mirror of
				https://git.proxmox.com/git/grub2
				synced 2025-10-31 10:26:53 +00:00 
			
		
		
		
	 461f1d8af1
			
		
	
	
		461f1d8af1
		
	
	
	
	
		
			
			- Import zstd-1.3.6 from upstream - Add zstd's module.c file - Add the zstd module to Makefile.core.def Import zstd-1.3.6 from upstream [1]. Only the files need for decompression are imported. I used the latest zstd release, which includes patches [2] to build cleanly in GRUB. I included the script used to import zstd-1.3.6 below at the bottom of the commit message. Upstream zstd commit hash: 4fa456d7f12f8b27bd3b2f5dfd4f46898cb31c24 Upstream zstd commit name: Merge pull request #1354 from facebook/dev Zstd requires some posix headers, which it gets from posix_wrap. This can be checked by inspecting the .Po files generated by automake, which contain the header dependencies. After building run the command `cat grub-core/lib/zstd/.deps-core/*.Po` to see the dependencies [3]. The only OS dependencies are: - stddef.h, which is already a dependency in posix_wrap, and used for size_t by lzo and xz. - stdarg.h, which comes from the grub/misc.h header, and we don't use in zstd. All the types like uint64_t are typedefed to grub_uint64_t under the hood. The only exception is size_t, which comes from stddef.h. This is already the case for lzo and xz. I don't think there are any cross-compilation concerns, because cross-compilers provide their own system headers (and it would already be broken). [1] https://github.com/facebook/zstd/releases/tag/v1.3.6 [2] https://github.com/facebook/zstd/pull/1344 [3] https://gist.github.com/terrelln/7a16b92f5a1b3aecf980f944b4a966c4 ``` curl -L -O https://github.com/facebook/zstd/releases/download/v1.3.6/zstd-1.3.6.tar.gz curl -L -O https://github.com/facebook/zstd/releases/download/v1.3.6/zstd-1.3.6.tar.gz.sha256 sha256sum --check zstd-1.3.6.tar.gz.sha256 tar xzf zstd-1.3.6.tar.gz SRC_LIB="zstd-1.3.6/lib" DST_LIB="grub-core/lib/zstd" rm -rf $DST_LIB mkdir -p $DST_LIB cp $SRC_LIB/zstd.h $DST_LIB/ cp $SRC_LIB/common/*.[hc] $DST_LIB/ cp $SRC_LIB/decompress/*.[hc] $DST_LIB/ rm $DST_LIB/{pool.[hc],threading.[hc]} rm -rf zstd-1.3.6* echo SUCCESS! ``` Signed-off-by: Nick Terrell <terrelln@fb.com> Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
		
			
				
	
	
		
			877 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			877 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| *  xxHash - Fast Hash algorithm
 | |
| *  Copyright (C) 2012-2016, Yann Collet
 | |
| *
 | |
| *  BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
 | |
| *
 | |
| *  Redistribution and use in source and binary forms, with or without
 | |
| *  modification, are permitted provided that the following conditions are
 | |
| *  met:
 | |
| *
 | |
| *  * Redistributions of source code must retain the above copyright
 | |
| *  notice, this list of conditions and the following disclaimer.
 | |
| *  * Redistributions in binary form must reproduce the above
 | |
| *  copyright notice, this list of conditions and the following disclaimer
 | |
| *  in the documentation and/or other materials provided with the
 | |
| *  distribution.
 | |
| *
 | |
| *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| *  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| *
 | |
| *  You can contact the author at :
 | |
| *  - xxHash homepage: http://www.xxhash.com
 | |
| *  - xxHash source repository : https://github.com/Cyan4973/xxHash
 | |
| */
 | |
| 
 | |
| 
 | |
| /* *************************************
 | |
| *  Tuning parameters
 | |
| ***************************************/
 | |
| /*!XXH_FORCE_MEMORY_ACCESS :
 | |
|  * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
 | |
|  * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
 | |
|  * The below switch allow to select different access method for improved performance.
 | |
|  * Method 0 (default) : use `memcpy()`. Safe and portable.
 | |
|  * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
 | |
|  *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
 | |
|  * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
 | |
|  *            It can generate buggy code on targets which do not support unaligned memory accesses.
 | |
|  *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
 | |
|  * See http://stackoverflow.com/a/32095106/646947 for details.
