mirror of
				https://git.proxmox.com/git/grub2
				synced 2025-10-30 23:34:47 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1197 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1197 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* des.c - DES and Triple-DES encryption/decryption Algorithm
 | ||
|  * Copyright (C) 1998, 1999, 2001, 2002, 2003,
 | ||
|  *               2008  Free Software Foundation, Inc.
 | ||
|  *
 | ||
|  * This file is part of Libgcrypt.
 | ||
|  *
 | ||
|  * Libgcrypt is free software; you can redistribute it and/or modify
 | ||
|  * it under the terms of the GNU Lesser general Public License as
 | ||
|  * published by the Free Software Foundation; either version 2.1 of
 | ||
|  * the License, or (at your option) any later version.
 | ||
|  *
 | ||
|  * Libgcrypt is distributed in the hope that it will be useful,
 | ||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | ||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | ||
|  * GNU Lesser General Public License for more details.
 | ||
|  *
 | ||
|  * You should have received a copy of the GNU Lesser General Public
 | ||
|  * License along with this program; if not, write to the Free Software
 | ||
|  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
 | ||
|  *
 | ||
|  * For a description of triple encryption, see:
 | ||
|  *   Bruce Schneier: Applied Cryptography. Second Edition.
 | ||
|  *   John Wiley & Sons, 1996. ISBN 0-471-12845-7. Pages 358 ff.
 | ||
|  * This implementation is according to the definition of DES in FIPS
 | ||
|  * PUB 46-2 from December 1993.
 | ||
|  */
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * Written by Michael Roth <mroth@nessie.de>, September 1998
 | ||
|  */
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  *  U S A G E
 | ||
|  * ===========
 | ||
|  *
 | ||
|  * For DES or Triple-DES encryption/decryption you must initialize a proper
 | ||
|  * encryption context with a key.
 | ||
|  *
 | ||
|  * A DES key is 64bit wide but only 56bits of the key are used. The remaining
 | ||
|  * bits are parity bits and they will _not_ checked in this implementation, but
 | ||
|  * simply ignored.
 | ||
|  *
 | ||
|  * For Triple-DES you could use either two 64bit keys or three 64bit keys.
 | ||
|  * The parity bits will _not_ checked, too.
 | ||
|  *
 | ||
|  * After initializing a context with a key you could use this context to
 | ||
|  * encrypt or decrypt data in 64bit blocks in Electronic Codebook Mode.
 | ||
|  *
 | ||
|  * (In the examples below the slashes at the beginning and ending of comments
 | ||
|  * are omited.)
 | ||
|  *
 | ||
|  * DES Example
 | ||
|  * -----------
 | ||
|  *     unsigned char key[8];
 | ||
|  *     unsigned char plaintext[8];
 | ||
|  *     unsigned char ciphertext[8];
 | ||
|  *     unsigned char recoverd[8];
 | ||
|  *     des_ctx context;
 | ||
|  *
 | ||
|  *     * Fill 'key' and 'plaintext' with some data *
 | ||
|  *     ....
 | ||
|  *
 | ||
|  *     * Set up the DES encryption context *
 | ||
|  *     des_setkey(context, key);
 | ||
|  *
 | ||
|  *     * Encrypt the plaintext *
 | ||
|  *     des_ecb_encrypt(context, plaintext, ciphertext);
 | ||
|  *
 | ||
|  *     * To recover the orginal plaintext from ciphertext use: *
 | ||
|  *     des_ecb_decrypt(context, ciphertext, recoverd);
 | ||
|  *
 | ||
|  *
 | ||
|  * Triple-DES Example
 | ||
|  * ------------------
 | ||
|  *     unsigned char key1[8];
 | ||
|  *     unsigned char key2[8];
 | ||
|  *     unsigned char key3[8];
 | ||
|  *     unsigned char plaintext[8];
 | ||
|  *     unsigned char ciphertext[8];
 | ||
|  *     unsigned char recoverd[8];
 | ||
|  *     tripledes_ctx context;
 | ||
|  *
 | ||
|  *     * If you would like to use two 64bit keys, fill 'key1' and'key2'
 | ||
|  *	 then setup the encryption context: *
 | ||
|  *     tripledes_set2keys(context, key1, key2);
 | ||
|  *
 | ||
|  *     * To use three 64bit keys with Triple-DES use: *
 | ||
|  *     tripledes_set3keys(context, key1, key2, key3);
 | ||
|  *
 | ||
|  *     * Encrypting plaintext with Triple-DES *
 | ||
|  *     tripledes_ecb_encrypt(context, plaintext, ciphertext);
 | ||
|  *
 | ||
|  *     * Decrypting ciphertext to recover the plaintext with Triple-DES *
 | ||
|  *     tripledes_ecb_decrypt(context, ciphertext, recoverd);
 | ||
|  *
 | ||
|  *
 | ||
|  * Selftest
 | ||
|  * --------
 | ||
|  *     char *error_msg;
 | ||
|  *
 | ||
|  *     * To perform a selftest of this DES/Triple-DES implementation use the
 | ||
|  *	 function selftest(). It will return an error string if there are
 | ||
|  *	 some problems with this library. *
 | ||
|  *
 | ||
|  *     if ( (error_msg = selftest()) )
 | ||
|  *     {
 | ||
|  *	   fprintf(stderr, "An error in the DES/Triple-DES implementation occurred: %s\n", error_msg);
 | ||
|  *	   abort();
 | ||
|  *     }
 | ||
|  */
 | ||
| 
 | ||
| 
 | ||
| #include <config.h>
 | ||
| #include <stdio.h>
 | ||
| #include <string.h>	       /* memcpy, memcmp */
 | ||
| #include "types.h"             /* for byte and u32 typedefs */
 | ||
| #include "g10lib.h"
 | ||
| #include "cipher.h"
 | ||
| 
 | ||
| #if defined(__GNUC__) && defined(__GNU_LIBRARY__)
 | ||
| #define working_memcmp memcmp
 | ||
| #else
 | ||
| /*
 | ||
|  * According to the SunOS man page, memcmp returns indeterminate sign
 | ||
|  * depending on whether characters are signed or not.
 | ||
|  */
 | ||
| static int
 | ||
| working_memcmp( const char *a, const char *b, size_t n )
 | ||
| {
 | ||
|     for( ; n; n--, a++, b++ )
 | ||
| 	if( *a != *b )
 | ||
| 	    return (int)(*(byte*)a) - (int)(*(byte*)b);
 | ||
|     return 0;
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| /*
 | ||
|  * Encryption/Decryption context of DES
 | ||
|  */
 | ||
| typedef struct _des_ctx
 | ||
|   {
 | ||
|     u32 encrypt_subkeys[32];
 | ||
|     u32 decrypt_subkeys[32];
 | ||
|   }
 | ||
| des_ctx[1];
 | ||
| 
 | ||
| /*
 | ||
|  * Encryption/Decryption context of Triple-DES
 | ||
|  */
 | ||
| typedef struct _tripledes_ctx
 | ||
|   {
 | ||
|     u32 encrypt_subkeys[96];
 | ||
|     u32 decrypt_subkeys[96];
 | ||
|     struct {
 | ||
|       int no_weak_key;
 | ||
|     } flags;
 | ||
|   }
 | ||
| tripledes_ctx[1];
 | ||
| 
 | ||
| static void des_key_schedule (const byte *, u32 *);
 | ||
| static int des_setkey (struct _des_ctx *, const byte *);
 | ||
| static int des_ecb_crypt (struct _des_ctx *, const byte *, byte *, int);
 | ||
| static int tripledes_set2keys (struct _tripledes_ctx *,
 | ||
|                                const byte *, const byte *);
 | ||
| static int tripledes_set3keys (struct _tripledes_ctx *,
 | ||
|                                const byte *, const byte *, const byte *);
 | ||
| static int tripledes_ecb_crypt (struct _tripledes_ctx *,
 | ||
|                                 const byte *, byte *, int);
 | ||
| static int is_weak_key ( const byte *key );
 | ||
| static const char *selftest (void);
 | ||
| 
 | ||
| static int initialized;
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * The s-box values are permuted according to the 'primitive function P'
 | ||
|  * and are rotated one bit to the left.
