/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org */ #include #include #include #include #include #include #include #include #include #include #include "crypto.h" #define CONST64(n) n ## ULL typedef unsigned long ulong32; typedef unsigned long long ulong64; /* * Tested on arm2401, i386, x86_64 */ #if defined(__arm__) #define ENDIAN_BIG #define ENDIAN_32BITWORD #endif #if defined(__i386__) #define ENDIAN_LITTLE #define ENDIAN_32BITWORD #endif #if defined(__x86_64__) #define ENDIAN_LITTLE #define ENDIAN_64BITWORD #endif /* ---- HELPER MACROS ---- */ #ifdef ENDIAN_NEUTRAL #define STORE32L(x, y) \ { (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \ (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); } #define LOAD32L(x, y) \ { x = ((unsigned long)((y)[3] & 255)<<24) | \ ((unsigned long)((y)[2] & 255)<<16) | \ ((unsigned long)((y)[1] & 255)<<8) | \ ((unsigned long)((y)[0] & 255)); } #define STORE64L(x, y) \ { (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \ (y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \ (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \ (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); } #define LOAD64L(x, y) \ { x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \ (((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \ (((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \ (((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); } #define STORE32H(x, y) \ { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \ (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); } #define LOAD32H(x, y) \ { x = ((unsigned long)((y)[0] & 255)<<24) | \ ((unsigned long)((y)[1] & 255)<<16) | \ ((unsigned long)((y)[2] & 255)<<8) | \ ((unsigned long)((y)[3] & 255)); } #define STORE64H(x, y) \ { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \ (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \ (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \ (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); } #define LOAD64H(x, y) \ { x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \ (((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \ (((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \ (((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); } #endif /* ENDIAN_NEUTRAL */ #ifdef ENDIAN_LITTLE #define STORE32H(x, y) \ { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \ (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); } #define LOAD32H(x, y) \ { x = ((unsigned long)((y)[0] & 255)<<24) | \ ((unsigned long)((y)[1] & 255)<<16) | \ ((unsigned long)((y)[2] & 255)<<8) | \ ((unsigned long)((y)[3] & 255)); } #define STORE64H(x, y) \ { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \ (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \ (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \ (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); } #define LOAD64H(x, y) \ { x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \ (((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \ (((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \ (((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); } #ifdef ENDIAN_32BITWORD #define STORE32L(x, y) \ { unsigned long __t = (x); memcpy(y, &__t, 4); } #define LOAD32L(x, y) \ memcpy(&(x), y, 4); #define STORE64L(x, y) \ { (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \ (y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \ (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \ (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); } #define LOAD64L(x, y) \ { x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \ (((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \ (((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \ (((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); } #else /* 64-bit words then */ #define STORE32L(x, y) \ { unsigned long __t = (x); memcpy(y, &__t, 4); } #define LOAD32L(x, y) \ { memcpy(&(x), y, 4); x &= 0xFFFFFFFF; } #define STORE64L(x, y) \ { ulong64 __t = (x); memcpy(y, &__t, 8); } #define LOAD64L(x, y) \ { memcpy(&(x), y, 8); } #endif /* ENDIAN_64BITWORD */ #endif /* ENDIAN_LITTLE */ #ifdef ENDIAN_BIG #define STORE32L(x, y) \ { (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \ (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); } #define LOAD32L(x, y) \ { x = ((unsigned long)((y)[3] & 255)<<24) | \ ((unsigned long)((y)[2] & 255)<<16) | \ ((unsigned long)((y)[1] & 255)<<8) | \ ((unsigned