 | |
|  * Prefer these methods in priority order (0 > 1 > 2)
 | |
|  */
 | |
| #ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
 | |
| #  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
 | |
| #    define XXH_FORCE_MEMORY_ACCESS 2
 | |
| #  elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
 | |
|   (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
 | |
| #    define XXH_FORCE_MEMORY_ACCESS 1
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| /*!XXH_ACCEPT_NULL_INPUT_POINTER :
 | |
|  * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
 | |
|  * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
 | |
|  * By default, this option is disabled. To enable it, uncomment below define :
 | |
|  */
 | |
| /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
 | |
| 
 | |
| /*!XXH_FORCE_NATIVE_FORMAT :
 | |
|  * By default, xxHash library provides endian-independant Hash values, based on little-endian convention.
 | |
|  * Results are therefore identical for little-endian and big-endian CPU.
 | |
|  * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
 | |
|  * Should endian-independance be of no importance for your application, you may set the #define below to 1,
 | |
|  * to improve speed for Big-endian CPU.
 | |
|  * This option has no impact on Little_Endian CPU.
 | |
|  */
 | |
| #ifndef XXH_FORCE_NATIVE_FORMAT   /* can be defined externally */
 | |
| #  define XXH_FORCE_NATIVE_FORMAT 0
 | |
| #endif
 | |
| 
 | |
| /*!XXH_FORCE_ALIGN_CHECK :
 | |
|  * This is a minor performance trick, only useful with lots of very small keys.
 | |
|  * It means : check for aligned/unaligned input.
 | |
|  * The check costs one initial branch per hash; set to 0 when the input data
 | |
|  * is guaranteed to be aligned.
 | |
|  */
 | |
| #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
 | |
| #  if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
 | |
| #    define XXH_FORCE_ALIGN_CHECK 0
 | |
| #  else
 | |
| #    define XXH_FORCE_ALIGN_CHECK 1
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* *************************************
 | |
| *  Includes & Memory related functions
 | |
| ***************************************/
 | |
| /* Modify the local functions below should you wish to use some other memory routines */
 | |
| /* for malloc(), free() */
 | |
| #include <stdlib.h>
 | |
| #include <stddef.h>     /* size_t */
 | |
| static void* XXH_malloc(size_t s) { return malloc(s); }
 | |
| static void  XXH_free  (void* p)  { free(p); }
 | |
| /* for memcpy() */
 | |
| #include <string.h>
 | |
| static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
 | |
| 
 | |
| #ifndef XXH_STATIC_LINKING_ONLY
 | |
| #  define XXH_STATIC_LINKING_ONLY
 | |
| #endif
 | |
| #include "xxhash.h"
 | |
| 
 | |
| 
 | |
| /* *************************************
 | |
| *  Compiler Specific Options
 | |
| ***************************************/
 | |
| #if defined (__GNUC__) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
 | |
| #  define INLINE_KEYWORD inline
 | |
| #else
 | |
| #  define INLINE_KEYWORD
 | |
| #endif
 | |
| 
 | |
| #if defined(__GNUC__)
 | |
| #  define FORCE_INLINE_ATTR __attribute__((always_inline))
 | |
| #elif defined(_MSC_VER)
 | |
| #  define FORCE_INLINE_ATTR __forceinline
 | |
| #else
 | |
| #  define FORCE_INLINE_ATTR
 | |
| #endif
 | |
| 
 | |
| #define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
 | |
| 
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #  pragma warning(disable : 4127)      /* disable: C4127: conditional expression is constant */
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* *************************************
 | |
| *  Basic Types
 | |
| ***************************************/
 | |
| #ifndef MEM_MODULE
 | |
| # define MEM_MODULE
 | |
| # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
 | |
| #   include <stdint.h>
 | |
|     typedef uint8_t  BYTE;
 | |
|     typedef uint16_t U16;
 | |
|     typedef uint32_t U32;
 | |
|     typedef  int32_t S32;
 | |
|     typedef uint64_t U64;
 | |
| #  else
 | |
|     typedef unsigned char      BYTE;
 | |
|     typedef unsigned short     U16;
 | |
|     typedef unsigned int       U32;
 | |
|     typedef   signed int       S32;
 | |
|     typedef unsigned long long U64;   /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
 | |
| 
 | |
| /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
 | |
| static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
 | |
| static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
 | |
| 
 | |
| #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
 | |
| 
 | |
| /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
 | |
| /* currently only defined for gcc and icc */
 | |
| typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
 | |
| 
 | |
| static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
 | |
| static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* portable and safe solution. Generally efficient.