 | ||
|  */
 | ||
| static u32 sbox1[64] =
 | ||
| {
 | ||
|   0x01010400, 0x00000000, 0x00010000, 0x01010404, 0x01010004, 0x00010404, 0x00000004, 0x00010000,
 | ||
|   0x00000400, 0x01010400, 0x01010404, 0x00000400, 0x01000404, 0x01010004, 0x01000000, 0x00000004,
 | ||
|   0x00000404, 0x01000400, 0x01000400, 0x00010400, 0x00010400, 0x01010000, 0x01010000, 0x01000404,
 | ||
|   0x00010004, 0x01000004, 0x01000004, 0x00010004, 0x00000000, 0x00000404, 0x00010404, 0x01000000,
 | ||
|   0x00010000, 0x01010404, 0x00000004, 0x01010000, 0x01010400, 0x01000000, 0x01000000, 0x00000400,
 | ||
|   0x01010004, 0x00010000, 0x00010400, 0x01000004, 0x00000400, 0x00000004, 0x01000404, 0x00010404,
 | ||
|   0x01010404, 0x00010004, 0x01010000, 0x01000404, 0x01000004, 0x00000404, 0x00010404, 0x01010400,
 | ||
|   0x00000404, 0x01000400, 0x01000400, 0x00000000, 0x00010004, 0x00010400, 0x00000000, 0x01010004
 | ||
| };
 | ||
| 
 | ||
| static u32 sbox2[64] =
 | ||
| {
 | ||
|   0x80108020, 0x80008000, 0x00008000, 0x00108020, 0x00100000, 0x00000020, 0x80100020, 0x80008020,
 | ||
|   0x80000020, 0x80108020, 0x80108000, 0x80000000, 0x80008000, 0x00100000, 0x00000020, 0x80100020,
 | ||
|   0x00108000, 0x00100020, 0x80008020, 0x00000000, 0x80000000, 0x00008000, 0x00108020, 0x80100000,
 | ||
|   0x00100020, 0x80000020, 0x00000000, 0x00108000, 0x00008020, 0x80108000, 0x80100000, 0x00008020,
 | ||
|   0x00000000, 0x00108020, 0x80100020, 0x00100000, 0x80008020, 0x80100000, 0x80108000, 0x00008000,
 | ||
|   0x80100000, 0x80008000, 0x00000020, 0x80108020, 0x00108020, 0x00000020, 0x00008000, 0x80000000,
 | ||
|   0x00008020, 0x80108000, 0x00100000, 0x80000020, 0x00100020, 0x80008020, 0x80000020, 0x00100020,
 | ||
|   0x00108000, 0x00000000, 0x80008000, 0x00008020, 0x80000000, 0x80100020, 0x80108020, 0x00108000
 | ||
| };
 | ||
| 
 | ||
| static u32 sbox3[64] =
 | ||
| {
 | ||
|   0x00000208, 0x08020200, 0x00000000, 0x08020008, 0x08000200, 0x00000000, 0x00020208, 0x08000200,
 | ||
|   0x00020008, 0x08000008, 0x08000008, 0x00020000, 0x08020208, 0x00020008, 0x08020000, 0x00000208,
 | ||
|   0x08000000, 0x00000008, 0x08020200, 0x00000200, 0x00020200, 0x08020000, 0x08020008, 0x00020208,
 | ||
|   0x08000208, 0x00020200, 0x00020000, 0x08000208, 0x00000008, 0x08020208, 0x00000200, 0x08000000,
 | ||
|   0x08020200, 0x08000000, 0x00020008, 0x00000208, 0x00020000, 0x08020200, 0x08000200, 0x00000000,
 | ||
|   0x00000200, 0x00020008, 0x08020208, 0x08000200, 0x08000008, 0x00000200, 0x00000000, 0x08020008,
 | ||
|   0x08000208, 0x00020000, 0x08000000, 0x08020208, 0x00000008, 0x00020208, 0x00020200, 0x08000008,
 | ||
|   0x08020000, 0x08000208, 0x00000208, 0x08020000, 0x00020208, 0x00000008, 0x08020008, 0x00020200
 | ||
| };
 | ||
| 
 | ||
| static u32 sbox4[64] =
 | ||
| {
 | ||
|   0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802080, 0x00800081, 0x00800001, 0x00002001,
 | ||
|   0x00000000, 0x00802000, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00800080, 0x00800001,
 | ||
|   0x00000001, 0x00002000, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002001, 0x00002080,
 | ||
|   0x00800081, 0x00000001, 0x00002080, 0x00800080, 0x00002000, 0x00802080, 0x00802081, 0x00000081,
 | ||
|   0x00800080, 0x00800001, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00000000, 0x00802000,
 | ||
|   0x00002080, 0x00800080, 0x00800081, 0x00000001, 0x00802001, 0x00002081, 0x00002081, 0x00000080,
 | ||
|   0x00802081, 0x00000081, 0x00000001, 0x00002000, 0x00800001, 0x00002001, 0x00802080, 0x00800081,
 | ||
|   0x00002001, 0x00002080, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002000, 0x00802080
 | ||
| };
 | ||
| 
 | ||
| static u32 sbox5[64] =
 | ||
| {
 | ||
|   0x00000100, 0x02080100, 0x02080000, 0x42000100, 0x00080000, 0x00000100, 0x40000000, 0x02080000,
 | ||
|   0x40080100, 0x00080000, 0x02000100, 0x40080100, 0x42000100, 0x42080000, 0x00080100, 0x40000000,
 | ||
|   0x02000000, 0x40080000, 0x40080000, 0x00000000, 0x40000100, 0x42080100, 0x42080100, 0x02000100,
 | ||
|   0x42080000, 0x40000100, 0x00000000, 0x42000000, 0x02080100, 0x02000000, 0x42000000, 0x00080100,
 | ||
|   0x00080000, 0x42000100, 0x00000100, 0x02000000, 0x40000000, 0x02080000, 0x42000100, 0x40080100,
 | ||
|   0x02000100, 0x40000000, 0x42080000, 0x02080100, 0x40080100, 0x00000100, 0x02000000, 0x42080000,
 | ||
|   0x42080100, 0x00080100, 0x42000000, 0x42080100, 0x02080000, 0x00000000, 0x40080000, 0x42000000,
 | ||
|   0x00080100, 0x02000100, 0x40000100, 0x00080000, 0x00000000, 0x40080000, 0x02080100, 0x40000100
 | ||
| };
 | ||
| 
 | ||
| static u32 sbox6[64] =
 | ||
| {
 | ||
|   0x20000010, 0x20400000, 0x00004000, 0x20404010, 0x20400000, 0x00000010, 0x20404010, 0x00400000,
 | ||
|   0x20004000, 0x00404010, 0x00400000, 0x20000010, 0x00400010, 0x20004000, 0x20000000, 0x00004010,
 | ||
|   0x00000000, 0x00400010, 0x20004010, 0x00004000, 0x00404000, 0x20004010, 0x00000010, 0x20400010,
 | ||
|   0x20400010, 0x00000000, 0x00404010, 0x20404000, 0x00004010, 0x00404000, 0x20404000, 0x20000000,
 | ||
|   0x20004000, 0x00000010, 0x20400010, 0x00404000, 0x20404010, 0x00400000, 0x00004010, 0x20000010,
 | ||
|   0x00400000, 0x20004000, 0x20000000, 0x00004010, 0x20000010, 0x20404010, 0x00404000, 0x20400000,
 | ||
|   0x00404010, 0x20404000, 0x00000000, 0x20400010, 0x00000010, 0x00004000, 0x20400000, 0x00404010,
 | ||
|   0x00004000, 0x00400010, 0x20004010, 0x00000000, 0x20404000, 0x20000000, 0x00400010, 0x20004010
 | ||
| };
 | ||
| 
 | ||
| static u32 sbox7[64] =
 | ||
| {
 | ||
|   0x00200000, 0x04200002, 0x04000802, 0x00000000, 0x00000800, 0x04000802, 0x00200802, 0x04200800,
 | ||
|   0x04200802, 0x00200000, 0x00000000, 0x04000002, 0x00000002, 0x04000000, 0x04200002, 0x00000802,
 | ||
|   0x04000800, 0x00200802, 0x00200002, 0x04000800, 0x04000002, 0x04200000, 0x04200800, 0x00200002,
 | ||
|   0x04200000, 0x00000800, 0x00000802, 0x04200802, 0x00200800, 0x00000002, 0x04000000, 0x00200800,
 | ||
|   0x04000000, 0x00200800, 0x00200000, 0x04000802, 0x04000802, 0x04200002, 0x04200002, 0x00000002,
 | ||
|   0x00200002, 0x04000000, 0x04000800, 0x00200000, 0x04200800, 0x00000802, 0x00200802, 0x04200800,
 | ||
|   0x00000802, 0x04000002, 0x04200802, 0x04200000, 0x00200800, 0x00000000, 0x00000002, 0x04200802,
 | ||
|   0x00000000, 0x00200802, 0x04200000, 0x00000800, 0x04000002, 0x04000800, 0x00000800, 0x00200002
 | ||
| };
 | ||
| 
 | ||
| static u32 sbox8[64] =
 | ||
| {
 | ||
|   0x10001040, 0x00001000, 0x00040000, 0x10041040, 0x10000000, 0x10001040, 0x00000040, 0x10000000,
 | ||
|   0x00040040, 0x10040000, 0x10041040, 0x00041000, 0x10041000, 0x00041040, 0x00001000, 0x00000040,
 | ||
|   0x10040000, 0x10000040, 0x10001000, 0x00001040, 0x00041000, 0x00040040, 0x10040040, 0x10041000,
 | ||
|   0x00001040, 0x00000000, 0x00000000, 0x10040040, 0x10000040, 0x10001000, 0x00041040, 0x00040000,
 | ||
|   0x00041040, 0x00040000, 0x10041000, 0x00001000, 0x00000040, 0x10040040, 0x00001000, 0x00041040,
 | ||
|   0x10001000, 0x00000040, 0x10000040, 0x10040000, 0x10040040, 0x10000000, 0x00040000, 0x10001040,
 | ||
|   0x00000000, 0x10041040, 0x00040040, 0x10000040, 0x10040000, 0x10001000, 0x10001040, 0x00000000,
 | ||
|   0x10041040, 0x00041000, 0x00041000, 0x00001040, 0x00001040, 0x00040040, 0x10000000, 0x10041000
 | ||
| };
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * These two tables are part of the 'permuted choice 1' function.
