While we have a simple test to determine whether we can write an index
of version 4, we never verified that we are able to read this kind of
index (and in fact, we were not able to do so). Add a new repository
which has an index of version 4. This repository is then read from a new
test.
It is possible to specify submodule URLs relative to the repository
location. E.g. having a submodule with URL "../submodule" will look for
the submodule at "repo/../submodule".
With the introduction of worktrees, though, we cannot simply resolve the
URL relative to the repository location itself. If the repository for
which a URL is to be resolved is a working tree, we have to resolve the
URL relative to the parent's repository path. Otherwise, the URL would
change depending on where the working tree is located.
Fix this by special-casing when we have a working tree while getting the
URL base.
An untracked file in a submodule should not prevent a rebase from
starting. Even if the submodule's SHA is changed, and that file would
conflict with a new tracked file, it's still OK to start the rebase
and discover the conflict later.
Signed-off-by: David Turner <dturner@twosigma.com>
Create worktrees for submodule repositories. The worktrees are
created for the parent repository (e.g. the one containing
submodules) and for the contained child repository.
As of recently, we failed to correctly discover repositories at a
Win32 system root. Instead of aborting the upwards-traversal of
the file system, we were looping infinitely when traversal
started at either a Win32 drive prefix ("C:/") or a network path
("//somehost").
The issue has been fixed, so add a test to catch regressions.
Introduce a repository that contains some paths that were illegal
on PC-DOS circa 1981 (like `aux`, `con`, `com1`) and that in a
bizarre fit of retrocomputing, remain illegal on some "modern"
computers, despite being "new technology".
Introduce some aspirational tests that suggest that we should be
able to cope with trees and indexes that contain paths that
would be illegal on the filesystem, so that we can at least diff
them. Further ensure that checkout will not write a repository
with forbidden paths.
When formatting a patch as email we do not include the commit's
message in the formatted patch output. Implement this and add a
test that verifies behavior.
It is not unreasonable to have versioned files with a line count
exceeding 2^16. Upon blaming such files we fail to correctly keep
track of the lines as `git_blame_hunk` stores them in `uint16_t`
fields.
Fix this by converting the line fields of `git_blame_hunk` to
`size_t`. Add test to verify behavior.
When building a recursive merge base, allow conflicts to occur.
Use the file (with conflict markers) as the common ancestor.
The user has already seen and dealt with this conflict by virtue
of having a criss-cross merge. If they resolved this conflict
identically in both branches, then there will be no conflict in the
result. This is the best case scenario.
If they did not resolve the conflict identically in the two branches,
then we will generate a new conflict. If the user is simply using
standard conflict output then the results will be fairly sensible.
But if the user is using a mergetool or using diff3 output, then the
common ancestor will be a conflict file (itself with diff3 output,
haha!). This is quite terrible, but it matches git's behavior.
Test that nanoseconds are round-tripped correctly when we read
an index file that contains them. We should, however, ignore them
because we don't understand them, and any new entries in the index
should contain a `0` nsecs field, while existing preserving entries.
Test an initial submodule update, where we are trying to checkout
the submodule for the first time, and placing a file within the
submodule working directory with the same name as the submodule
(and consequently, the same name as the repository itself).
A remote's URLs are now modified according to the url.*.insteadOf
and url.*.pushInsteadOf configurations. This allows a user to
replace URL prefixes by setting the corresponding keys. E.g.
"url.foo.insteadOf = bar" would replace the prefix "bar" with the
new prefix "foo".