mirror of
				https://git.proxmox.com/git/grub2
				synced 2025-10-30 07:04:36 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			185 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			185 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* mpi-mod.c -  Modular reduction
 | |
|    Copyright (C) 1998, 1999, 2001, 2002, 2003,
 | |
|                  2007  Free Software Foundation, Inc.
 | |
| 
 | |
|    This file is part of Libgcrypt.
 | |
| 
 | |
|    Libgcrypt is free software; you can redistribute it and/or modify
 | |
|    it under the terms of the GNU Lesser General Public License as
 | |
|    published by the Free Software Foundation; either version 2.1 of
 | |
|    the License, or (at your option) any later version.
 | |
| 
 | |
|    Libgcrypt is distributed in the hope that it will be useful,
 | |
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|    GNU Lesser General Public License for more details.
 | |
| 
 | |
|    You should have received a copy of the GNU Lesser General Public
 | |
|    License along with this program; if not, write to the Free Software
 | |
|    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
 | |
|    USA.  */
 | |
| 
 | |
| 
 | |
| #include <config.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| 
 | |
| #include "mpi-internal.h"
 | |
| #include "longlong.h"
 | |
| #include "g10lib.h"
 | |
| 
 | |
| 
 | |
| /* Context used with Barrett reduction.  */
 | |
| struct barrett_ctx_s
 | |
| {
 | |
|   gcry_mpi_t m;   /* The modulus - may not be modified. */
 | |
|   int m_copied;   /* If true, M needs to be released.  */
 | |
|   int k;
 | |
|   gcry_mpi_t y;
 | |
|   gcry_mpi_t r1;  /* Helper MPI. */
 | |
|   gcry_mpi_t r2;  /* Helper MPI. */
 | |
|   gcry_mpi_t r3;  /* Helper MPI allocated on demand. */
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| void
 | |
| _gcry_mpi_mod (gcry_mpi_t rem, gcry_mpi_t dividend, gcry_mpi_t divisor)
 | |
| {
 | |
|   _gcry_mpi_fdiv_r (rem, dividend, divisor);
 | |
|   rem->sign = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* This function returns a new context for Barrett based operations on
 | |
|    the modulus M.  This context needs to be released using
 | |
|    _gcry_mpi_barrett_free.  If COPY is true M will be transferred to
 | |
|    the context and the user may change M.  If COPY is false, M may not
 | |
|    be changed until gcry_mpi_barrett_free has been called. */
 | |
| mpi_barrett_t
 | |
| _gcry_mpi_barrett_init (gcry_mpi_t m, int copy)
 | |
| {
 | |
|   mpi_barrett_t ctx;
 | |
|   gcry_mpi_t tmp;
 | |
| 
 | |
|   mpi_normalize (m);
 | |
|   ctx = gcry_xcalloc (1, sizeof *ctx);
 | |
| 
 | |
|   if (copy)
 | |
|     {
 | |
|       ctx->m = mpi_copy (m);
 | |
|       ctx->m_copied = 1;
 | |
|     }
 | |
|   else
 | |
|     ctx->m = m;
 | |
| 
 | |
|   ctx->k = mpi_get_nlimbs (m);
 | |
|   tmp = mpi_alloc (ctx->k + 1);
 | |
| 
 | |
|   /* Barrett precalculation: y = floor(b^(2k) / m). */
 | |
|   mpi_set_ui (tmp, 1);
 | |
|   mpi_lshift_limbs (tmp, 2 * ctx->k);
 | |
|   mpi_fdiv_q (tmp, tmp, m);
 | |
| 
 | |
|   ctx->y  = tmp;
 | |
|   ctx->r1 = mpi_alloc ( 2 * ctx->k + 1 );
 | |
|   ctx->r2 = mpi_alloc ( 2 * ctx->k + 1 );
 | |
| 
 | |
|   return ctx;
 | |
| }
 | |
| 
 | |
| void
 | |
| _gcry_mpi_barrett_free (mpi_barrett_t ctx)
 | |
| {
 | |
|   if (ctx)
 | |
|     {
 | |
|       mpi_free (ctx->y);
 | |
|       mpi_free (ctx->r1);
 | |
|       mpi_free (ctx->r2);
 | |
|       if (ctx->r3)
 | |
|         mpi_free (ctx->r3);
 | |
|       if (ctx->m_copied)
 | |
|         mpi_free (ctx->m);
 | |
|       gcry_free (ctx);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* R = X mod M
 | |
| 
 | |
|    Using Barrett reduction.  Before using this function
 | |
|    _gcry_mpi_barrett_init must have been called to do the
 | |
|    precalculations.  CTX is the context created by this precalculation
 | |
|    and also conveys M.  If the Barret reduction could no be done a
 | |
|    starightforward reduction method is used.