 | ||
|  * In this implementation several speed improvements are done.
 | ||
|  */
 | ||
| static u32 leftkey_swap[16] =
 | ||
| {
 | ||
|   0x00000000, 0x00000001, 0x00000100, 0x00000101,
 | ||
|   0x00010000, 0x00010001, 0x00010100, 0x00010101,
 | ||
|   0x01000000, 0x01000001, 0x01000100, 0x01000101,
 | ||
|   0x01010000, 0x01010001, 0x01010100, 0x01010101
 | ||
| };
 | ||
| 
 | ||
| static u32 rightkey_swap[16] =
 | ||
| {
 | ||
|   0x00000000, 0x01000000, 0x00010000, 0x01010000,
 | ||
|   0x00000100, 0x01000100, 0x00010100, 0x01010100,
 | ||
|   0x00000001, 0x01000001, 0x00010001, 0x01010001,
 | ||
|   0x00000101, 0x01000101, 0x00010101, 0x01010101,
 | ||
| };
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * Numbers of left shifts per round for encryption subkeys.
 | ||
|  * To calculate the decryption subkeys we just reverse the
 | ||
|  * ordering of the calculated encryption subkeys. So their
 | ||
|  * is no need for a decryption rotate tab.
 | ||
|  */
 | ||
| static byte encrypt_rotate_tab[16] =
 | ||
| {
 | ||
|   1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
 | ||
| };
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * Table with weak DES keys sorted in ascending order.
 | ||
|  * In DES their are 64 known keys which are weak. They are weak
 | ||
|  * because they produce only one, two or four different
 | ||
|  * subkeys in the subkey scheduling process.
 | ||
|  * The keys in this table have all their parity bits cleared.
 | ||
|  */
 | ||
| static byte weak_keys[64][8] =
 | ||
| {
 | ||
|   { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, /*w*/
 | ||
|   { 0x00, 0x00, 0x1e, 0x1e, 0x00, 0x00, 0x0e, 0x0e },
 | ||
|   { 0x00, 0x00, 0xe0, 0xe0, 0x00, 0x00, 0xf0, 0xf0 },
 | ||
|   { 0x00, 0x00, 0xfe, 0xfe, 0x00, 0x00, 0xfe, 0xfe },
 | ||
|   { 0x00, 0x1e, 0x00, 0x1e, 0x00, 0x0e, 0x00, 0x0e }, /*sw*/
 | ||
|   { 0x00, 0x1e, 0x1e, 0x00, 0x00, 0x0e, 0x0e, 0x00 },
 | ||
|   { 0x00, 0x1e, 0xe0, 0xfe, 0x00, 0x0e, 0xf0, 0xfe },
 | ||
|   { 0x00, 0x1e, 0xfe, 0xe0, 0x00, 0x0e, 0xfe, 0xf0 },
 | ||
|   { 0x00, 0xe0, 0x00, 0xe0, 0x00, 0xf0, 0x00, 0xf0 }, /*sw*/
 | ||
|   { 0x00, 0xe0, 0x1e, 0xfe, 0x00, 0xf0, 0x0e, 0xfe },
 | ||
|   { 0x00, 0xe0, 0xe0, 0x00, 0x00, 0xf0, 0xf0, 0x00 },
 | ||
|   { 0x00, 0xe0, 0xfe, 0x1e, 0x00, 0xf0, 0xfe, 0x0e },
 | ||
|   { 0x00, 0xfe, 0x00, 0xfe, 0x00, 0xfe, 0x00, 0xfe }, /*sw*/
 | ||
|   { 0x00, 0xfe, 0x1e, 0xe0, 0x00, 0xfe, 0x0e, 0xf0 },
 | ||
|   { 0x00, 0xfe, 0xe0, 0x1e, 0x00, 0xfe, 0xf0, 0x0e },
 | ||
|   { 0x00, 0xfe, 0xfe, 0x00, 0x00, 0xfe, 0xfe, 0x00 },
 | ||
|   { 0x1e, 0x00, 0x00, 0x1e, 0x0e, 0x00, 0x00, 0x0e },
 | ||
|   { 0x1e, 0x00, 0x1e, 0x00, 0x0e, 0x00, 0x0e, 0x00 }, /*sw*/
 | ||
|   { 0x1e, 0x00, 0xe0, 0xfe, 0x0e, 0x00, 0xf0, 0xfe },
 | ||
|   { 0x1e, 0x00, 0xfe, 0xe0, 0x0e, 0x00, 0xfe, 0xf0 },
 | ||
|   { 0x1e, 0x1e, 0x00, 0x00, 0x0e, 0x0e, 0x00, 0x00 },
 | ||
|   { 0x1e, 0x1e, 0x1e, 0x1e, 0x0e, 0x0e, 0x0e, 0x0e }, /*w*/
 | ||
|   { 0x1e, 0x1e, 0xe0, 0xe0, 0x0e, 0x0e, 0xf0, 0xf0 },
 | ||
|   { 0x1e, 0x1e, 0xfe, 0xfe, 0x0e, 0x0e, 0xfe, 0xfe },
 | ||
|   { 0x1e, 0xe0, 0x00, 0xfe, 0x0e, 0xf0, 0x00, 0xfe },
 | ||
|   { 0x1e, 0xe0, 0x1e, 0xe0, 0x0e, 0xf0, 0x0e, 0xf0 }, /*sw*/
 | ||
|   { 0x1e, 0xe0, 0xe0, 0x1e, 0x0e, 0xf0, 0xf0, 0x0e },
 | ||
|   { 0x1e, 0xe0, 0xfe, 0x00, 0x0e, 0xf0, 0xfe, 0x00 },
 | ||
|   { 0x1e, 0xfe, 0x00, 0xe0, 0x0e, 0xfe, 0x00, 0xf0 },
 | ||
|   { 0x1e, 0xfe, 0x1e, 0xfe, 0x0e, 0xfe, 0x0e, 0xfe }, /*sw*/
 | ||
|   { 0x1e, 0xfe, 0xe0, 0x00, 0x0e, 0xfe, 0xf0, 0x00 },
 | ||
|   { 0x1e, 0xfe, 0xfe, 0x1e, 0x0e, 0xfe, 0xfe, 0x0e },
 | ||
|   { 0xe0, 0x00, 0x00, 0xe0, 0xf0, 0x00, 0x00, 0xf0 },
 | ||
|   { 0xe0, 0x00, 0x1e, 0xfe, 0xf0, 0x00, 0x0e, 0xfe },
 | ||
|   { 0xe0, 0x00, 0xe0, 0x00, 0xf0, 0x00, 0xf0, 0x00 }, /*sw*/
 | ||
|   { 0xe0, 0x00, 0xfe, 0x1e, 0xf0, 0x00, 0xfe, 0x0e },
 | ||
|   { 0xe0, 0x1e, 0x00, 0xfe, 0xf0, 0x0e, 0x00, 0xfe },
 | ||
|   { 0xe0, 0x1e, 0x1e, 0xe0, 0xf0, 0x0e, 0x0e, 0xf0 },
 | ||
|   { 0xe0, 0x1e, 0xe0, 0x1e, 0xf0, 0x0e, 0xf0, 0x0e }, /*sw*/
 | ||
|   { 0xe0, 0x1e, 0xfe, 0x00, 0xf0, 0x0e, 0xfe, 0x00 },
 | ||
|   { 0xe0, 0xe0, 0x00, 0x00, 0xf0, 0xf0, 0x00, 0x00 },
 | ||
|   { 0xe0, 0xe0, 0x1e, 0x1e, 0xf0, 0xf0, 0x0e, 0x0e },
 | ||