long)((y)[0] & 255)); } #define STORE64L(x, y) \ { (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \ (y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \ (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \ (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); } #define LOAD64L(x, y) \ { x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48) | \ (((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32) | \ (((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16) | \ (((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); } #ifdef ENDIAN_32BITWORD #define STORE32H(x, y) \ { unsigned long __t = (x); memcpy(y, &__t, 4); } #define LOAD32H(x, y) \ memcpy(&(x), y, 4); #define STORE64H(x, y) \ { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \ (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \ (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \ (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); } #define LOAD64H(x, y) \ { x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48)| \ (((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32)| \ (((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16)| \ (((ulong64)((y)[6] & 255))<<8)| (((ulong64)((y)[7] & 255))); } #else /* 64-bit words then */ #define STORE32H(x, y) \ { unsigned long __t = (x); memcpy(y, &__t, 4); } #define LOAD32H(x, y) \ { memcpy(&(x), y, 4); x &= 0xFFFFFFFF; } #define STORE64H(x, y) \ { ulong64 __t = (x); memcpy(y, &__t, 8); } #define LOAD64H(x, y) \ { memcpy(&(x), y, 8); } #endif /* ENDIAN_64BITWORD */ #endif /* ENDIAN_BIG */ #define BSWAP(x) ( ((x>>24)&0x000000FFUL) | ((x<<24)&0xFF000000UL) | \ ((x>>8)&0x0000FF00UL) | ((x<<8)&0x00FF0000UL) ) #if defined(__GNUC__) && defined(__i386__) && !defined(INTEL_CC) static inline unsigned long ROL(unsigned long word, int i) { __asm__("roll %%cl,%0" :"=r" (word) :"0" (word),"c" (i)); return word; } static inline unsigned long ROR(unsigned long word, int i) { __asm__("rorl %%cl,%0" :"=r" (word) :"0" (word),"c" (i)); return word; } #else /* rotates the hard way */ #define ROL(x, y) ( (((unsigned long)(x)<<(unsigned long)((y)&31)) | (((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL) #define ROR(x, y) ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL) #endif #define ROL64(x, y) \ ( (((x)<<((ulong64)(y)&63)) | \ (((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)64-((y)&63)))) & CONST64(0xFFFFFFFFFFFFFFFF)) #define ROR64(x, y) \ ( ((((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)(y)&CONST64(63))) | \ ((x)<<((ulong64)(64-((y)&CONST64(63)))))) & CONST64(0xFFFFFFFFFFFFFFFF)) #undef MAX #undef MIN #define MAX(x, y) ( ((x)>(y))?(x):(y) ) #define MIN(x, y) ( ((x)<(y))?(x):(y) ) /* extract a byte portably */ #define byte(x, n) (((x) >> (8 * (n))) & 255) #define CONST64(n) n ## ULL /* a simple macro for making hash "process" functions */ #define HASH_PROCESS(func_name, compress_name, state_var, block_size) \ int func_name (hash_state * md, const unsigned char *buf, unsigned long len) \ { \ unsigned long n; \ if (md-> state_var .curlen > sizeof(md-> state_var .buf)) { \ return CRYPT_INVALID_ARG; \ } \ while (len > 0) { \ if (md-> state_var .curlen == 0 && len >= block_size) { \ compress_name (md, (unsigned char *)buf); \ md-> state_var .length += block_size * 8; \ buf += block_size; \ len -= block_size; \ } else { \ n = MIN(len, (block_size - md-> state_var .curlen)); \ memcpy(md-> state_var .buf + md-> state_var.curlen, buf, (size_t)n); \ md-> state_var .curlen += n; \ buf += n; \ len -= n; \ if (md-> state_var .curlen == block_size) { \ compress_name (md, md-> state_var .buf); \ md-> state_var .length += 8*block_size; \ md-> state_var .curlen = 0; \ } \ } \ } \ return CRYPT_OK; \ } #define MAXBLOCKSIZE 128 /* * The mycrypt_macros.h file */ /* ---- HELPER MACROS ---- */ #ifdef ENDIAN_NEUTRAL #define STORE32L(x, y) \ { (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \ (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); } #define LOAD32L(x, y) \ { x = ((unsigned long)((y)[3] & 255)<<24) | \ ((unsigned long)((y)[2] & 255)<<16) | \ ((unsigned long)((y)[1] & 255)<<8) | \ ((unsigned long)((y)[0] & 255)); } #define STORE64L(x, y) \ { (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \ (y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \ (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \ (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); } #define LOAD64L(x, y) \ { x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \ (((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \ (((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \ (((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); } #define STORE32H(x, y) \ { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \ (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); } #define LOAD32H(x, y) \ { x = ((unsigned long)((y)[0] & 255)<<24) | \ ((unsigned long)((y)[1] & 255)<<16) | \ ((unsigned long)((y)[2] & 255)<<8) | \ ((unsigned long)((y)[3] & 255)); } #define STORE64H(x, y) \ { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \ (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \ (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \ (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); } #define LOAD64H(x, y) \ { x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \ (((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \ (((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \ (((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); } #endif /* ENDIAN_NEUTRAL */ #ifdef ENDIAN_LITTLE #define STORE32H(x, y) \ { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \ (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); } #define LOAD32H(x, y) \ { x = ((unsigned long)((y)[0] & 255)<<24) | \ ((unsigned long)((y)[1] & 255)<<16) | \ ((unsigned long)((y)[2] & 255)<<8) | \ ((unsigned long)((y)[3] & 255)); } #define STORE64H(x, y) \ { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \ (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \ (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \ (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); } #define LOAD64H(x, y) \ { x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \ (((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \ (((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \ (((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); } #ifdef ENDIAN_32BITWORD #define STORE32L(x, y) \ { unsigned long __t = (x); memcpy(y, &__t, 4); } #define LOAD32L(x, y) \ memcpy(&(x), y, 4); #define STORE64L(x, y) \ { (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \ (y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \ (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \ (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); } #define LOAD64L(x, y) \ { x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \ (((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \ (((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \ (((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); } #else /* 64-bit words then */ #define STORE32L(x, y) \ { unsigned long __t = (x); memcpy(y, &__t, 4); } #define LOAD32L(x, y) \ { memcpy(&(x), y, 4); x &= 0xFFFFFFFF; } #define STORE64L(x, y) \ { ulong64 __t = (x); memcpy(y, &__t, 8); } #define LOAD64L(x, y) \ { memcpy(&(x), y, 8); } #endif /* ENDIAN_64BITWORD */ #endif /* ENDIAN_LITTLE */ #ifdef ENDIAN_BIG #define STORE32L(x, y) \ { (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \ (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); } #define LOAD32L(x, y) \ { x = ((unsigned long)((y)[3] & 255)<<24) | \ ((unsigned long)((y)[2] & 255)<<16) | \ ((unsigned long)((y)[1] & 255)<<8) | \ ((unsigned long)((y)[0] & 255)); } #define STORE64L(x, y) \ { (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \ (y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \ (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \ (y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); } #define LOAD64L(x, y) \ { x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48) | \ (((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32) | \ (((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16) | \ (((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); } #ifdef ENDIAN_32BITWORD #define STORE32H(x, y) \ { unsigned long __t = (x); memcpy(y, &__t, 4); } #define LOAD32H(x, y) \ memcpy(&(x), y, 4); #define STORE64H(x, y) \ { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \ (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \ (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \ (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); } #define LOAD64H(x, y) \ { x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48)| \ (((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32)| \ (((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16)| \ (((ulong64)((y)[6] & 255))<<8)| (((ulong64)((y)[7] & 