 | |
|  * see : http://stackoverflow.com/a/32095106/646947
 | |
|  */
 | |
| 
 | |
| static U32 XXH_read32(const void* memPtr)
 | |
| {
 | |
|     U32 val;
 | |
|     memcpy(&val, memPtr, sizeof(val));
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| static U64 XXH_read64(const void* memPtr)
 | |
| {
 | |
|     U64 val;
 | |
|     memcpy(&val, memPtr, sizeof(val));
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
 | |
| 
 | |
| 
 | |
| /* ****************************************
 | |
| *  Compiler-specific Functions and Macros
 | |
| ******************************************/
 | |
| #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
 | |
| 
 | |
| /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
 | |
| #if defined(_MSC_VER)
 | |
| #  define XXH_rotl32(x,r) _rotl(x,r)
 | |
| #  define XXH_rotl64(x,r) _rotl64(x,r)
 | |
| #else
 | |
| #  define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
 | |
| #  define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
 | |
| #endif
 | |
| 
 | |
| #if defined(_MSC_VER)     /* Visual Studio */
 | |
| #  define XXH_swap32 _byteswap_ulong
 | |
| #  define XXH_swap64 _byteswap_uint64
 | |
| #elif GCC_VERSION >= 403
 | |
| #  define XXH_swap32 __builtin_bswap32
 | |
| #  define XXH_swap64 __builtin_bswap64
 | |
| #else
 | |
| static U32 XXH_swap32 (U32 x)
 | |
| {
 | |
|     return  ((x << 24) & 0xff000000 ) |
 | |
|             ((x <<  8) & 0x00ff0000 ) |
 | |
|             ((x >>  8) & 0x0000ff00 ) |
 | |
|             ((x >> 24) & 0x000000ff );
 | |
| }
 | |
| static U64 XXH_swap64 (U64 x)
 | |
| {
 | |
|     return  ((x << 56) & 0xff00000000000000ULL) |
 | |
|             ((x << 40) & 0x00ff000000000000ULL) |
 | |
|             ((x << 24) & 0x0000ff0000000000ULL) |
 | |
|             ((x << 8)  & 0x000000ff00000000ULL) |
 | |
|             ((x >> 8)  & 0x00000000ff000000ULL) |
 | |
|             ((x >> 24) & 0x0000000000ff0000ULL) |
 | |
|             ((x >> 40) & 0x000000000000ff00ULL) |
 | |
|             ((x >> 56) & 0x00000000000000ffULL);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* *************************************
 | |
| *  Architecture Macros
 | |
| ***************************************/
 | |
| typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
 | |
| 
 | |
| /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
 | |
| #ifndef XXH_CPU_LITTLE_ENDIAN
 | |
|     static const int g_one = 1;
 | |
| #   define XXH_CPU_LITTLE_ENDIAN   (*(const char*)(&g_one))
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* ***************************
 | |
| *  Memory reads
 | |
| *****************************/
 | |
| typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
 | |
| {
 | |
|     if (align==XXH_unaligned)
 | |
|         return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
 | |
|     else
 | |
|         return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
 | |
| }
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
 | |
| {
 | |
|     return XXH_readLE32_align(ptr, endian, XXH_unaligned);
 | |
| }
 | |
| 
 | |
| static U32 XXH_readBE32(const void* ptr)
 | |
| {
 | |
|     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
 | |
| }
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
 | |
| {
 | |
|     if (align==XXH_unaligned)
 | |
|         return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
 | |
|     else
 | |
|         return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
 | |
| }
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
 | |
| {
 | |
|     return XXH_readLE64_align(ptr, endian, XXH_unaligned);
 | |
| }
 | |
| 
 | |
| static U64 XXH_readBE64(const void* ptr)
 | |
| {
 | |
|     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* *************************************
 | |
| *  Macros
 | |
| ***************************************/
 | |
| #define XXH_STATIC_ASSERT(c)   { enum { XXH_static_assert = 1/(int)(!!(c)) }; }    /* use only *after* variable declarations */
 | |
| 
 | |
| 
 | |
| /* *************************************
 | |
| *  Constants
 | |
| ***************************************/
 | |
| static const U32 PRIME32_1 = 2654435761U;
 | |
| static const U32 PRIME32_2 = 2246822519U;
 | |
| static const U32 PRIME32_3 = 3266489917U;
 | |
| static const U32 PRIME32_4 =  668265263U;
 | |
| static const U32 PRIME32_5 =  374761393U;
 | |
| 
 | |
| static const U64 PRIME64_1 = 11400714785074694791ULL;
 | |
| static const U64 PRIME64_2 = 14029467366897019727ULL;
 | |
| static const U64 PRIME64_3 =  1609587929392839161ULL;
 | |
| static const U64 PRIME64_4 =  9650029242287828579ULL;