|   { 0xe0, 0xe0, 0xe0, 0xe0, 0xf0, 0xf0, 0xf0, 0xf0 }, /*w*/
 | ||
|   { 0xe0, 0xe0, 0xfe, 0xfe, 0xf0, 0xf0, 0xfe, 0xfe },
 | ||
|   { 0xe0, 0xfe, 0x00, 0x1e, 0xf0, 0xfe, 0x00, 0x0e },
 | ||
|   { 0xe0, 0xfe, 0x1e, 0x00, 0xf0, 0xfe, 0x0e, 0x00 },
 | ||
|   { 0xe0, 0xfe, 0xe0, 0xfe, 0xf0, 0xfe, 0xf0, 0xfe }, /*sw*/
 | ||
|   { 0xe0, 0xfe, 0xfe, 0xe0, 0xf0, 0xfe, 0xfe, 0xf0 },
 | ||
|   { 0xfe, 0x00, 0x00, 0xfe, 0xfe, 0x00, 0x00, 0xfe },
 | ||
|   { 0xfe, 0x00, 0x1e, 0xe0, 0xfe, 0x00, 0x0e, 0xf0 },
 | ||
|   { 0xfe, 0x00, 0xe0, 0x1e, 0xfe, 0x00, 0xf0, 0x0e },
 | ||
|   { 0xfe, 0x00, 0xfe, 0x00, 0xfe, 0x00, 0xfe, 0x00 }, /*sw*/
 | ||
|   { 0xfe, 0x1e, 0x00, 0xe0, 0xfe, 0x0e, 0x00, 0xf0 },
 | ||
|   { 0xfe, 0x1e, 0x1e, 0xfe, 0xfe, 0x0e, 0x0e, 0xfe },
 | ||
|   { 0xfe, 0x1e, 0xe0, 0x00, 0xfe, 0x0e, 0xf0, 0x00 },
 | ||
|   { 0xfe, 0x1e, 0xfe, 0x1e, 0xfe, 0x0e, 0xfe, 0x0e }, /*sw*/
 | ||
|   { 0xfe, 0xe0, 0x00, 0x1e, 0xfe, 0xf0, 0x00, 0x0e },
 | ||
|   { 0xfe, 0xe0, 0x1e, 0x00, 0xfe, 0xf0, 0x0e, 0x00 },
 | ||
|   { 0xfe, 0xe0, 0xe0, 0xfe, 0xfe, 0xf0, 0xf0, 0xfe },
 | ||
|   { 0xfe, 0xe0, 0xfe, 0xe0, 0xfe, 0xf0, 0xfe, 0xf0 }, /*sw*/
 | ||
|   { 0xfe, 0xfe, 0x00, 0x00, 0xfe, 0xfe, 0x00, 0x00 },
 | ||
|   { 0xfe, 0xfe, 0x1e, 0x1e, 0xfe, 0xfe, 0x0e, 0x0e },
 | ||
|   { 0xfe, 0xfe, 0xe0, 0xe0, 0xfe, 0xfe, 0xf0, 0xf0 },
 | ||
|   { 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe }  /*w*/
 | ||
| };
 | ||
| static unsigned char weak_keys_chksum[20] = {
 | ||
|   0xD0, 0xCF, 0x07, 0x38, 0x93, 0x70, 0x8A, 0x83, 0x7D, 0xD7,
 | ||
|   0x8A, 0x36, 0x65, 0x29, 0x6C, 0x1F, 0x7C, 0x3F, 0xD3, 0x41
 | ||
| };
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * Macro to swap bits across two words.
 | ||
|  */
 | ||
| #define DO_PERMUTATION(a, temp, b, offset, mask)	\
 | ||
|     temp = ((a>>offset) ^ b) & mask;			\
 | ||
|     b ^= temp;						\
 | ||
|     a ^= temp<<offset;
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * This performs the 'initial permutation' of the data to be encrypted
 | ||
|  * or decrypted. Additionally the resulting two words are rotated one bit
 | ||
|  * to the left.
 | ||
|  */
 | ||
| #define INITIAL_PERMUTATION(left, temp, right)		\
 | ||
|     DO_PERMUTATION(left, temp, right, 4, 0x0f0f0f0f)	\
 | ||
|     DO_PERMUTATION(left, temp, right, 16, 0x0000ffff)	\
 | ||
|     DO_PERMUTATION(right, temp, left, 2, 0x33333333)	\
 | ||
|     DO_PERMUTATION(right, temp, left, 8, 0x00ff00ff)	\
 | ||
|     right =  (right << 1) | (right >> 31);		\
 | ||
|     temp  =  (left ^ right) & 0xaaaaaaaa;		\
 | ||
|     right ^= temp;					\
 | ||
|     left  ^= temp;					\
 | ||
|     left  =  (left << 1) | (left >> 31);
 | ||
| 
 | ||
| /*
 | ||
|  * The 'inverse initial permutation'.
 | ||
|  */
 | ||
| #define FINAL_PERMUTATION(left, temp, right)		\
 | ||
|     left  =  (left << 31) | (left >> 1);		\
 | ||
|     temp  =  (left ^ right) & 0xaaaaaaaa;		\
 | ||
|     left  ^= temp;					\
 | ||
|     right ^= temp;					\
 | ||
|     right  =  (right << 31) | (right >> 1);		\
 | ||
|     DO_PERMUTATION(right, temp, left, 8, 0x00ff00ff)	\
 | ||
|     DO_PERMUTATION(right, temp, left, 2, 0x33333333)	\
 | ||
|     DO_PERMUTATION(left, temp, right, 16, 0x0000ffff)	\
 | ||
|     DO_PERMUTATION(left, temp, right, 4, 0x0f0f0f0f)
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * A full DES round including 'expansion function', 'sbox substitution'
 | ||
|  * and 'primitive function P' but without swapping the left and right word.
 | ||
|  * Please note: The data in 'from' and 'to' is already rotated one bit to
 | ||
|  * the left, done in the initial permutation.
 | ||
|  */
 | ||
| #define DES_ROUND(from, to, work, subkey)		\
 | ||
|     work = from ^ *subkey++;				\
 | ||
|     to ^= sbox8[  work	    & 0x3f ];			\
 | ||
|     to ^= sbox6[ (work>>8)  & 0x3f ];			\
 | ||
|     to ^= sbox4[ (work>>16) & 0x3f ];			\
 | ||
|     to ^= sbox2[ (work>>24) & 0x3f ];			\
 | ||
|     work = ((from << 28) | (from >> 4)) ^ *subkey++;	\
 | ||
|     to ^= sbox7[  work	    & 0x3f ];			\
 | ||
|     to ^= sbox5[ (work>>8)  & 0x3f ];			\
 | ||
|     to ^= sbox3[ (work>>16) & 0x3f ];			\
 | ||
|     to ^= sbox1[ (work>>24) & 0x3f ];
 | ||
| 
 | ||
| /*
 | ||
|  * Macros to convert 8 bytes from/to 32bit words.
