When opening a worktree via the gitdir of its parent repository
we fail to correctly set up the worktree's working directory. The
problem here is two-fold: we first fail to see that the gitdir
actually is a gitdir of a working tree and then subsequently
fail to determine the working tree location from the gitdir.
The first problem of not noticing a gitdir belongs to a worktree
can be solved by checking for the existence of a `gitdir` file in
the gitdir. This file points back to the gitlink file located in
the working tree's working directory. As this file only exists
for worktrees, it should be sufficient indication of the gitdir
belonging to a worktree.
The second problem, that is determining the location of the
worktree's working directory, can then be solved by reading the
`gitdir` file in the working directory's gitdir. When we now
resolve relative paths and strip the final `.git` component, we
have the actual worktree's working directory location.
The `path_repository` variable is actually confusing to think
about, as it is not always clear what the repository actually is.
It may either be the path to the folder containing worktree and
.git directory, the path to .git itself, a worktree or something
entirely different. Actually, the intent of the variable is to
hold the path to the gitdir, which is either the .git directory
or the bare repository.
Rename the variable to `gitdir` to avoid confusion. While at it,
also rename `path_gitlink` to `gitlink` to improve consistency.
If a branch is already checked out in a working tree we are not
allowed to check out that branch in another repository. Introduce
this restriction when setting a repository's HEAD.
Implement `git_repository_head_for_worktree` and
`git_repository_head_detached_for_worktree` for directly accessing a
worktree's HEAD without opening it as a `git_repository` first.
Implement the `git_worktree_prune` function. This function can be
used to delete working trees from a repository. According to the
flags passed to it, it can either delete the working tree's
gitdir only or both gitdir and the working directory.
Working trees support locking by creating a file `locked` inside
the tree's gitdir with an optional reason inside. Support this
feature by adding functions to get and set the locking status.
Add a new function that checks wether a given `struct
git_worktree` is valid. The validation includes checking if the
gitdir, parent directory and common directory are present.
Introduce a new `struct git_worktree`, which holds information
about a possible working tree connected to a repository.
Introduce functions to allow opening working trees for a
repository.
A repository's configuartion file can always be found in the
GIT_COMMON_DIR, which has been newly introduced. For normal
repositories this does change nothing, but for working trees this
change allows to access the shared configuration file.
The refdb_fs_backend is not aware of the git commondir, which
stores common objects like the o bject database and packed/loose
refereensces when worktrees are used.
Make refdb_fs_backend aware of the common directory by
introducing a new commonpath variable that points to the actual
common path of the database and using it instead of the gitdir
for the mentioned objects.
The commondir variable stores the path to the common directory.
The common directory is used to store objects and references
shared across multiple repositories. A current use case is the
newly introduced `git worktree` feature, which sets up a separate
working copy, where the backing git object store and references
are pointed to by the common directory.
Create worktrees for submodule repositories. The worktrees are
created for the parent repository (e.g. the one containing
submodules) and for the contained child repository.
As of recently, we failed to correctly discover repositories at a
Win32 system root. Instead of aborting the upwards-traversal of
the file system, we were looping infinitely when traversal
started at either a Win32 drive prefix ("C:/") or a network path
("//somehost").
The issue has been fixed, so add a test to catch regressions.
When calling `git_path_dirname_r` on a Win32 prefix, e.g. a drive
or network share prefix, we always want to return the trailing
'/'. This does not work currently when passing in a path like
'C:', where the '/' would not be appended correctly.
Fix this by appending a '/' if we try to normalize a Win32 prefix
and there is no trailing '/'.
Getting the dirname of a filesystem root should return the filesystem
root itself. E.g. the dirname of "/" is always "/". On Windows, we
emulate this behavior and as such, we should return e.g. "C:/" if
calling dirname on "C:/". But we currently fail to do so and instead
return ".", as we do not check if we actually have a Windows prefix
before stripping off the last directory component.
Fix this by calling out to `win32_prefix_length` immediately after
stripping trailing slashes, returning early if we have a prefix.
Added `git_repository_submodule_cache_all` to initialze a cache of
submodules on the repository so that operations looking up N
submodules are O(N) and not O(N^2). Added a
`git_repository_submodule_cache_clear` function to remove the cache.
Also optimized the function that loads all submodules as it was itself
O(N^2) w.r.t the number of submodules, having to loop through the
`.gitmodules` file once per submodule. I changed it to process the
`.gitmodules` file once, into a map.
Signed-off-by: David Turner <dturner@twosigma.com>
git_checkout_tree() sets up its working directory iterator to respect the
pathlist if GIT_CHECKOUT_DISABLE_PATHSPEC_MATCH is present, which is great.
What's not so great is that this iterator is then used side-by-side with
an iterator created by git_checkout_iterator(), which did not set up its
pathlist appropriately (although the iterator mirrors all other iterator
options).
This could cause git_checkout_tree() to delete working tree files which
were not specified in the pathlist when GIT_CHECKOUT_DISABLE_PATHSPEC_MATCH
was used, as the unsynchronized iterators causes git_checkout_tree() to think
that files have been deleted between the two trees. Oops.
And added a test which fails without this fix (specifically, the final check
for "testrepo/README" to still be present fails).
This is far from an ideal situation, but this causes issues on Windows which
make it harder to develop anything, as these tests hit issues which relate
specifically to the Windows filesystem like permission errors for files we
should be able to access. There is an issue likely related to the ordering of
the repack, but there's enough noise that it does not currently help us to run
this aspect of the test in CI.
The function `cl_git_thread_check()` is defined as static. As the
function is defined in a header file which is included by our
tests, this can result in warnings for every test file where
`cl_git_thread_check` is never used.