 | |
| static const U64 PRIME64_5 =  2870177450012600261ULL;
 | |
| 
 | |
| XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
 | |
| 
 | |
| 
 | |
| /* **************************
 | |
| *  Utils
 | |
| ****************************/
 | |
| XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
 | |
| {
 | |
|     memcpy(dstState, srcState, sizeof(*dstState));
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
 | |
| {
 | |
|     memcpy(dstState, srcState, sizeof(*dstState));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ***************************
 | |
| *  Simple Hash Functions
 | |
| *****************************/
 | |
| 
 | |
| static U32 XXH32_round(U32 seed, U32 input)
 | |
| {
 | |
|     seed += input * PRIME32_2;
 | |
|     seed  = XXH_rotl32(seed, 13);
 | |
|     seed *= PRIME32_1;
 | |
|     return seed;
 | |
| }
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
 | |
| {
 | |
|     const BYTE* p = (const BYTE*)input;
 | |
|     const BYTE* bEnd = p + len;
 | |
|     U32 h32;
 | |
| #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
 | |
| 
 | |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
 | |
|     if (p==NULL) {
 | |
|         len=0;
 | |
|         bEnd=p=(const BYTE*)(size_t)16;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (len>=16) {
 | |
|         const BYTE* const limit = bEnd - 16;
 | |
|         U32 v1 = seed + PRIME32_1 + PRIME32_2;
 | |
|         U32 v2 = seed + PRIME32_2;
 | |
|         U32 v3 = seed + 0;
 | |
|         U32 v4 = seed - PRIME32_1;
 | |
| 
 | |
|         do {
 | |
|             v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
 | |
|             v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
 | |
|             v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
 | |
|             v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
 | |
|         } while (p<=limit);
 | |
| 
 | |
|         h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
 | |
|     } else {
 | |
|         h32  = seed + PRIME32_5;
 | |
|     }
 | |
| 
 | |
|     h32 += (U32) len;
 | |
| 
 | |
|     while (p+4<=bEnd) {
 | |
|         h32 += XXH_get32bits(p) * PRIME32_3;
 | |
|         h32  = XXH_rotl32(h32, 17) * PRIME32_4 ;
 | |
|         p+=4;
 | |
|     }
 | |
| 
 | |
|     while (p<bEnd) {
 | |
|         h32 += (*p) * PRIME32_5;
 | |
|         h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
 | |
|         p++;
 | |
|     }
 | |
| 
 | |
|     h32 ^= h32 >> 15;
 | |
|     h32 *= PRIME32_2;
 | |
|     h32 ^= h32 >> 13;
 | |
|     h32 *= PRIME32_3;
 | |
|     h32 ^= h32 >> 16;
 | |
| 
 | |
|     return h32;
 | |
| }
 | |
| 
 | |
| 
 | |
| XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
 | |
| {
 | |
| #if 0
 | |
|     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
 | |
|     XXH32_CREATESTATE_STATIC(state);
 | |
|     XXH32_reset(state, seed);
 | |
|     XXH32_update(state, input, len);
 | |
|     return XXH32_digest(state);
 | |
| #else
 | |
|     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
 | |
| 
 | |
|     if (XXH_FORCE_ALIGN_CHECK) {
 | |
|         if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
 | |
|             if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | |
|                 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
 | |
|             else
 | |
|                 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
 | |
|     }   }
 | |
| 
 | |
|     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | |
|         return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
 | |
|     else
 | |
|         return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| static U64 XXH64_round(U64 acc, U64 input)
 | |
| {
 | |
|     acc += input * PRIME64_2;
 | |
|     acc  = XXH_rotl64(acc, 31);
 | |
|     acc *= PRIME64_1;
 | |
|     return acc;
 | |
| }
 | |
| 
 | |
| static U64 XXH64_mergeRound(U64 acc, U64 val)
 | |
| {
 | |
|     val  = XXH64_round(0, val);
 | |
|     acc ^= val;
 | |
|     acc  = acc * PRIME64_1 + PRIME64_4;
 | |
|     return acc;
 | |
| }
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
 | |
| {
 | |
|     const BYTE* p = (const BYTE*)input;
 | |
|     const BYTE* const bEnd = p + len;
 | |
|     U64 h64;
 | |
| #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
 | |
| 
 | |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
 | |
|     if (p==NULL) {
 | |
|         len=0;
 | |
|         bEnd=p=(const BYTE*)(size_t)32;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (len>=32) {
 | |
|         const BYTE* const limit = bEnd - 32;
 | |
|         U64 v1 = seed + PRIME64_1 + PRIME64_2;