 | ||
|  */
 | ||
| #define READ_64BIT_DATA(data, left, right)				   \
 | ||
|     left  = (data[0] << 24) | (data[1] << 16) | (data[2] << 8) | data[3];  \
 | ||
|     right = (data[4] << 24) | (data[5] << 16) | (data[6] << 8) | data[7];
 | ||
| 
 | ||
| #define WRITE_64BIT_DATA(data, left, right)				   \
 | ||
|     data[0] = (left >> 24) &0xff; data[1] = (left >> 16) &0xff; 	   \
 | ||
|     data[2] = (left >> 8) &0xff; data[3] = left &0xff;			   \
 | ||
|     data[4] = (right >> 24) &0xff; data[5] = (right >> 16) &0xff;	   \
 | ||
|     data[6] = (right >> 8) &0xff; data[7] = right &0xff;
 | ||
| 
 | ||
| /*
 | ||
|  * Handy macros for encryption and decryption of data
 | ||
|  */
 | ||
| #define des_ecb_encrypt(ctx, from, to)	      des_ecb_crypt(ctx, from, to, 0)
 | ||
| #define des_ecb_decrypt(ctx, from, to)	      des_ecb_crypt(ctx, from, to, 1)
 | ||
| #define tripledes_ecb_encrypt(ctx, from, to) tripledes_ecb_crypt(ctx,from,to,0)
 | ||
| #define tripledes_ecb_decrypt(ctx, from, to) tripledes_ecb_crypt(ctx,from,to,1)
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * des_key_schedule():	  Calculate 16 subkeys pairs (even/odd) for
 | ||
|  *			  16 encryption rounds.
 | ||
|  *			  To calculate subkeys for decryption the caller
 | ||
|  *			  have to reorder the generated subkeys.
 | ||
|  *
 | ||
|  *    rawkey:	    8 Bytes of key data
 | ||
|  *    subkey:	    Array of at least 32 u32s. Will be filled
 | ||
|  *		    with calculated subkeys.
 | ||
|  *
 | ||
|  */
 | ||
| static void
 | ||
| des_key_schedule (const byte * rawkey, u32 * subkey)
 | ||
| {
 | ||
|   u32 left, right, work;
 | ||
|   int round;
 | ||
| 
 | ||
|   READ_64BIT_DATA (rawkey, left, right)
 | ||
| 
 | ||
|   DO_PERMUTATION (right, work, left, 4, 0x0f0f0f0f)
 | ||
|   DO_PERMUTATION (right, work, left, 0, 0x10101010)
 | ||
| 
 | ||
|   left = ((leftkey_swap[(left >> 0) & 0xf] << 3)
 | ||
|           | (leftkey_swap[(left >> 8) & 0xf] << 2)
 | ||
|           | (leftkey_swap[(left >> 16) & 0xf] << 1)
 | ||
|           | (leftkey_swap[(left >> 24) & 0xf])
 | ||
|           | (leftkey_swap[(left >> 5) & 0xf] << 7)
 | ||
|           | (leftkey_swap[(left >> 13) & 0xf] << 6)
 | ||
|           | (leftkey_swap[(left >> 21) & 0xf] << 5)
 | ||
|           | (leftkey_swap[(left >> 29) & 0xf] << 4));
 | ||
| 
 | ||
|   left &= 0x0fffffff;
 | ||
| 
 | ||
|   right = ((rightkey_swap[(right >> 1) & 0xf] << 3)
 | ||
|            | (rightkey_swap[(right >> 9) & 0xf] << 2)
 | ||
|            | (rightkey_swap[(right >> 17) & 0xf] << 1)
 | ||
|            | (rightkey_swap[(right >> 25) & 0xf])
 | ||
|            | (rightkey_swap[(right >> 4) & 0xf] << 7)
 | ||
|            | (rightkey_swap[(right >> 12) & 0xf] << 6)
 | ||
|            | (rightkey_swap[(right >> 20) & 0xf] << 5)
 | ||
|            | (rightkey_swap[(right >> 28) & 0xf] << 4));
 | ||
| 
 | ||
|   right &= 0x0fffffff;
 | ||
| 
 | ||
|   for (round = 0; round < 16; ++round)
 | ||
|     {
 | ||
|       left = ((left << encrypt_rotate_tab[round])
 | ||
|               | (left >> (28 - encrypt_rotate_tab[round]))) & 0x0fffffff;
 | ||
|       right = ((right << encrypt_rotate_tab[round])
 | ||
|                | (right >> (28 - encrypt_rotate_tab[round]))) & 0x0fffffff;
 | ||
| 
 | ||
|       *subkey++ = (((left << 4) & 0x24000000)
 | ||
|                    | ((left << 28) & 0x10000000)
 | ||
|                    | ((left << 14) & 0x08000000)
 | ||
|                    | ((left << 18) & 0x02080000)
 | ||
|                    | ((left << 6) & 0x01000000)
 | ||
|                    | ((left << 9) & 0x00200000)
 | ||
|                    | ((left >> 1) & 0x00100000)
 | ||
|                    | ((left << 10) & 0x00040000)
 | ||
|                    | ((left << 2) & 0x00020000)
 | ||
|                    | ((left >> 10) & 0x00010000)
 | ||
|                    | ((right >> 13) & 0x00002000)
 | ||
|                    | ((right >> 4) & 0x00001000)
 | ||
|                    | ((right << 6) & 0x00000800)
 | ||
|                    | ((right >> 1) & 0x00000400)
 | ||
|                    | ((right >> 14) & 0x00000200)
 | ||
|                    | (right & 0x00000100)
 | ||
|                    | ((right >> 5) & 0x00000020)
 | ||
|                    | ((right >> 10) & 0x00000010)
 | ||
|                    | ((right >> 3) & 0x00000008)
 | ||
|                    | ((right >> 18) & 0x00000004)
 | ||
|                    | ((right >> 26) & 0x00000002)
 | ||
|                    | ((right >> 24) & 0x00000001));
 | ||
| 
 | ||
|       *subkey++ = (((left << 15) & 0x20000000)
 | ||
|                    | ((left << 17) & 0x10000000)
 | ||
|                    | ((left << 10) & 0x08000000)
 | ||
|                    | ((left << 22) & 0x04000000)
 | ||
|                    | ((left >> 2) & 0x02000000)
 | ||
|                    | ((left << 1) & 0x01000000)
 | ||
|                    | ((left << 16) & 0x00200000)
 | ||
|                    | ((left << 11) & 0x00100000)
 | ||
|                    | ((left << 3) & 0x00080000)
 | ||
|                    | ((left >> 6) & 0x00040000)
 | ||
|                    | ((left << 15) & 0x00020000)
 | ||
|                    | ((left >> 4) & 0x00010000)
 | ||
|                    | ((right >> 2) & 0x00002000)
 | ||
|                    | ((right << 8) & 0x00001000)
 | ||
|                    | ((right >> 14) & 0x00000808)
 | ||
|                    | ((right >> 9) & 0x00000400)
 | ||
|                    | ((right) & 0x00000200)
 | ||
|                    | ((right << 7) & 0x00000100)
 | ||
|                    | ((right >> 7) & 0x00000020)
 | ||
|                    | ((right >> 3) & 0x00000011)
 | ||
|                    | ((right << 2) & 0x00000004)
 | ||
|                    | ((right >> 21) & 0x00000002));
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * Fill a DES context with subkeys calculated from a 64bit key.
 | ||
|  * Does not check parity bits, but simply ignore them.
 | ||
|  * Does not check for weak keys.
 | ||
|  */
 | ||
| static int
 | ||
| des_setkey (struct _des_ctx *ctx, const byte * key)
 | ||
| {
 | ||
|   static const char *selftest_failed;
 | ||
|   int i;
 | ||
| 
 | ||
|   if (!fips_mode () && !initialized)
 | ||
|     {
 | ||
|       initialized = 1;
 | ||
|       selftest_failed = selftest ();
 | ||
| 
 | ||
|       if (selftest_failed)
 | ||
| 	log_error ("%s\n", selftest_failed);
 | ||
|     }
 | ||
|   if (selftest_failed)
 | ||
|     return GPG_ERR_SELFTEST_FAILED;
 | ||
| 
 | ||
|   des_key_schedule (key, ctx->encrypt_subkeys);
 | ||
|   _gcry_burn_stack (32);
 | ||
| 
 | ||
|   for(i=0; i<32; i+=2)
 | ||
|     {
 | ||
|       ctx->decrypt_subkeys[i]	= ctx->encrypt_subkeys[30-i];
 | ||
|       ctx->decrypt_subkeys[i+1] = ctx->encrypt_subkeys[31-i];
 | ||
|     }
 | ||
| 
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * Electronic Codebook Mode DES encryption/decryption of data according
 | ||
|  * to 'mode'.