Fix the issue by marking it as inline instead.
git_rebase_finish relies on head_detached being set, but
rebase_init_merge was only setting it when branch->ref_name was unset.
But branch->ref_name would be set to "HEAD" in the case of detached
HEAD being either implicitly (NULL) or explicitly passed to
git_rebase_init.
Don't `cl_git_pass` in a child thread. When the assertion fails, clar
will `longjmp` to its error handler, but:
> The effect of a call to longjmp() where initialization of the jmp_buf
> structure was not performed in the calling thread is undefined.
Instead, set up an error context that threads can populate, and the
caller can check.
We want a predictable number of initializations in our multithreaded
init test, but we also want to make sure that we have _actually_
initialized `git_libgit2_init` before calling `git_thread_create` (since
it now has a sanity check that `git_libgit2_init` has been called).
Since `git_thread_create` is internal-only, keep this sanity check.
Flip the invocation so that we `git_libgit2_init` before our thread
tests and `git_libgit2_shutdown` again after.
Introduce `git_thread_exit`, which will allow threads to terminate at an
arbitrary time, returning a `void *`. On Windows, this means that we
need to store the current `git_thread` in TLS, so that we can set its
`return` value when terminating.
We cannot simply use `ExitThread`, since Win32 returns `DWORD`s from
threads; we return `void *`.
On Windows we can find locked files even when reading a reference or the
packed-refs file. Bubble up the error in this case as well to allow
callers on Windows to retry more intelligently.
We say it's going to work if you use a different repository in each
thread. Let's do precisely that in our code instead of hoping re-using
the refdb is going to work.
This test does fail currently, surfacing existing bugs.
When trying to find a discovery, we walk up the directory
structure checking if there is a ".git" file or directory and, if
so, check its validity. But in the case that we've got a ".git"
file, we do not want to unconditionally assume that the file is
in fact a ".git" file and treat it as such, as we would error out
if it is not.
Fix the issue by only treating a file as a gitlink file if it
ends with "/.git". This allows users of the function to discover
a repository by handing in any path contained inside of a git
repository.
The code correctly detects that forced creation of a branch on a
nonbare repo should not be able to overwrite a branch which is
the HEAD reference. But there's no reason to prevent this on
a bare repo, and in fact, git allows this. I.e.,
git branch -f master new_sha
works on a bare repo with HEAD set to master. This change fixes
that problem, and updates tests so that, for this case, both the
bare and nonbare cases are checked for correct behavior.
Exercise the logic surrounding deinitialization of the libgit2
library as well as repeated concurrent de- and reinitialization.
This tries to catch races and makes sure that it is possible to
reinitialize libgit2 multiple times.
After deinitializing libgit2, we have to make sure to setup
options required for testing. Currently, this only includes
setting up the configuration search path again. Before, this has
been set up once in `tests/main.c`.
The `git_pqueue` struct allows being fixed in its total number of
entries. In this case, we simply throw away items that are
inserted into the priority queue by examining wether the new item
to be inserted has a higher priority than the previous smallest
one.
This feature somewhat contradicts our pqueue implementation in
that it is allowed to not have a comparison function. In fact, we
also fail to check if the comparison function is actually set in
the case where we add a new item into a fully filled fixed-size
pqueue.
As we cannot determine which item is the smallest item in absence
of a comparison function, we fix the `NULL` pointer dereference
by simply dropping all new items which are about to be inserted
into a full fixed-size pqueue.
`xlocale.h` only defines `regcomp_l` if `regex.h` was included as well.
Also change the test cases to actually test `p_regcomp` works with
a multibyte locale.
After porting over the commit hiding and selection we were still left
with mistmaching output due to the topologial sort.
This ports the topological sorting code to make us match with our
equivalent of `--date-order` and `--topo-order` against the output
from `rev-list`.
This is a convenience function to reverse the contents of a vector and a pqueue
in-place.
The pqueue function is useful in the case where we're treating it as a
LIFO queue.
We had some home-grown logic to figure out which objects to show during
the revision walk, but it was rather inefficient, looking over the same
list multiple times to figure out when we had run out of interesting
commits. We now use the lists in a smarter way.
We also introduce the slop mechanism to determine when to stpo
looking. When we run out of interesting objects, we continue preparing
the walk for another 5 rounds in order to make it less likely that we
miss objects in situations with complex graphs.
When creating and printing diffs, deal with binary deltas that have
binary data specially, versus diffs that have a binary file but lack the
actual binary data.
According to the reference the git_checkout_tree and git_checkout_head
functions should accept NULL in the opts field
This was broken since the opts field was dereferenced and thus lead to a
crash.
The .gitignore file allows for patterns which unignore previous
ignore patterns. When unignoring a previous pattern, there are
basically three cases how this is matched when no globbing is
used:
1. when a previous file has been ignored, it can be unignored by
using its exact name, e.g.
foo/bar
!foo/bar
2. when a file in a subdirectory has been ignored, it can be
unignored by using its basename, e.g.
foo/bar
!bar
3. when all files with a basename are ignored, a specific file
can be unignored again by specifying its path in a
subdirectory, e.g.
bar
!foo/bar
The first problem in libgit2 is that we did not correctly treat
the second case. While we verified that the negative pattern
matches the tail of the positive one, we did not verify if it
only matches the basename of the positive pattern. So e.g. we
would have also negated a pattern like
foo/fruz_bar
!bar
Furthermore, we did not check for the third case, where a
basename is being unignored in a certain subdirectory again.
Both issues are fixed with this commit.
Support reading and writing index v4. Index v4 uses a very simple
compression scheme for pathnames, but is otherwise similar to index v3.
Signed-off-by: David Turner <dturner@twitter.com>