255))); } #else /* 64-bit words then */ #define STORE32H(x, y) \ { unsigned long __t = (x); memcpy(y, &__t, 4); } #define LOAD32H(x, y) \ { memcpy(&(x), y, 4); x &= 0xFFFFFFFF; } #define STORE64H(x, y) \ { ulong64 __t = (x); memcpy(y, &__t, 8); } #define LOAD64H(x, y) \ { memcpy(&(x), y, 8); } #endif /* ENDIAN_64BITWORD */ #endif /* ENDIAN_BIG */ #define BSWAP(x) ( ((x>>24)&0x000000FFUL) | ((x<<24)&0xFF000000UL) | \ ((x>>8)&0x0000FF00UL) | ((x<<8)&0x00FF0000UL) ) #define ROL64(x, y) \ ( (((x)<<((ulong64)(y)&63)) | \ (((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)64-((y)&63)))) & CONST64(0xFFFFFFFFFFFFFFFF)) #define ROR64(x, y) \ ( ((((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)(y)&CONST64(63))) | \ ((x)<<((ulong64)(64-((y)&CONST64(63)))))) & CONST64(0xFFFFFFFFFFFFFFFF)) #undef MAX #undef MIN #define MAX(x, y) ( ((x)>(y))?(x):(y) ) #define MIN(x, y) ( ((x)<(y))?(x):(y) ) /* extract a byte portably */ #define byte(x, n) (((x) >> (8 * (n))) & 255) /* $Id: s128multab.h 213 2003-12-16 04:27:12Z ggr $ */ /* @(#)TuringMultab.h 1.3 (QUALCOMM) 02/09/03 */ /* Multiplication table for Turing using 0xD02B4367 */ static const ulong32 Multab[256] = { 0x00000000, 0xD02B4367, 0xED5686CE, 0x3D7DC5A9, 0x97AC41D1, 0x478702B6, 0x7AFAC71F, 0xAAD18478, 0x631582EF, 0xB33EC188, 0x8E430421, 0x5E684746, 0xF4B9C33E, 0x24928059, 0x19EF45F0, 0xC9C40697, 0xC62A4993, 0x16010AF4, 0x2B7CCF5D, 0xFB578C3A, 0x51860842, 0x81AD4B25, 0xBCD08E8C, 0x6CFBCDEB, 0xA53FCB7C, 0x7514881B, 0x48694DB2, 0x98420ED5, 0x32938AAD, 0xE2B8C9CA, 0xDFC50C63, 0x0FEE4F04, 0xC154926B, 0x117FD10C, 0x2C0214A5, 0xFC2957C2, 0x56F8D3BA, 0x86D390DD, 0xBBAE5574, 0x6B851613, 0xA2411084, 0x726A53E3, 0x4F17964A, 0x9F3CD52D, 0x35ED5155, 0xE5C61232, 0xD8BBD79B, 0x089094FC, 0x077EDBF8, 0xD755989F, 0xEA285D36, 0x3A031E51, 0x90D29A29, 0x40F9D94E, 0x7D841CE7, 0xADAF5F80, 0x646B5917, 0xB4401A70, 0x893DDFD9, 0x59169CBE, 0xF3C718C6, 0x23EC5BA1, 0x1E919E08, 0xCEBADD6F, 0xCFA869D6, 0x1F832AB1, 0x22FEEF18, 0xF2D5AC7F, 0x58042807, 0x882F6B60, 0xB552AEC9, 0x6579EDAE, 0xACBDEB39, 0x7C96A85E, 0x41EB6DF7, 0x91C02E90, 0x3B11AAE8, 0xEB3AE98F, 0xD6472C26, 0x066C6F41, 0x09822045, 0xD9A96322, 0xE4D4A68B, 0x34FFE5EC, 0x9E2E6194, 0x4E0522F3, 0x7378E75A, 0xA353A43D, 0x6A97A2AA, 0xBABCE1CD, 0x87C12464, 0x57EA6703, 0xFD3BE37B, 0x2D10A01C, 0x106D65B5, 0xC04626D2, 0x0EFCFBBD, 0xDED7B8DA, 0xE3AA7D73, 0x33813E14, 0x9950BA6C, 0x497BF90B, 0x74063CA2, 0xA42D7FC5, 0x6DE97952, 0xBDC23A35, 0x80BFFF9C, 0x5094BCFB, 0xFA453883, 0x2A6E7BE4, 0x1713BE4D, 0xC738FD2A, 0xC8D6B22E, 0x18FDF149, 0x258034E0, 0xF5AB7787, 0x5F7AF3FF, 0x8F51B098, 0xB22C7531, 0x62073656, 0xABC330C1, 0x7BE873A6, 0x4695B60F, 0x96BEF568, 0x3C6F7110, 0xEC443277, 0xD139F7DE, 0x0112B4B9, 0xD31DD2E1, 0x03369186, 0x3E4B542F, 0xEE601748, 0x44B19330, 0x949AD057, 0xA9E715FE, 0x79CC5699, 0xB008500E, 0x60231369, 0x5D5ED6C0, 0x8D7595A7, 0x27A411DF, 0xF78F52B8, 0xCAF29711, 0x1AD9D476, 0x15379B72, 0xC51CD815, 0xF8611DBC, 0x284A5EDB, 0x829BDAA3, 0x52B099C4, 0x6FCD5C6D, 0xBFE61F0A, 0x7622199D, 0xA6095AFA, 0x9B749F53, 0x4B5FDC34, 0xE18E584C, 0x31A51B2B, 0x0CD8DE82, 0xDCF39DE5, 0x1249408A, 0xC26203ED, 0xFF1FC644, 0x2F348523, 0x85E5015B, 0x55CE423C, 0x68B38795, 0xB898C4F2, 0x715CC265, 0xA1778102, 0x9C0A44AB, 0x4C2107CC, 0xE6F083B4, 0x36DBC0D3, 0x0BA6057A, 0xDB8D461D, 0xD4630919, 0x04484A7E, 0x39358FD7, 0xE91ECCB0, 0x43CF48C8, 0x93E40BAF, 0xAE99CE06, 0x7EB28D61, 0xB7768BF6, 0x675DC891, 0x5A200D38, 0x8A0B4E5F, 0x20DACA27, 0xF0F18940, 0xCD8C4CE9, 0x1DA70F8E, 0x1CB5BB37, 0xCC9EF850, 0xF1E33DF9, 0x21C87E9E, 0x8B19FAE6, 0x5B32B981, 0x664F7C28, 0xB6643F4F, 0x7FA039D8, 0xAF8B7ABF, 0x92F6BF16, 0x42DDFC71, 0xE80C7809, 0x38273B6E, 0x055AFEC7, 0xD571BDA0, 0xDA9FF2A4, 0x0AB4B1C3, 0x37C9746A, 0xE7E2370D, 0x4D33B375, 0x9D18F012, 0xA06535BB, 0x704E76DC, 0xB98A704B, 0x69A1332C, 0x54DCF685, 0x84F7B5E2, 0x2E26319A, 0xFE0D72FD, 0xC370B754, 0x135BF433, 0xDDE1295C, 0x0DCA6A3B, 0x30B7AF92, 0xE09CECF5, 0x4A4D688D, 0x9A662BEA, 0xA71BEE43, 0x7730AD24, 0xBEF4ABB3, 0x6EDFE8D4, 0x53A22D7D, 0x83896E1A, 0x2958EA62, 0xF973A905, 0xC40E6CAC, 0x14252FCB, 0x1BCB60CF, 0xCBE023A8, 0xF69DE601, 0x26B6A566, 0x8C67211E, 0x5C4C6279, 0x6131A7D0, 0xB11AE4B7, 0x78DEE220, 0xA8F5A147, 0x958864EE, 0x45A32789, 0xEF72A3F1, 0x3F59E096, 0x0224253F, 0xD20F6658, }; /* $Id: s128sbox.h 213 2003-12-16 04:27:12Z ggr $ */ /* Sbox for SOBER-128 */ /* * This is really the combination of two SBoxes; the least significant * 24 bits comes from: * 8->32 Sbox generated by