 | |
| 
 | |
|    We assume that these conditions are met:
 | |
|    Input:  x =(x_2k-1 ...x_0)_b
 | |
|  	   m =(m_k-1 ....m_0)_b	  with m_k-1 != 0
 | |
|    Output: r = x mod m
 | |
|  */
 | |
| void
 | |
| _gcry_mpi_mod_barrett (gcry_mpi_t r, gcry_mpi_t x, mpi_barrett_t ctx)
 | |
| {
 | |
|   gcry_mpi_t m = ctx->m;
 | |
|   int k = ctx->k;
 | |
|   gcry_mpi_t y = ctx->y;
 | |
|   gcry_mpi_t r1 = ctx->r1;
 | |
|   gcry_mpi_t r2 = ctx->r2;
 | |
| 
 | |
|   mpi_normalize (x);
 | |
|   if (mpi_get_nlimbs (x) > 2*k )
 | |
|     {
 | |
|       mpi_mod (r, x, m);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   /* 1. q1 = floor( x / b^k-1)
 | |
|    *    q2 = q1 * y
 | |
|    *    q3 = floor( q2 / b^k+1 )
 | |
|    * Actually, we don't need qx, we can work direct on r2
 | |
|    */
 | |
|   mpi_set ( r2, x );
 | |
|   mpi_rshift_limbs ( r2, k-1 );
 | |
|   mpi_mul ( r2, r2, y );
 | |
|   mpi_rshift_limbs ( r2, k+1 );
 | |
| 
 | |
|   /* 2. r1 = x mod b^k+1
 | |
|    *	r2 = q3 * m mod b^k+1
 | |
|    *	r  = r1 - r2
 | |
|    * 3. if r < 0 then  r = r + b^k+1
 | |
|    */
 | |
|   mpi_set ( r1, x );
 | |
|   if ( r1->nlimbs > k+1 ) /* Quick modulo operation.  */
 | |
|     r1->nlimbs = k+1;
 | |
|   mpi_mul ( r2, r2, m );
 | |
|   if ( r2->nlimbs > k+1 ) /* Quick modulo operation. */
 | |
|     r2->nlimbs = k+1;
 | |
|   mpi_sub ( r, r1, r2 );
 | |
| 
 | |
|   if ( mpi_is_neg( r ) )
 | |
|     {
 | |
|       if (!ctx->r3)
 | |
|         {
 | |
|           ctx->r3 = mpi_alloc ( k + 2 );
 | |
|           mpi_set_ui (ctx->r3, 1);
 | |
|           mpi_lshift_limbs (ctx->r3, k + 1 );
 | |
|         }
 | |
|       mpi_add ( r, r, ctx->r3 );
 | |
|     }
 | |
| 
 | |
|   /* 4. while r >= m do r = r - m */
 | |
|   while ( mpi_cmp( r, m ) >= 0 )
 | |
|     mpi_sub ( r, r, m );
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| _gcry_mpi_mul_barrett (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v,
 | |
|                        mpi_barrett_t ctx)
 | |
| {
 | |
|   gcry_mpi_mul (w, u, v);
 | |
|   mpi_mod_barrett (w, w, ctx);
 | |
| }
 | 