 | |
|         U64 v2 = seed + PRIME64_2;
 | |
|         U64 v3 = seed + 0;
 | |
|         U64 v4 = seed - PRIME64_1;
 | |
| 
 | |
|         do {
 | |
|             v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
 | |
|             v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
 | |
|             v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
 | |
|             v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
 | |
|         } while (p<=limit);
 | |
| 
 | |
|         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
 | |
|         h64 = XXH64_mergeRound(h64, v1);
 | |
|         h64 = XXH64_mergeRound(h64, v2);
 | |
|         h64 = XXH64_mergeRound(h64, v3);
 | |
|         h64 = XXH64_mergeRound(h64, v4);
 | |
| 
 | |
|     } else {
 | |
|         h64  = seed + PRIME64_5;
 | |
|     }
 | |
| 
 | |
|     h64 += (U64) len;
 | |
| 
 | |
|     while (p+8<=bEnd) {
 | |
|         U64 const k1 = XXH64_round(0, XXH_get64bits(p));
 | |
|         h64 ^= k1;
 | |
|         h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
 | |
|         p+=8;
 | |
|     }
 | |
| 
 | |
|     if (p+4<=bEnd) {
 | |
|         h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
 | |
|         h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
 | |
|         p+=4;
 | |
|     }
 | |
| 
 | |
|     while (p<bEnd) {
 | |
|         h64 ^= (*p) * PRIME64_5;
 | |
|         h64 = XXH_rotl64(h64, 11) * PRIME64_1;
 | |
|         p++;
 | |
|     }
 | |
| 
 | |
|     h64 ^= h64 >> 33;
 | |
|     h64 *= PRIME64_2;
 | |
|     h64 ^= h64 >> 29;
 | |
|     h64 *= PRIME64_3;
 | |
|     h64 ^= h64 >> 32;
 | |
| 
 | |
|     return h64;
 | |
| }
 | |
| 
 | |
| 
 | |
| XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
 | |
| {
 | |
| #if 0
 | |
|     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
 | |
|     XXH64_CREATESTATE_STATIC(state);
 | |
|     XXH64_reset(state, seed);
 | |
|     XXH64_update(state, input, len);
 | |
|     return XXH64_digest(state);
 | |
| #else
 | |
|     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
 | |
| 
 | |
|     if (XXH_FORCE_ALIGN_CHECK) {
 | |
|         if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
 | |
|             if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | |
|                 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
 | |
|             else
 | |
|                 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
 | |
|     }   }
 | |
| 
 | |
|     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | |
|         return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
 | |
|     else
 | |
|         return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /* **************************************************
 | |
| *  Advanced Hash Functions
 | |
| ****************************************************/
 | |
| 
 | |
| XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
 | |
| {
 | |
|     return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
 | |
| }
 | |
| XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
 | |
| {
 | |
|     XXH_free(statePtr);
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
 | |
| {
 | |
|     return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
 | |
| }
 | |
| XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
 | |
| {
 | |
|     XXH_free(statePtr);
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*** Hash feed ***/
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
 | |
| {
 | |
|     XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
 | |
|     memset(&state, 0, sizeof(state)-4);   /* do not write into reserved, for future removal */
 | |
|     state.v1 = seed + PRIME32_1 + PRIME32_2;
 | |
|     state.v2 = seed + PRIME32_2;
 | |
|     state.v3 = seed + 0;
 | |
|     state.v4 = seed - PRIME32_1;
 | |
|     memcpy(statePtr, &state, sizeof(state));
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
 | |
| {
 | |
|     XXH64_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
 | |
|     memset(&state, 0, sizeof(state)-8);   /* do not write into reserved, for future removal */
 | |
|     state.v1 = seed + PRIME64_1 + PRIME64_2;
 | |
|     state.v2 = seed + PRIME64_2;
 | |
|     state.v3 = seed + 0;
 | |
|     state.v4 = seed - PRIME64_1;
 | |
|     memcpy(statePtr, &state, sizeof(state));
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
 | |
| {
 | |
|     const BYTE* p = (const BYTE*)input;
 | |
|     const BYTE* const bEnd = p + len;
 | |
| 
 | |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
 | |
|     if (input==NULL) return XXH_ERROR;
 | |
