_list_entries_confchg; i++) { if (source.s_addr == queues_frag[i].source_addr.s_addr) { queue_frag = &queues_frag[i]; break; } } return (queue_frag); } static void pending_queues_deliver (void) { struct gmi_rtr_item *gmi_rtr_item_p; int i; int res; struct mcast *mcast; struct assembly_queue_item assembly_queue_item; struct queue_frag *queue_frag; //printf ("Delivering messages to pending queues\n"); /* * Deliver messages in order from rtr queue to pending delivery queue */ for (i = gmi_arut + 1; i <= gmi_highest_seq; i++) { res = sq_item_get (&queue_rtr_items, i, (void **)&gmi_rtr_item_p); /* * If hole, stop assembly */ if (res != 0) { break; } assert (gmi_rtr_item_p->iovec[0].iov_len < MESSAGE_SIZE_MAX); mcast = gmi_rtr_item_p->iovec[0].iov_base; if (mcast == (struct mcast *)0xdeadbeef) { printf ("seqid %d\n", gmi_rtr_item_p->iovec[0].iov_len); } assert (mcast != (struct mcast *)0xdeadbeef); /* * Message found */ gmi_log_printf (gmi_log_level_debug, "Delivering MCAST message with seqid %d to pending delivery queue\n", mcast->header.seqid); gmi_arut = i; /* * Create pending delivery item */ assembly_queue_item.iov_len = gmi_rtr_item_p->iov_len; memcpy (&assembly_queue_item.iovec, gmi_rtr_item_p->iovec, sizeof (struct iovec) * gmi_rtr_item_p->iov_len); assert (gmi_rtr_item_p->iov_len < MAXIOVS); assert (mcast->source.s_addr != 0); queue_frag = pend_delv_find (mcast->source); /* * Setup sequence id numbers for use in assembly and delivery */ if (mcast->packet_number == 0) { queue_frag->assembly.seqid = mcast->header.seqid; // printf ("Setting %s assembly seqid to %d\n", // inet_ntoa (queue_frag->source_addr), queue_frag->assembly.seqid); if (queue_is_empty (&queue_frag->pend_queue) == 1) { queue_frag->seqid = mcast->header.seqid; } } /* * Add pending delivery item to assembly queue */ queue_item_add (&queue_frag->assembly.queue, &assembly_queue_item); /* * If message is complete, deliver to user the pending delivery message */ if (mcast->packet_number == mcast->packet_count) { assembly_deliver (queue_frag); } } //printf ("Done delivering messages to pending queues\n"); } /* * recv message handler called when MCAST message type received */ static int message_handler_mcast ( struct sockaddr_in *system_from, struct iovec *iovec, int iov_len, int bytes_received) { struct gmi_rtr_item gmi_rtr_item; struct mcast *mcast; mcast = iovec[0].iov_base; /* * Ignore multicasts for other configurations * TODO shouldn't we enter gather here? */ if (memcmp (&mcast->memb_conf_id, &memb_form_token_conf_id, sizeof (struct memb_conf_id)) != 0) { return (0); } poll_timer_delete (*gmi_poll_handle, timer_orf_token_retransmit_timeout); timer_orf_token_retransmit_timeout = 0; /* * Add mcast message to rtr queue if not already in rtr queue * otherwise free io vectors */ if (bytes_received > 0 && bytes_received < MESSAGE_SIZE_MAX && sq_item_inuse (&queue_rtr_items, mcast->header.seqid) == 0) { /* * Allocate new multicast memory block * TODO we need to free this somewhere */ gmi_rtr_item.iovec[0].iov_base = malloc (bytes_received); if (gmi_rtr_item.iovec[0].iov_base == 0) { return (-1); /* error here is corrected by the algorithm */ } memcpy (gmi_rtr_item.iovec[0].iov_base, mcast, bytes_received); gmi_rtr_item.iovec[0].iov_len = bytes_received; assert (gmi_rtr_item.iovec[0].iov_len > 0); assert (gmi_rtr_item.iovec[0].iov_len < MESSAGE_SIZE_MAX); gmi_rtr_item.iov_len = 1; if (mcast->header.seqid > gmi_highest_seq) { gmi_highest_seq = mcast->header.seqid; } sq_item_add (&queue_rtr_items, &gmi_rtr_item, mcast->header.seqid); } pending_queues_deliver (); return (0); } static int message_handler_memb_attempt_join ( struct sockaddr_in *system_from, struct iovec *iov, int iov_len, int bytes_received) { int found; int i; gmi_log_printf (gmi_log_level_notice, "Got attempt join from %s\n", inet_ntoa (system_from->sin_addr)); /* * Not representative */ if (memb_conf_id.rep.s_addr != memb_local_sockaddr_in.sin_addr.s_addr) { gmi_log_printf (gmi_log_level_notice, "rep is %s, not handling attempt join.