Millan et. al. at Queensland University of * Technology. See: E. Dawson, W. Millan, L. Burnett, G. Carter, * "On the Design of 8*32 S-boxes". Unpublished report, by the * Information Systems Research Centre, * Queensland University of Technology, 1999. * * The most significant 8 bits are the Skipjack "F table", which can be * found at http://csrc.nist.gov/CryptoToolkit/skipjack/skipjack.pdf . * In this optimised table, though, the intent is to XOR the word from * the table selected by the high byte with the input word. Thus, the * high byte is actually the Skipjack F-table entry XORED with its * table index. */ static const ulong32 Sbox[256] = { 0xa3aa1887, 0xd65e435c, 0x0b65c042, 0x800e6ef4, 0xfc57ee20, 0x4d84fed3, 0xf066c502, 0xf354e8ae, 0xbb2ee9d9, 0x281f38d4, 0x1f829b5d, 0x735cdf3c, 0x95864249, 0xbc2e3963, 0xa1f4429f, 0xf6432c35, 0xf7f40325, 0x3cc0dd70, 0x5f973ded, 0x9902dc5e, 0xda175b42, 0x590012bf, 0xdc94d78c, 0x39aab26b, 0x4ac11b9a, 0x8c168146, 0xc3ea8ec5, 0x058ac28f, 0x52ed5c0f, 0x25b4101c, 0x5a2db082, 0x370929e1, 0x2a1843de, 0xfe8299fc, 0x202fbc4b, 0x833915dd, 0x33a803fa, 0xd446b2de, 0x46233342, 0x4fcee7c3, 0x3ad607ef, 0x9e97ebab, 0x507f859b, 0xe81f2e2f, 0xc55b71da, 0xd7e2269a, 0x1339c3d1, 0x7ca56b36, 0xa6c9def2, 0xb5c9fc5f, 0x5927b3a3, 0x89a56ddf, 0xc625b510, 0x560f85a7, 0xace82e71, 0x2ecb8816, 0x44951e2a, 0x97f5f6af, 0xdfcbc2b3, 0xce4ff55d, 0xcb6b6214, 0x2b0b83e3, 0x549ea6f5, 0x9de041af, 0x792f1f17, 0xf73b99ee, 0x39a65ec0, 0x4c7016c6, 0x857709a4, 0xd6326e01, 0xc7b280d9, 0x5cfb1418, 0xa6aff227, 0xfd548203, 0x506b9d96, 0xa117a8c0, 0x9cd5bf6e, 0xdcee7888, 0x61fcfe64, 0xf7a193cd, 0x050d0184, 0xe8ae4930, 0x88014f36, 0xd6a87088, 0x6bad6c2a, 0x1422c678, 0xe9204de7, 0xb7c2e759, 0x0200248e, 0x013b446b, 0xda0d9fc2, 0x0414a895, 0x3a6cc3a1, 0x56fef170, 0x86c19155, 0xcf7b8a66, 0x551b5e69, 0xb4a8623e, 0xa2bdfa35, 0xc4f068cc, 0x573a6acd, 0x6355e936, 0x03602db9, 0x0edf13c1, 0x2d0bb16d, 0x6980b83c, 0xfeb23763, 0x3dd8a911, 0x01b6bc13, 0xf55579d7, 0xf55c2fa8, 0x19f4196e, 0xe7db5476, 0x8d64a866, 0xc06e16ad, 0xb17fc515, 0xc46feb3c, 0x8bc8a306, 0xad6799d9, 0x571a9133, 0x992466dd, 0x92eb5dcd, 0xac118f50, 0x9fafb226, 0xa1b9cef3, 0x3ab36189, 0x347a19b1, 0x62c73084, 0xc27ded5c, 0x6c8bc58f, 0x1cdde421, 0xed1e47fb, 0xcdcc715e, 0xb9c0ff99, 0x4b122f0f, 0xc4d25184, 0xaf7a5e6c, 0x5bbf18bc, 0x8dd7c6e0, 0x5fb7e420, 0x521f523f, 0x4ad9b8a2, 0xe9da1a6b, 0x97888c02, 0x19d1e354, 0x5aba7d79, 0xa2cc7753, 0x8c2d9655, 0x19829da1, 0x531590a7, 0x19c1c149, 0x3d537f1c, 0x50779b69, 0xed71f2b7, 0x463c58fa, 0x52dc4418, 0xc18c8c76, 0xc120d9f0, 0xafa80d4d, 0x3b74c473, 0xd09410e9, 0x290e4211, 0xc3c8082b, 0x8f6b334a, 0x3bf68ed2, 0xa843cc1b, 0x8d3c0ff3, 0x20e564a0, 0xf8f55a4f, 0x2b40f8e7, 0xfea7f15f, 0xcf00fe21, 0x8a6d37d6, 0xd0d506f1, 0xade00973, 0xefbbde36, 0x84670fa8, 0xfa31ab9e, 0xaedab618, 0xc01f52f5, 0x6558eb4f, 0x71b9e343, 0x4b8d77dd, 0x8cb93da6, 0x740fd52d, 0x425412f8, 0xc5a63360, 0x10e53ad0, 0x5a700f1c, 0x8324ed0b, 0xe53dc1ec, 0x1a366795, 0x6d549d15, 0xc5ce46d7, 0xe17abe76, 0x5f48e0a0, 0xd0f07c02, 0x941249b7, 0xe49ed6ba, 0x37a47f78, 0xe1cfffbd, 0xb007ca84, 0xbb65f4da, 0xb59f35da, 0x33d2aa44, 0x417452ac, 0xc0d674a7, 0x2d61a46a, 0xdc63152a, 0x3e12b7aa, 0x6e615927, 0xa14fb118, 0xa151758d, 0xba81687b, 0xe152f0b3, 0x764254ed, 0x34c77271, 0x0a31acab, 0x54f94aec, 0xb9e994cd, 0x574d9e81, 0x5b623730, 0xce8a21e8, 0x37917f0b, 0xe8a9b5d6, 0x9697adf8, 0xf3d30431, 0x5dcac921, 0x76b35d46, 0xaa430a36, 0xc2194022, 0x22bca65e, 0xdaec70ba, 0xdfaea8cc, 0x777bae8b, 0x242924d5, 0x1f098a5a, 0x4b396b81, 0x55de2522, 0x435c1cb8, 0xaeb8fe1d, 0x9db3c697, 0x5b164f83, 0xe0c16376, 0xa319224c, 0xd0203b35, 0x433ac0fe, 0x1466a19a, 0x45f0b24f, 0x51fda998, 0xc0d52d71, 0xfa0896a8, 0xf9e6053f, 0xa4b0d300, 0xd499cbcc, 0xb95e3d40, }; /* Implementation of SOBER-128 by Tom St Denis. * Based on s128fast.c reference code supplied by Greg Rose of QUALCOMM. */ const struct _prng_descriptor sober128_desc = { "sober128", 64, &sober128_start, &sober128_add_entropy, &sober128_ready, &sober128_read, }; const struct _prng_descriptor *prng_descriptor[] = { &sober128_desc }; /* don't change these... */ #define N 17 #define FOLD N /* how many iterations of folding to do */ #define INITKONST 0x6996c53a /* value of KONST to use during key loading */ #define KEYP 15 /* where to insert key words */ #define FOLDP 4 /* where to insert non-linear feedback */ #define B(x,i) ((unsigned char)(((x) >> (8*i)) & 0xFF)) static ulong32 BYTE2WORD(unsigned char *b) { ulong32 