| #endif
 | |
| 
 | |
|     state->total_len_32 += (unsigned)len;
 | |
|     state->large_len |= (len>=16) | (state->total_len_32>=16);
 | |
| 
 | |
|     if (state->memsize + len < 16)  {   /* fill in tmp buffer */
 | |
|         XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
 | |
|         state->memsize += (unsigned)len;
 | |
|         return XXH_OK;
 | |
|     }
 | |
| 
 | |
|     if (state->memsize) {   /* some data left from previous update */
 | |
|         XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
 | |
|         {   const U32* p32 = state->mem32;
 | |
|             state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
 | |
|             state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
 | |
|             state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
 | |
|             state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
 | |
|         }
 | |
|         p += 16-state->memsize;
 | |
|         state->memsize = 0;
 | |
|     }
 | |
| 
 | |
|     if (p <= bEnd-16) {
 | |
|         const BYTE* const limit = bEnd - 16;
 | |
|         U32 v1 = state->v1;
 | |
|         U32 v2 = state->v2;
 | |
|         U32 v3 = state->v3;
 | |
|         U32 v4 = state->v4;
 | |
| 
 | |
|         do {
 | |
|             v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
 | |
|             v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
 | |
|             v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
 | |
|             v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
 | |
|         } while (p<=limit);
 | |
| 
 | |
|         state->v1 = v1;
 | |
|         state->v2 = v2;
 | |
|         state->v3 = v3;
 | |
|         state->v4 = v4;
 | |
|     }
 | |
| 
 | |
|     if (p < bEnd) {
 | |
|         XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
 | |
|         state->memsize = (unsigned)(bEnd-p);
 | |
|     }
 | |
| 
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
 | |
| {
 | |
|     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
 | |
| 
 | |
|     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | |
|         return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
 | |
|     else
 | |
|         return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
 | |
| {
 | |
|     const BYTE * p = (const BYTE*)state->mem32;
 | |
|     const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
 | |
|     U32 h32;
 | |
| 
 | |
|     if (state->large_len) {
 | |
|         h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
 | |
|     } else {
 | |
|         h32 = state->v3 /* == seed */ + PRIME32_5;
 | |
|     }
 | |
| 
 | |
|     h32 += state->total_len_32;
 | |
| 
 | |
|     while (p+4<=bEnd) {
 | |
|         h32 += XXH_readLE32(p, endian) * PRIME32_3;
 | |
|         h32  = XXH_rotl32(h32, 17) * PRIME32_4;
 | |
|         p+=4;
 | |
|     }
 | |
| 
 | |
|     while (p<bEnd) {
 | |
|         h32 += (*p) * PRIME32_5;
 | |
|         h32  = XXH_rotl32(h32, 11) * PRIME32_1;
 | |
|         p++;
 | |
|     }
 | |
| 
 | |
|     h32 ^= h32 >> 15;
 | |
|     h32 *= PRIME32_2;
 | |
|     h32 ^= h32 >> 13;
 | |
|     h32 *= PRIME32_3;
 | |
|     h32 ^= h32 >> 16;
 | |
| 
 | |
|     return h32;
 | |
| }
 | |
| 
 | |
| 
 | |
| XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
 | |
| {
 | |
|     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
 | |
| 
 | |
|     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | |
|         return XXH32_digest_endian(state_in, XXH_littleEndian);
 | |
|     else
 | |
|         return XXH32_digest_endian(state_in, XXH_bigEndian);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* **** XXH64 **** */
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
 | |
| {
 | |
|     const BYTE* p = (const BYTE*)input;
 | |
|     const BYTE* const bEnd = p + len;
 | |
| 
 | |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
 | |
|     if (input==NULL) return XXH_ERROR;
 | |
| #endif
 | |
| 
 | |
|     state->total_len += len;
 | |
| 
 | |
|     if (state->memsize + len < 32) {  /* fill in tmp buffer */
 | |
|         XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
 | |
|         state->memsize += (U32)len;
 | |
|         return XXH_OK;
 | |
|     }
 | |
| 
 | |
|     if (state->memsize) {   /* tmp buffer is full */
 | |
|         XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
 | |
|         state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
 | |
|         state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
 | |
|         state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
 | |