\n", inet_ntoa (memb_conf_id.rep)); return (0); } switch (memb_state) { case MEMB_STATE_OPERATIONAL: case MEMB_STATE_COMMIT: memb_state_gather_enter (); /* * Do NOT place break here, immediately execute gather attempt join */ case MEMB_STATE_GATHER: gmi_log_printf (gmi_log_level_debug, "ATTEMPT JOIN: state gather\n"); for (found = 0, i = 0; i < memb_gather_set_entries; i++) { if (memb_gather_set[i].s_addr == system_from->sin_addr.s_addr) { found = 1; } } if (found == 0) { memb_gather_set[memb_gather_set_entries++].s_addr = system_from->sin_addr.s_addr; /* * Sort gather set */ qsort (memb_gather_set, memb_gather_set_entries, sizeof (struct in_addr), in_addr_compare); } break; default: // TODO what about other states gmi_log_printf (gmi_log_level_error, "memb_attempt_join: EVS or FORM state attempt join occured %d\n", memb_state); } return (0); } static int message_handler_memb_join ( struct sockaddr_in *system_from, struct iovec *iovec, int iov_len, int bytes_received) { struct memb_join *memb_join; int commit_entry; int found; int consensus; /* * Not representative */ if (memb_conf_id.rep.s_addr != memb_local_sockaddr_in.sin_addr.s_addr) { gmi_log_printf (gmi_log_level_debug, "not the rep for this ring, not handling join.\n"); return (0); } switch (memb_state) { case MEMB_STATE_OPERATIONAL: case MEMB_STATE_GATHER: memb_state_commit_enter (); /* * do not place break in this case, immediately enter COMMIT state */ case MEMB_STATE_COMMIT: gmi_log_printf (gmi_log_level_debug, "JOIN in commit\n"); memb_join = (struct memb_join *)iovec[0].iov_base; /* * Find gather set that matches the system message was from */ for (found = 0, commit_entry = 0; commit_entry < memb_commit_set_entries; commit_entry++) { if (system_from->sin_addr.s_addr == memb_commit_set[commit_entry].rep.sin_addr.s_addr) { found = 1; break; } } /* * Add system from to commit sets if not currently in commit set */ if (found == 0) { memcpy (&memb_commit_set[commit_entry].rep, system_from, sizeof (struct sockaddr_in)); memb_commit_set_entries++; } /* * Set gather join data */ memcpy (memb_commit_set[commit_entry].join_rep_list, memb_join->active_rep_list, sizeof (struct in_addr) * memb_join->active_rep_list_entries); memb_commit_set[commit_entry].join_rep_list_entries = memb_join->active_rep_list_entries; /* * Union all entries into the gather set (join_rep_list[0]) */ memb_state_commit_union (commit_entry); /* * Send JOIN message, but only if gather set has changed */ memb_join_send (); /* * If consensus, transition to FORM */ memb_print_commit_set (); consensus = memb_state_consensus_commit (); if (consensus) { gmi_log_printf (gmi_log_level_notice, "CONSENSUS reached!\n"); if (memb_local_sockaddr_in.sin_addr.s_addr == memb_gather_set[0].s_addr) { gmi_log_printf (gmi_log_level_debug, "This node responsible for sending the FORM token.\n"); poll_timer_delete (*gmi_poll_handle, timer_memb_state_commit_timeout); timer_memb_state_commit_timeout = 0; memb_form_token_send_initial (); } } break; /* * All other cases are ignored on JOINs */ case MEMB_STATE_FORM: gmi_log_printf (gmi_log_level_warning, "JOIN in form, ignoring since consensus reached in state machine.\n"); break; default: // TODO HANDLE THIS CASE gmi_log_printf (gmi_log_level_debug, "memb_join: DEFAULT case %d, shouldn't happen!!\n", memb_state); break; } return (0); } static int message_handler_memb_form_token ( struct sockaddr_in *system_from, struct iovec *iovec, int iov_len, int bytes_received) { int i; int local = 0; int res = 0; printf ("Got membership form token\n"); memcpy (&memb_form_token, iovec->iov_base, sizeof (struct memb_form_token)); poll_timer_delete (*gmi_poll_handle, timer_form_token_timeout); timer_form_token_timeout = 0; switch (memb_state) { case MEMB_STATE_OPERATIONAL: case MEMB_STATE_COMMIT: memb_state = MEMB_STATE_FORM; poll_timer_delete (*gmi_poll_handle, timer_memb_state_commit_timeout); timer_memb_state_commit_timeout = 0; /* * Add member to entry */ memb_form_token.member_list[memb_form_token.member_list_entries].s_addr = memb_local_sockaddr_in.sin_addr.s_addr; memb_form_token.member_list_entries++; /* * Modify