 | ||
|  */
 | ||
| static int
 | ||
| des_ecb_crypt (struct _des_ctx *ctx, const byte * from, byte * to, int mode)
 | ||
| {
 | ||
|   u32 left, right, work;
 | ||
|   u32 *keys;
 | ||
| 
 | ||
|   keys = mode ? ctx->decrypt_subkeys : ctx->encrypt_subkeys;
 | ||
| 
 | ||
|   READ_64BIT_DATA (from, left, right)
 | ||
|   INITIAL_PERMUTATION (left, work, right)
 | ||
| 
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
| 
 | ||
|   FINAL_PERMUTATION (right, work, left)
 | ||
|   WRITE_64BIT_DATA (to, right, left)
 | ||
| 
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * Fill a Triple-DES context with subkeys calculated from two 64bit keys.
 | ||
|  * Does not check the parity bits of the keys, but simply ignore them.
 | ||
|  * Does not check for weak keys.
 | ||
|  */
 | ||
| static int
 | ||
| tripledes_set2keys (struct _tripledes_ctx *ctx,
 | ||
| 		    const byte * key1,
 | ||
| 		    const byte * key2)
 | ||
| {
 | ||
|   int i;
 | ||
| 
 | ||
|   des_key_schedule (key1, ctx->encrypt_subkeys);
 | ||
|   des_key_schedule (key2, &(ctx->decrypt_subkeys[32]));
 | ||
|   _gcry_burn_stack (32);
 | ||
| 
 | ||
|   for(i=0; i<32; i+=2)
 | ||
|     {
 | ||
|       ctx->decrypt_subkeys[i]	 = ctx->encrypt_subkeys[30-i];
 | ||
|       ctx->decrypt_subkeys[i+1]  = ctx->encrypt_subkeys[31-i];
 | ||
| 
 | ||
|       ctx->encrypt_subkeys[i+32] = ctx->decrypt_subkeys[62-i];
 | ||
|       ctx->encrypt_subkeys[i+33] = ctx->decrypt_subkeys[63-i];
 | ||
| 
 | ||
|       ctx->encrypt_subkeys[i+64] = ctx->encrypt_subkeys[i];
 | ||
|       ctx->encrypt_subkeys[i+65] = ctx->encrypt_subkeys[i+1];
 | ||
| 
 | ||
|       ctx->decrypt_subkeys[i+64] = ctx->decrypt_subkeys[i];
 | ||
|       ctx->decrypt_subkeys[i+65] = ctx->decrypt_subkeys[i+1];
 | ||
|     }
 | ||
| 
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * Fill a Triple-DES context with subkeys calculated from three 64bit keys.
 | ||
|  * Does not check the parity bits of the keys, but simply ignore them.
 | ||
|  * Does not check for weak keys.
 | ||
|  */
 | ||
| static int
 | ||
| tripledes_set3keys (struct _tripledes_ctx *ctx,
 | ||
| 		    const byte * key1,
 | ||
| 		    const byte * key2,
 | ||
| 		    const byte * key3)
 | ||
| {
 | ||
|   static const char *selftest_failed;
 | ||
|   int i;
 | ||
| 
 | ||
|   if (!fips_mode () && !initialized)
 | ||
|     {
 | ||
|       initialized = 1;
 | ||
|       selftest_failed = selftest ();
 | ||
| 
 | ||
|       if (selftest_failed)
 | ||
| 	log_error ("%s\n", selftest_failed);
 | ||
|     }
 | ||
|   if (selftest_failed)
 | ||
|     return GPG_ERR_SELFTEST_FAILED;
 | ||
| 
 | ||
|   des_key_schedule (key1, ctx->encrypt_subkeys);
 | ||
|   des_key_schedule (key2, &(ctx->decrypt_subkeys[32]));
 | ||
|   des_key_schedule (key3, &(ctx->encrypt_subkeys[64]));
 | ||
|   _gcry_burn_stack (32);
 | ||
| 
 | ||
|   for(i=0; i<32; i+=2)
 | ||
|     {
 | ||
|       ctx->decrypt_subkeys[i]	 = ctx->encrypt_subkeys[94-i];
 | ||
|       ctx->decrypt_subkeys[i+1]  = ctx->encrypt_subkeys[95-i];
 | ||
| 
 | ||
|       ctx->encrypt_subkeys[i+32] = ctx->decrypt_subkeys[62-i];
 | ||
|       ctx->encrypt_subkeys[i+33] = ctx->decrypt_subkeys[63-i];
 | ||
| 
 | ||
|       ctx->decrypt_subkeys[i+64] = ctx->encrypt_subkeys[30-i];
 | ||
|       ctx->decrypt_subkeys[i+65] = ctx->encrypt_subkeys[31-i];
 | ||
|      }
 | ||
| 
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * Electronic Codebook Mode Triple-DES encryption/decryption of data
 | ||
|  * according to 'mode'.  Sometimes this mode is named 'EDE' mode
 | ||
|  * (Encryption-Decryption-Encryption).
 | ||
|  */
 | ||
| static int
 | ||
| tripledes_ecb_crypt (struct _tripledes_ctx *ctx, const byte * from,
 | ||
|                      byte * to, int mode)
 | ||
| {
 | ||
|   u32 left, right, work;
 | ||
|   u32 *keys;
 | ||
| 
 | ||
|   keys = mode ? ctx->decrypt_subkeys : ctx->encrypt_subkeys;
 | ||
| 
 | ||
|   READ_64BIT_DATA (from, left, right)
 | ||
|   INITIAL_PERMUTATION (left, work, right)
 | ||
| 
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
| 
 | ||
|   DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
 | ||
|   DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
 | ||
|   DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
 | ||
|   DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
 | ||
|   DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
 | ||
|   DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
 | ||
|   DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
 | ||
|   DES_ROUND (left, right, work, keys) DES_ROUND (right, left, work, keys)
 | ||
| 
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
|   DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
 | ||
| 
 | ||
|   FINAL_PERMUTATION (right, work, left)
 | ||
|   WRITE_64BIT_DATA (to, right, left)
 | ||
| 
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * Check whether the 8 byte key is weak.
 | ||
|  * Does not check the parity bits of the key but simple ignore them.
 | ||
|  */
 | ||
| static int
 | ||
| is_weak_key ( const byte *key )
 | ||
| {
 | ||
|   byte work[8];
 | ||
|   int i, left, right, middle, cmp_result;
 | ||
| 
 | ||
|   /* clear parity bits */
 | ||
|   for(i=0; i<8; ++i)
 | ||
|      work[i] = key[i] & 0xfe;
 | ||
| 
 | ||
|   /* binary search in the weak key table */
 | ||
|   left = 0;
 | ||
|   right = 63;
 | ||
|   while(left <= right)
 | ||
|     {
 | ||
|       middle = (left + right) / 2;
 | ||
| 
 | ||
|       if ( !(cmp_result=working_memcmp(work, weak_keys[middle], 8)) )
 | ||
| 	  return -1;
 | ||
| 
 | ||
|       if ( cmp_result > 0 )
 | ||
| 	  left = middle + 1;
 | ||
|       else
 | ||
| 	  right = middle - 1;
 | ||
|     }
 | ||
| 
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * Performs a selftest of this DES/Triple-DES implementation.
 | ||
|  * Returns an string with the error text on failure.
 | ||
|  * Returns NULL if all is ok.
 | ||
|  */
 | ||
| static const char *
 | ||
| selftest (void)
 | ||
| {
 | ||
|   /*
 | ||
|    * Check if 'u32' is really 32 bits wide. This DES / 3DES implementation
 | ||
|    * need this.