|         state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
 | |
|         p += 32-state->memsize;
 | |
|         state->memsize = 0;
 | |
|     }
 | |
| 
 | |
|     if (p+32 <= bEnd) {
 | |
|         const BYTE* const limit = bEnd - 32;
 | |
|         U64 v1 = state->v1;
 | |
|         U64 v2 = state->v2;
 | |
|         U64 v3 = state->v3;
 | |
|         U64 v4 = state->v4;
 | |
| 
 | |
|         do {
 | |
|             v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
 | |
|             v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
 | |
|             v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
 | |
|             v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
 | |
|         } while (p<=limit);
 | |
| 
 | |
|         state->v1 = v1;
 | |
|         state->v2 = v2;
 | |
|         state->v3 = v3;
 | |
|         state->v4 = v4;
 | |
|     }
 | |
| 
 | |
|     if (p < bEnd) {
 | |
|         XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
 | |
|         state->memsize = (unsigned)(bEnd-p);
 | |
|     }
 | |
| 
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
 | |
| {
 | |
|     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
 | |
| 
 | |
|     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | |
|         return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
 | |
|     else
 | |
|         return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
 | |
| {
 | |
|     const BYTE * p = (const BYTE*)state->mem64;
 | |
|     const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
 | |
|     U64 h64;
 | |
| 
 | |
|     if (state->total_len >= 32) {
 | |
|         U64 const v1 = state->v1;
 | |
|         U64 const v2 = state->v2;
 | |
|         U64 const v3 = state->v3;
 | |
|         U64 const v4 = state->v4;
 | |
| 
 | |
|         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
 | |
|         h64 = XXH64_mergeRound(h64, v1);
 | |
|         h64 = XXH64_mergeRound(h64, v2);
 | |
|         h64 = XXH64_mergeRound(h64, v3);
 | |
|         h64 = XXH64_mergeRound(h64, v4);
 | |
|     } else {
 | |
|         h64  = state->v3 + PRIME64_5;
 | |
|     }
 | |
| 
 | |
|     h64 += (U64) state->total_len;
 | |
| 
 | |
|     while (p+8<=bEnd) {
 | |
|         U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
 | |
|         h64 ^= k1;
 | |
|         h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
 | |
|         p+=8;
 | |
|     }
 | |
| 
 | |
|     if (p+4<=bEnd) {
 | |
|         h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
 | |
|         h64  = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
 | |
|         p+=4;
 | |
|     }
 | |
| 
 | |
|     while (p<bEnd) {
 | |
|         h64 ^= (*p) * PRIME64_5;
 | |
|         h64  = XXH_rotl64(h64, 11) * PRIME64_1;
 | |
|         p++;
 | |
|     }
 | |
| 
 | |
|     h64 ^= h64 >> 33;
 | |
|     h64 *= PRIME64_2;
 | |
|     h64 ^= h64 >> 29;
 | |
|     h64 *= PRIME64_3;
 | |
|     h64 ^= h64 >> 32;
 | |
| 
 | |
|     return h64;
 | |
| }
 | |
| 
 | |
| 
 | |
| XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
 | |
| {
 | |
|     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
 | |
| 
 | |
|     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | |
|         return XXH64_digest_endian(state_in, XXH_littleEndian);
 | |
|     else
 | |
|         return XXH64_digest_endian(state_in, XXH_bigEndian);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* **************************
 | |
| *  Canonical representation
 | |
| ****************************/
 | |
| 
 | |
| /*! Default XXH result types are basic unsigned 32 and 64 bits.
 | |
| *   The canonical representation follows human-readable write convention, aka big-endian (large digits first).
 | |
| *   These functions allow transformation of hash result into and from its canonical format.
 | |
| *   This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
 | |
| */
 | |
| 
 | |
| XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
 | |
| {
 | |
|     XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
 | |
|     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
 | |
|     memcpy(dst, &hash, sizeof(*dst));
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
 | |
| {
 | |
|     XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
 | |
|     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
 | |
|     memcpy(dst, &hash, sizeof(*dst));
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
 | |
| {
 | |
|     return XXH_readBE32(src);
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
 | |
| {
 | |
|     return XXH_readBE64(src);
 | |
| }
 |