the conf_id as necessary */ memb_form_token_conf_desc_build (&memb_form_token); /* * Stop token timeout timer from firing * If we are in FORM state, a previous FORM state member * may have captured the ORF token and swallowed it */ poll_timer_delete (*gmi_poll_handle, timer_orf_token_timeout); timer_orf_token_timeout = 0; /* * Delete retransmit timer since a new * membership is in progress */ poll_timer_delete (*gmi_poll_handle, timer_orf_token_retransmit_timeout); timer_orf_token_retransmit_timeout = 0; /* * Find next member */ for (i = 0; i < memb_list_entries; i++) { if (memb_list[i].sin_addr.s_addr == memb_local_sockaddr_in.sin_addr.s_addr) { local = 1; break; } } if (memb_list_entries == 0) { /* 0 or 1 members and we are local */ local = 1; } if (local && (i + 1 < memb_list_entries)) { memb_next.sin_addr.s_addr = memb_list[i + 1].sin_addr.s_addr; } else { /* * Find next representative */ for (i = 0; i < memb_form_token.rep_list_entries; i++) { if (memb_conf_id.rep.s_addr == memb_form_token.rep_list[i].s_addr) { break; } } memb_next.sin_addr.s_addr = memb_form_token.rep_list[(i + 1) % memb_form_token.rep_list_entries].s_addr; } memb_next.sin_family = AF_INET; memb_next.sin_port = sockaddr_in_mcast.sin_port; break; case MEMB_STATE_FORM: gmi_token_seqid = 0; memb_state = MEMB_STATE_EVS; memb_form_token_update_highest_seq (&memb_form_token); /* * Reset flow control local variables since we are starting a new token */ fcc_mcast_current = 0; fcc_remcast_current = 0; fcc_mcast_last = 0; fcc_remcast_last = 0; /* * FORM token has rotated once, now install local variables * * Set barrier sequence number * Set original arut */ gmi_barrier_seq = 0; printf ("conf_desc_list %d\n", memb_form_token.conf_desc_list_entries); for (i = 0; i < memb_form_token.conf_desc_list_entries; i++) { printf ("highest seq %d %d\n", i, memb_form_token.conf_desc_list[i].highest_seq); if (gmi_barrier_seq < memb_form_token.conf_desc_list[i].highest_seq) { gmi_barrier_seq = memb_form_token.conf_desc_list[i].highest_seq; printf ("setting barrier seq to %d\n", gmi_barrier_seq); } } gmi_barrier_seq += 1; printf ("setting barrier seq to %d\n", gmi_barrier_seq); gmi_original_arut = gmi_arut; break; case MEMB_STATE_EVS: gmi_log_printf (gmi_log_level_debug, "Swallowing FORM token in EVS state.\n"); printf ("FORM CONF ENTRIES %d\n", memb_form_token.conf_desc_list_entries); orf_token_send_initial(); return (0); default: // TODO gmi_log_printf (gmi_log_level_error, "memb_form_token: default case, shouldn't happen.\n"); return (0); } res = memb_form_token_send (&memb_form_token); return (res); } static int recv_handler (poll_handle handle, int fd, int revents, void *data, unsigned int *prio) { struct msghdr msg_recv; struct message_header *message_header; struct sockaddr_in system_from; int res = 0; int bytes_received; *prio = UINT_MAX; /* * Receive datagram */ msg_recv.msg_name = &system_from; msg_recv.msg_namelen = sizeof (struct sockaddr_in); msg_recv.msg_iov = &gmi_iov_recv; msg_recv.msg_iovlen = 1; msg_recv.msg_control = 0; msg_recv.msg_controllen = 0; msg_recv.msg_flags = 0; bytes_received = recvmsg (fd, &msg_recv, MSG_NOSIGNAL | MSG_DONTWAIT); if (bytes_received == -1) { return (0); } else { stats_recv += bytes_received; } if (bytes_received < sizeof (struct message_header)) { gmi_log_printf (gmi_log_level_security, "Received message is too short... ignoring.\n"); return (0); } message_header = (struct message_header *)msg_recv.msg_iov[0].iov_base; /* * Authenticate and if authenticated, decrypt datagram */ gmi_iov_recv.iov_len = bytes_received; res = authenticate_and_decrypt (&gmi_iov_recv); if (res == -1) { gmi_iov_recv.iov_len = PACKET_SIZE_MAX; return 0; } if (stats_tv_start.tv_usec == 0) { gettimeofday (&stats_tv_start, NULL); } /* * Handle incoming message */ message_header = (struct message_header *)msg_recv.msg_iov[0].iov_base; gmi_message_handlers.handler_functions[message_header->type] ( &system_from, msg_recv.msg_iov, msg_recv.msg_iovlen, bytes_received); gmi_iov_recv.iov_len = PACKET_SIZE_MAX; return (0); }