 | ||
|    */
 | ||
|   if (sizeof (u32) != 4)
 | ||
|     return "Wrong word size for DES configured.";
 | ||
| 
 | ||
|   /*
 | ||
|    * DES Maintenance Test
 | ||
|    */
 | ||
|   {
 | ||
|     int i;
 | ||
|     byte key[8] =
 | ||
|       {0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55};
 | ||
|     byte input[8] =
 | ||
|       {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
 | ||
|     byte result[8] =
 | ||
|       {0x24, 0x6e, 0x9d, 0xb9, 0xc5, 0x50, 0x38, 0x1a};
 | ||
|     byte temp1[8], temp2[8], temp3[8];
 | ||
|     des_ctx des;
 | ||
| 
 | ||
|     for (i = 0; i < 64; ++i)
 | ||
|       {
 | ||
| 	des_setkey (des, key);
 | ||
| 	des_ecb_encrypt (des, input, temp1);
 | ||
| 	des_ecb_encrypt (des, temp1, temp2);
 | ||
| 	des_setkey (des, temp2);
 | ||
| 	des_ecb_decrypt (des, temp1, temp3);
 | ||
| 	memcpy (key, temp3, 8);
 | ||
| 	memcpy (input, temp1, 8);
 | ||
|       }
 | ||
|     if (memcmp (temp3, result, 8))
 | ||
|       return "DES maintenance test failed.";
 | ||
|   }
 | ||
| 
 | ||
| 
 | ||
|   /*
 | ||
|    * Self made Triple-DES test	(Does somebody know an official test?)
 | ||
|    */
 | ||
|   {
 | ||
|     int i;
 | ||
|     byte input[8] =
 | ||
|       {0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10};
 | ||
|     byte key1[8] =
 | ||
|       {0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0};
 | ||
|     byte key2[8] =
 | ||
|       {0x11, 0x22, 0x33, 0x44, 0xff, 0xaa, 0xcc, 0xdd};
 | ||
|     byte result[8] =
 | ||
|       {0x7b, 0x38, 0x3b, 0x23, 0xa2, 0x7d, 0x26, 0xd3};
 | ||
| 
 | ||
|     tripledes_ctx des3;
 | ||
| 
 | ||
|     for (i = 0; i < 16; ++i)
 | ||
|       {
 | ||
| 	tripledes_set2keys (des3, key1, key2);
 | ||
| 	tripledes_ecb_encrypt (des3, input, key1);
 | ||
| 	tripledes_ecb_decrypt (des3, input, key2);
 | ||
| 	tripledes_set3keys (des3, key1, input, key2);
 | ||
| 	tripledes_ecb_encrypt (des3, input, input);
 | ||
|       }
 | ||
|     if (memcmp (input, result, 8))
 | ||
|       return "Triple-DES test failed.";
 | ||
|   }
 | ||
| 
 | ||
|   /*
 | ||
|    * More Triple-DES test.  These are testvectors as used by SSLeay,
 | ||
|    * thanks to Jeroen C. van Gelderen.
 | ||
|    */
 | ||
|   {
 | ||
|     struct { byte key[24]; byte plain[8]; byte cipher[8]; } testdata[] = {
 | ||
|       { { 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
 | ||
|           0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
 | ||
|           0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01  },
 | ||
|         { 0x95,0xF8,0xA5,0xE5,0xDD,0x31,0xD9,0x00  },
 | ||
|         { 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00  }
 | ||
|       },
 | ||
| 
 | ||
|       { { 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
 | ||
|           0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
 | ||
|           0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01  },
 | ||
|         { 0x9D,0x64,0x55,0x5A,0x9A,0x10,0xB8,0x52, },
 | ||
|         { 0x00,0x00,0x00,0x10,0x00,0x00,0x00,0x00  }
 | ||
|       },
 | ||
|       { { 0x38,0x49,0x67,0x4C,0x26,0x02,0x31,0x9E,
 | ||
|           0x38,0x49,0x67,0x4C,0x26,0x02,0x31,0x9E,
 | ||
|           0x38,0x49,0x67,0x4C,0x26,0x02,0x31,0x9E  },
 | ||
|         { 0x51,0x45,0x4B,0x58,0x2D,0xDF,0x44,0x0A  },
 | ||
|         { 0x71,0x78,0x87,0x6E,0x01,0xF1,0x9B,0x2A  }
 | ||
|       },
 | ||
|       { { 0x04,0xB9,0x15,0xBA,0x43,0xFE,0xB5,0xB6,
 | ||
|           0x04,0xB9,0x15,0xBA,0x43,0xFE,0xB5,0xB6,
 | ||
|           0x04,0xB9,0x15,0xBA,0x43,0xFE,0xB5,0xB6  },
 | ||
|         { 0x42,0xFD,0x44,0x30,0x59,0x57,0x7F,0xA2  },
 | ||
|         { 0xAF,0x37,0xFB,0x42,0x1F,0x8C,0x40,0x95  }
 | ||
|       },
 | ||
|       { { 0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,
 | ||
|           0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,
 | ||
|           0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF  },
 | ||
|         { 0x73,0x6F,0x6D,0x65,0x64,0x61,0x74,0x61  },
 | ||
|         { 0x3D,0x12,0x4F,0xE2,0x19,0x8B,0xA3,0x18  }
 | ||
|       },
 | ||
|       { { 0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,
 | ||
|           0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,
 | ||
|           0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF  },
 | ||
|         { 0x73,0x6F,0x6D,0x65,0x64,0x61,0x74,0x61  },
 | ||
|         { 0xFB,0xAB,0xA1,0xFF,0x9D,0x05,0xE9,0xB1  }
 | ||
|       },
 | ||
|       { { 0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,
 | ||
|           0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,
 | ||
|           0xFE,0xDC,0xBA,0x98,0x76,0x54,0x32,0x10  },
 | ||
|         { 0x73,0x6F,0x6D,0x65,0x64,0x61,0x74,0x61  },
 | ||
|         { 0x18,0xd7,0x48,0xe5,0x63,0x62,0x05,0x72  }
 | ||
|       },
 | ||
|       { { 0x03,0x52,0x02,0x07,0x67,0x20,0x82,0x17,
 | ||
|           0x86,0x02,0x87,0x66,0x59,0x08,0x21,0x98,
 | ||
|           0x64,0x05,0x6A,0xBD,0xFE,0xA9,0x34,0x57  },
 | ||
|         { 0x73,0x71,0x75,0x69,0x67,0x67,0x6C,0x65  },
 | ||
|         { 0xc0,0x7d,0x2a,0x0f,0xa5,0x66,0xfa,0x30  }
 | ||
|       },
 | ||
|       { { 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
 | ||
|           0x80,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
 | ||
|           0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x02  },
 | ||
|         { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00  },
 | ||
|         { 0xe6,0xe6,0xdd,0x5b,0x7e,0x72,0x29,0x74  }
 | ||
|       },
 | ||
|       { { 0x10,0x46,0x10,0x34,0x89,0x98,0x80,0x20,
 | ||
|           0x91,0x07,0xD0,0x15,0x89,0x19,0x01,0x01,
 | ||
|           0x19,0x07,0x92,0x10,0x98,0x1A,0x01,0x01  },
 | ||
|         { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00  },
 | ||
|         { 0xe1,0xef,0x62,0xc3,0x32,0xfe,0x82,0x5b  }
 | ||
|       }
 | ||
|     };
 | ||
| 
 | ||
|     byte		result[8];
 | ||
|     int		i;
 | ||
|     tripledes_ctx	des3;
 | ||
| 
 | ||
|     for (i=0; i<sizeof(testdata)/sizeof(*testdata); ++i)
 | ||
|       {
 | ||
|         tripledes_set3keys (des3, testdata[i].key,
 | ||
|                             testdata[i].key + 8, testdata[i].key + 16);
 | ||
| 
 | ||
|         tripledes_ecb_encrypt (des3, testdata[i].plain, result);
 | ||
|         if (memcmp (testdata[i].cipher, result, 8))
 | ||
|           return "Triple-DES SSLeay test failed on encryption.";
 | ||
| 
 | ||
|         tripledes_ecb_decrypt (des3, testdata[i].cipher, result);
 | ||
|         if (memcmp (testdata[i].plain, result, 8))
 | ||
|           return  "Triple-DES SSLeay test failed on decryption.";;
 | ||
|       }
 | ||
|   }
 | ||
| 
 | ||
|   /*
 | ||
|    * Check the weak key detection. We simply assume that the table
 | ||
|    * with weak keys is ok and check every key in the table if it is
 | ||
|    * detected... (This test is a little bit stupid).