t; LOAD32L(t, b); return t; } #define WORD2BYTE(w, b) STORE32L(b, w) static void XORWORD(ulong32 w, unsigned char *b) { ulong32 t; LOAD32L(t, b); t ^= w; STORE32L(t, b); } /* give correct offset for the current position of the register, * where logically R[0] is at position "zero". */ #define OFF(zero, i) (((zero)+(i)) % N) /* step the LFSR */ /* After stepping, "zero" moves right one place */ #define STEP(R,z) \ R[OFF(z,0)] = R[OFF(z,15)] ^ R[OFF(z,4)] ^ (R[OFF(z,0)] << 8) ^ Multab[(R[OFF(z,0)] >> 24) & 0xFF]; static void cycle(ulong32 *R) { ulong32 t; int i; STEP(R,0); t = R[0]; for (i = 1; i < N; ++i) { R[i-1] = R[i]; } R[N-1] = t; } /* Return a non-linear function of some parts of the register. */ #define NLFUNC(c,z) \ { \ t = c->R[OFF(z,0)] + c->R[OFF(z,16)]; \ t ^= Sbox[(t >> 24) & 0xFF]; \ t = ROR(t, 8); \ t = ((t + c->R[OFF(z,1)]) ^ c->konst) + c->R[OFF(z,6)]; \ t ^= Sbox[(t >> 24) & 0xFF]; \ t = t + c->R[OFF(z,13)]; \ } static ulong32 nltap(struct sober128_prng *c) { ulong32 t; NLFUNC(c, 0); return t; } /* initialise to known state */ int sober128_start(prng_state *prng) { int i; struct sober128_prng *c; c = &(prng->sober128); /* Register initialised to Fibonacci numbers */ c->R[0] = 1; c->R[1] = 1; for (i = 2; i < N; ++i) { c->R[i] = c->R[i-1] + c->R[i-2]; } c->konst = INITKONST; /* next add_entropy will be the key */ c->flag = 1; c->set = 0; return CRYPT_OK; } /* Save the current register state */ static void s128_savestate(struct sober128_prng *c) { int i; for (i = 0; i < N; ++i) { c->initR[i] = c->R[i]; } } /* initialise to previously saved register state */ static void s128_reloadstate(struct sober128_prng *c) { int i; for (i = 0; i < N; ++i) { c->R[i] = c->initR[i]; } } /* Initialise "konst" */ static void s128_genkonst(struct sober128_prng *c) { ulong32 newkonst; do { cycle(c->R); newkonst = nltap(c); } while ((newkonst & 0xFF000000) == 0); c->konst = newkonst; } /* Load key material into the register */ #define ADDKEY(k) \ c->R[KEYP] += (k); #define XORNL(nl) \ c->R[FOLDP] ^= (nl); /* nonlinear diffusion of register for key */ #define DROUND(z) STEP(c->R,z); NLFUNC(c,(z+1)); c->R[OFF((z+1),FOLDP)] ^= t; static void s128_diffuse(struct sober128_prng *c) { ulong32 t; /* relies on FOLD == N == 17! */ DROUND(0); DROUND(1); DROUND(2); DROUND(3); DROUND(4); DROUND(5); DROUND(6); DROUND(7); DROUND(8); DROUND(9); DROUND(10); DROUND(11); DROUND(12); DROUND(13); DROUND(14); DROUND(15); DROUND(16); } int sober128_add_entropy(const unsigned char *buf, unsigned long len, prng_state *prng) { struct sober128_prng *c; ulong32 i, k; c = &(prng->sober128); if (c->flag == 1) { /* this is the first call to the add_entropy so this input is the key */ /* len must be multiple of 4 bytes */ assert ((len & 3) == 0); for (i = 0; i < len; i += 4) { k = BYTE2WORD((unsigned char *)&buf[i]); ADDKEY(k); cycle(c->R); XORNL(nltap(c)); } /* also fold in the length of the key */ ADDKEY(len); /* now diffuse */ s128_diffuse(c); s128_genkonst(c); s128_savestate(c); c->nbuf = 0; c->flag = 0; c->set = 1; } else { /* ok we are adding an IV then... */ s128_reloadstate(c); /* len must be multiple of 4 bytes */ assert ((len & 3) == 0); for (i = 0; i < len; i += 4) { k = BYTE2WORD((unsigned char *)&buf[i]); ADDKEY(k); cycle(c->R); XORNL(nltap(c)); } /* also fold in the length of the key */ ADDKEY(len); /* now diffuse */ s128_diffuse(c); c->nbuf = 0; } return CRYPT_OK; } int sober128_ready(prng_state *prng) { return prng->sober128.set == 1 ? CRYPT_OK : CRYPT_ERROR; } /* XOR pseudo-random bytes into buffer */ #define SROUND(z) STEP(c->R,z); NLFUNC(c,(z+1)); XORWORD(t, buf+(z*4)); unsigned long sober128_read(unsigned char *buf, unsigned long nbytes, prng_state *prng) { struct sober128_prng *c; ulong32 t, tlen; c = &(prng->sober128); t = 0; tlen = nbytes; /* handle any previously buffered bytes */ while (c->nbuf != 0 && nbytes != 0) { *buf++ ^= c->sbuf & 0xFF; c->sbuf >>= 8; c->nbuf -= 8; --nbytes; } #ifndef SMALL_CODE /* do lots at a time, if there's enough to do */ while (nbytes >= N*4) { SROUND(0); SROUND(1); SROUND(2); SROUND(3); SROUND(4); SROUND(5); SROUND(6); SROUND(7); SROUND(8); SROUND(9); SROUND(10); SROUND(11); SROUND(12); SROUND(13); SROUND(14); SROUND(15); SROUND(16); buf += 4*N; nbytes -= 4*N; } #endif /* do small or odd size buffers the slow way */ while (4 <= nbytes) { cycle(c->R); t = nltap(c); XORWORD(t, buf); buf += 4; nbytes -= 4; } /* handle any trailing bytes */ if (nbytes != 0) { cycle(c->R); c->sbuf = nltap(c); c->nbuf = 32; while (c->nbuf != 0 && nbytes != 0) { *buf++ ^= c->sbuf & 0xFF; c->sbuf >>= 8; c->nbuf -= 8; --nbytes; } } return tlen; } /* SHA1 code by Tom St Denis */ const struct _hash_descriptor sha1_desc = { "sha1", 2, 20, 64, /* DER identifier */ { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B, 0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14 }, 15, &sha1_init, &sha1_process, &sha1_done, }; #define F0(x,y,z) (z ^ (x & (y ^ z))) #define F1(x,y,z) (x ^ y ^ z) #define F2(x,y,z) ((x & y) | (z & (x | y))) #define F3(x,y,z) (x ^ y ^ z) static void sha1_compress(hash_state *md, unsigned char *buf) { ulong32 a,b,c,d,e,W[80],i; /* copy the state into 512-bits into W[0..15] */ for (i = 0; i < 16; i++) { LOAD32H(W[i], buf + (4*i)); } /* copy state */ a = md->sha1.state[0]; b = md->sha1.state[1]; c = md->sha1.state[2]; d = md->sha1.state[3]; e = md->sha1.state[4]; /* expand it */ for (i = 16; i < 80; i++) { W[i] = ROL(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1); } /* compress */ /* round one */ #define FF0(a,b,c,d,e,i) e = (ROL(a, 5) + F0(b,c,d) + e + W[i] + 0x5a827999UL); b = ROL(b, 30); #define FF1(a,b,c,d,e,i) e = (ROL(a, 5) + F1(b,c,d) + e + W[i] + 0x6ed9eba1UL); b = ROL(b, 30); #define FF2(a,b,c,d,e,i) e = (ROL(a, 5) + F2(b,c,d) + e + W[i] + 0x8f1bbcdcUL); b = ROL(b, 30); #define FF3(a,b,c,d,e,i) e = (ROL(a, 5) + F3(b,c,d) + e + W[i] + 0xca62c1d6UL); b = ROL(b, 30); for (i = 0; i < 20; ) { FF0(a,b,c,d,e,i++); FF0(e,a,b,c,d,i++); FF0(d,e,a,b,c,i++); FF0(c,d,e,a,b,i++); FF0(b,c,d,e,a,i++); } /* round two */ for (; i < 40; ) { FF1(a,b,c,d,e,i++); FF1(e,a,b,c,d,i++); FF1(d,e,a,b,c,i++); FF1(c,d,e,a,b,i++); FF1(b,c,d,e,a,i++); } /* round three */ for (; i < 60; ) { FF2(a,b,c,d,e,i++); FF2(e,a,b,c,d,i++); FF2(d,e,a,b,c,i++); FF2(c,d,e,a,b,i++); FF2(b,c,d,e,a,i++); } /* round four */ for (; i < 80; ) { FF3(a,b,c,d,e,i++); FF3(e,a,b,c,d,i++); FF3(d,e,a,b,c,i++); FF3(c,d,e,a,b,i++); FF3(b,c,d,e,a,i++); } #undef FF0 #undef FF1 #undef FF2 #undef FF3 /* store */ md->sha1.state[0] = md->sha1.state[0] + a; md->sha1.state[1] = md->sha1.state[1] + b; md->sha1.state[2] = md->sha1.state[2] + c; md->sha1.state[3] = md->sha1.state[3] + d; md->sha1.state[4] = md->sha1.state[4] + e; } void sha1_init(hash_state * md) { md->sha1.state[0] = 0x67452301UL; md->sha1.state[1] = 0xefcdab89UL; md->sha1.state[2] = 0x98badcfeUL; md->sha1.state[3] = 0x10325476UL; md->sha1.state[4] = 0xc3d2e1f0UL; md->sha1.curlen = 0; md->sha1.length = 0; } HASH_PROCESS(sha1_process, sha1_compress, sha1, 64) int sha1_done(hash_state * md, unsigned char *hash) { int i; /* * Assert there isn't an invalid argument */ assert (md->sha1.curlen < sizeof (md->sha1.buf)); /* increase the length of the message */ md->sha1.length += md->sha1.curlen * 8; /* append the '1' bit */ md->sha1.buf[md->sha1.curlen++] = (unsigned char)0x80; /* if the length is currently above 56 bytes we append zeros * then compress. Then we can fall back to padding zeros and length * encoding like normal. */ if (md->sha1.curlen > 56) { while (md->sha1.curlen < 64) { md->sha1.buf[md->sha1.curlen++] = (unsigned char)0; } sha1_compress(md, md->sha1.buf); md->sha1.curlen = 0; } /* pad upto 56 bytes of zeroes */ while (md->sha1.curlen < 56) { md->sha1.buf[md->sha1.curlen++] = (unsigned char)0; } /* store length */ STORE64H(md->sha1.length, md->sha1.buf+56); sha1_compress(md, md->sha1.buf); /* copy output */ for (i = 0; i < 5; i++) { STORE32H(md->sha1.state[i], hash+(4*i)); } return CRYPT_OK; } /* Submited by Dobes Vandermeer (dobes@smartt.com) */ /* (1) append zeros to the end of K to create a B byte string (e.g., if K is of length 20 bytes and B=64, then K will be appended with 44 zero bytes 0x00) (2) XOR (bitwise exclusive-OR) the B byte string computed in step (1) with ipad (ipad = the byte 0x36 repeated B times) (3) append the stream of data 'text' to the B byte string resulting from step (2) (4) apply H to the stream generated in step (3) (5) XOR (bitwise exclusive-OR) the B byte string computed in step (1) with opad (opad = the byte 0x5C repeated B times.) (6) append the H result from step (4) to the B byte string resulting from step (5) (7) apply H to the stream generated in step (6) and output the result */ int hmac_init(hmac_state *hmac, int hash, const unsigned char *key, unsigned long keylen) { unsigned char buf[128]; unsigned long hashsize; unsigned long i; int err; hmac->hash = hash; hashsize = hash_descriptor[hash]->hashsize; /* valid key length? */ assert (keylen > 0); assert (keylen <= hash_descriptor[hash]->blocksize); memcpy(hmac->key, key, (size_t)keylen); if(keylen < hash_descriptor[hash]->blocksize) { memset((hmac->key) + keylen, 0, (size_t)(hash_descriptor[hash]->blocksize - keylen)); } // Create the initial vector for step (3) for(i=0; i < hash_descriptor[hash]->blocksize; i++) { buf[i] = hmac->key[i] ^ 0x36; } // Pre-pend that to the hash data hash_descriptor[hash]->init(&hmac->md); err = hash_descriptor[hash]->process(&hmac->md, buf, hash_descriptor[hash]->blocksize); return err; } int hmac_process(hmac_state *hmac, const unsigned char *buf, unsigned long len) { return hash_descriptor[hmac->hash]->process(&hmac->md, buf, len); } /* Submited by Dobes Vandermeer (dobes@smartt.com) */ /* (1) append zeros to the end of K to create a B byte string (e.g., if K is of length 20 bytes and B=64, then K will be appended with 44 zero bytes 0x00) (2) XOR (bitwise exclusive-OR) the B byte string computed in step (1) with ipad (ipad = the byte 0x36 repeated B times) (3) append the stream of data 'text' to the B byte string resulting from step (2) (4) apply H to the stream generated in step (3) (5) XOR (bitwise exclusive-OR) the B byte string computed in step (1) with opad (opad = the byte 0x5C repeated B times.) (6) append the H result from step (4) to the B byte string resulting from step (5) (7) apply H to the stream generated in step (6) and output the result */ int hmac_done(hmac_state *hmac, unsigned char *hashOut, unsigned long *outlen) { unsigned char buf[128]; unsigned char isha[256]; unsigned long hashsize, i; int hash, err; /* test hash */ hash = hmac->hash; /* get the hash message digest size */ hashsize = hash_descriptor[hash]->hashsize; // Get the hash of the first HMAC vector plus the data if ((err = hash_descriptor[hash]->done(&hmac->md, isha)) != CRYPT_OK) { goto __ERR; } // Create the second HMAC vector vector for step (3) for(i=0; i < hash_descriptor[hash]->blocksize; i++) { buf[i] = hmac->key[i] ^ 0x5C; } // Now calculate the "outer" hash for step (5), (6), and (7) hash_descriptor[hash]->init(&hmac->md); if ((err = hash_descriptor[hash]->process(&hmac->md, buf, hash_descriptor[hash]->blocksize)) != CRYPT_OK) { goto __ERR; } if ((err = hash_descriptor[hash]->process(&hmac->md, isha, hashsize)) != CRYPT_OK) { goto __ERR; } if ((err = hash_descriptor[hash]->done(&hmac->md, buf)) != CRYPT_OK) { goto __ERR; } // copy to output for (i = 0; i < hashsize && i < *outlen; i++) { hashOut[i] = buf[i]; } *outlen = i; err = CRYPT_OK; __ERR: return err; } const struct _hash_descriptor *hash_descriptor[] = { &sha1_desc }; /* portable way to get secure random bits to feed a PRNG */ /* on *NIX read /dev/random */ static unsigned long rng_nix(unsigned char *buf, unsigned long len, void (*callback)(void)) { int fd; int rb; fd = open ("/dev/urandom", O_RDONLY); rb = read (fd, buf, len); close (fd); return (rb); } /* on ANSI C platforms with 100 < CLOCKS_PER_SEC < 10000 */ #if defined(CLOCKS_PER_SEC) #define ANSI_RNG static unsigned long rng_ansic(unsigned char *buf, unsigned long len, void (*callback)(void)) { clock_t t1; int l, acc, bits, a, b; if (XCLOCKS_PER_SEC < 100 || XCLOCKS_PER_SEC > 10000) { return 0; } l = len; bits = 8; acc = a = b = 0; while (len--) { if (callback != NULL) callback(); while (bits--) { do { t1 = XCLOCK(); while (t1 == XCLOCK()) a ^= 1; t1 = XCLOCK(); while (t1 == XCLOCK()) b ^= 1; } while (a == b); acc = (acc << 1) | a; } *buf++ = acc; acc = 0; bits = 8; } acc = bits = a = b = 0; return l; } #endif unsigned long rng_get_bytes(unsigned char *buf, unsigned long len, void (*callback)(void)) { unsigned long x; x = rng_nix(buf, len, callback); if (x != 0) { return x; } #ifdef ANSI_RNG x = rng_ansic(buf, len, callback); if (x != 0) { return x; } #endif return 0; } int rng_make_prng(int bits, int wprng, prng_state *prng, void (*callback)(void)) { unsigned char buf[256]; int err; if (bits < 64 || bits > 1024) { return CRYPT_INVALID_PRNGSIZE; } if ((err = prng_descriptor[wprng]->start(prng)) != CRYPT_OK) { return err; } bits = ((bits/8)+((bits&7)!=0?1:0)) * 2; if (rng_get_bytes(buf, (unsigned long)bits, callback) != (unsigned long)bits) { return CRYPT_ERROR_READPRNG; } if ((err = prng_descriptor[wprng]->add_entropy(buf, (unsigned long)bits, prng)) != CRYPT_OK) { return err; } if ((err = prng_descriptor[wprng]->ready(prng)) != CRYPT_OK) { return err; } return CRYPT_OK; }