 | ||
|    */
 | ||
|   {
 | ||
|     int i;
 | ||
|     unsigned char *p;
 | ||
|     gcry_md_hd_t h;
 | ||
| 
 | ||
|     if (_gcry_md_open (&h, GCRY_MD_SHA1, 0))
 | ||
|       return "SHA1 not available";
 | ||
| 
 | ||
|     for (i = 0; i < 64; ++i)
 | ||
|       _gcry_md_write (h, weak_keys[i], 8);
 | ||
|     p = _gcry_md_read (h, GCRY_MD_SHA1);
 | ||
|     i = memcmp (p, weak_keys_chksum, 20);
 | ||
|     _gcry_md_close (h);
 | ||
|     if (i)
 | ||
|       return "weak key table defect";
 | ||
| 
 | ||
|     for (i = 0; i < 64; ++i)
 | ||
|       if (!is_weak_key(weak_keys[i]))
 | ||
|         return "DES weak key detection failed";
 | ||
|   }
 | ||
| 
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| static gcry_err_code_t
 | ||
| do_tripledes_setkey ( void *context, const byte *key, unsigned keylen )
 | ||
| {
 | ||
|   struct _tripledes_ctx *ctx = (struct _tripledes_ctx *) context;
 | ||
| 
 | ||
|   if( keylen != 24 )
 | ||
|     return GPG_ERR_INV_KEYLEN;
 | ||
| 
 | ||
|   tripledes_set3keys ( ctx, key, key+8, key+16);
 | ||
| 
 | ||
|   if (ctx->flags.no_weak_key)
 | ||
|     ; /* Detection has been disabled.  */
 | ||
|   else if (is_weak_key (key) || is_weak_key (key+8) || is_weak_key (key+16))
 | ||
|     {
 | ||
|       _gcry_burn_stack (64);
 | ||
|       return GPG_ERR_WEAK_KEY;
 | ||
|     }
 | ||
|   _gcry_burn_stack (64);
 | ||
| 
 | ||
|   return GPG_ERR_NO_ERROR;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| static gcry_err_code_t
 | ||
| do_tripledes_set_extra_info (void *context, int what,
 | ||
|                              const void *buffer, size_t buflen)
 | ||
| {
 | ||
|   struct _tripledes_ctx *ctx = (struct _tripledes_ctx *)context;
 | ||
|   gpg_err_code_t ec = 0;
 | ||
| 
 | ||
|   (void)buffer;
 | ||
|   (void)buflen;
 | ||
| 
 | ||
|   switch (what)
 | ||
|     {
 | ||
|     case CIPHER_INFO_NO_WEAK_KEY:
 | ||
|       ctx->flags.no_weak_key = 1;
 | ||
|       break;
 | ||
| 
 | ||
|     default:
 | ||
|       ec = GPG_ERR_INV_OP;
 | ||
|       break;
 | ||
|     }
 | ||
|   return ec;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| static void
 | ||
| do_tripledes_encrypt( void *context, byte *outbuf, const byte *inbuf )
 | ||
| {
 | ||
|   struct _tripledes_ctx *ctx = (struct _tripledes_ctx *) context;
 | ||
| 
 | ||
|   tripledes_ecb_encrypt ( ctx, inbuf, outbuf );
 | ||
|   _gcry_burn_stack (32);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| do_tripledes_decrypt( void *context, byte *outbuf, const byte *inbuf )
 | ||
| {
 | ||
|   struct _tripledes_ctx *ctx = (struct _tripledes_ctx *) context;
 | ||
|   tripledes_ecb_decrypt ( ctx, inbuf, outbuf );
 | ||
|   _gcry_burn_stack (32);
 | ||
| }
 | ||
| 
 | ||
| static gcry_err_code_t
 | ||
| do_des_setkey (void *context, const byte *key, unsigned keylen)
 | ||
| {
 | ||
|   struct _des_ctx *ctx = (struct _des_ctx *) context;
 | ||
| 
 | ||
|   if (keylen != 8)
 | ||
|     return GPG_ERR_INV_KEYLEN;
 | ||
| 
 | ||
|   des_setkey (ctx, key);
 | ||
| 
 | ||
|   if (is_weak_key (key)) {
 | ||
|     _gcry_burn_stack (64);
 | ||
|     return GPG_ERR_WEAK_KEY;
 | ||
|   }
 | ||
|   _gcry_burn_stack (64);
 | ||
| 
 | ||
|   return GPG_ERR_NO_ERROR;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| static void
 | ||
| do_des_encrypt( void *context, byte *outbuf, const byte *inbuf )
 | ||
| {
 | ||
|   struct _des_ctx *ctx = (struct _des_ctx *) context;
 | ||
| 
 | ||
|   des_ecb_encrypt ( ctx, inbuf, outbuf );
 | ||
|   _gcry_burn_stack (32);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| do_des_decrypt( void *context, byte *outbuf, const byte *inbuf )
 | ||
| {
 | ||
|   struct _des_ctx *ctx = (struct _des_ctx *) context;
 | ||
| 
 | ||
|   des_ecb_decrypt ( ctx, inbuf, outbuf );
 | ||
|   _gcry_burn_stack (32);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|      Self-test section.
 | ||
|  */
 | ||
| 
 | ||
| 
 | ||
| /* Selftest for TripleDES.  */
 | ||
| static gpg_err_code_t
 | ||
| selftest_fips (int extended, selftest_report_func_t report)
 | ||
| {
 | ||
|   const char *what;
 | ||
|   const char *errtxt;
 | ||
| 
 | ||
|   (void)extended; /* No extended tests available.  */
 | ||
| 
 | ||
|   what = "low-level";
 | ||
|   errtxt = selftest ();
 | ||
|   if (errtxt)
 | ||
|     goto failed;
 | ||
| 
 | ||
|   /* The low-level self-tests are quite extensive and thus we can do
 | ||
|      without high level tests.  This is also justified because we have
 | ||
|      no custom block code implementation for 3des but always use the
 | ||
|      standard high level block code.  */
 | ||
| 
 | ||
|   return 0; /* Succeeded. */
 | ||
| 
 | ||
|  failed:
 | ||
|   if (report)
 | ||
|     report ("cipher", GCRY_CIPHER_3DES, what, errtxt);
 | ||
|   return GPG_ERR_SELFTEST_FAILED;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /* Run a full self-test for ALGO and return 0 on success.  */
 | ||
| static gpg_err_code_t
 | ||
| run_selftests (int algo, int extended, selftest_report_func_t report)
 | ||
| {
 | ||
|   gpg_err_code_t ec;
 | ||
| 
 | ||
|   switch (algo)
 | ||
|     {
 | ||
|     case GCRY_CIPHER_3DES:
 | ||
|       ec = selftest_fips (extended, report);
 | ||
|       break;
 | ||
|     default:
 | ||
|       ec = GPG_ERR_CIPHER_ALGO;
 | ||
|       break;
 | ||
| 
 | ||
|     }
 | ||
|   return ec;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| gcry_cipher_spec_t _gcry_cipher_spec_des =
 | ||
|   {
 | ||
|     "DES", NULL, NULL, 8, 64, sizeof (struct _des_ctx),
 | ||
|     do_des_setkey, do_des_encrypt, do_des_decrypt
 | ||
|   };
 | ||
| 
 | ||
| static gcry_cipher_oid_spec_t oids_tripledes[] =
 | ||
|   {
 | ||
|     { "1.2.840.113549.3.7", GCRY_CIPHER_MODE_CBC },
 | ||
|     /* Teletrust specific OID for 3DES. */
 | ||
|     { "1.3.36.3.1.3.2.1",   GCRY_CIPHER_MODE_CBC },
 | ||
|     /* pbeWithSHAAnd3_KeyTripleDES_CBC */
 | ||
|     { "1.2.840.113549.1.12.1.3", GCRY_CIPHER_MODE_CBC },
 | ||
|     { NULL }
 | ||
|   };
 | ||
| 
 | ||
| gcry_cipher_spec_t _gcry_cipher_spec_tripledes =
 | ||
|   {
 | ||
|     "3DES", NULL, oids_tripledes, 8, 192, sizeof (struct _tripledes_ctx),
 | ||
|     do_tripledes_setkey, do_tripledes_encrypt, do_tripledes_decrypt
 | ||
|   };
 | ||
| 
 | ||
| cipher_extra_spec_t _gcry_cipher_extraspec_tripledes =
 | ||
|   {
 | ||
|     run_selftests,
 | ||
|     do_tripledes_set_extra_info
 | ||
|   };
 | 
