mirror of
				https://git.proxmox.com/git/grub2
				synced 2025-11-04 12:55:16 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			846 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			846 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Elgamal.c  -  Elgamal Public Key encryption
 | 
						|
 * Copyright (C) 1998, 2000, 2001, 2002, 2003,
 | 
						|
 *               2008  Free Software Foundation, Inc.
 | 
						|
 *
 | 
						|
 * This file is part of Libgcrypt.
 | 
						|
 *
 | 
						|
 * Libgcrypt is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU Lesser General Public License as
 | 
						|
 * published by the Free Software Foundation; either version 2.1 of
 | 
						|
 * the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * Libgcrypt is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
 | 
						|
 *
 | 
						|
 * For a description of the algorithm, see:
 | 
						|
 *   Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996.
 | 
						|
 *   ISBN 0-471-11709-9. Pages 476 ff.
 | 
						|
 */
 | 
						|
 | 
						|
#include <config.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include "g10lib.h"
 | 
						|
#include "mpi.h"
 | 
						|
#include "cipher.h"
 | 
						|
 | 
						|
typedef struct
 | 
						|
{
 | 
						|
  gcry_mpi_t p;	    /* prime */
 | 
						|
  gcry_mpi_t g;	    /* group generator */
 | 
						|
  gcry_mpi_t y;	    /* g^x mod p */
 | 
						|
} ELG_public_key;
 | 
						|
 | 
						|
 | 
						|
typedef struct
 | 
						|
{
 | 
						|
  gcry_mpi_t p;	    /* prime */
 | 
						|
  gcry_mpi_t g;	    /* group generator */
 | 
						|
  gcry_mpi_t y;	    /* g^x mod p */
 | 
						|
  gcry_mpi_t x;	    /* secret exponent */
 | 
						|
} ELG_secret_key;
 | 
						|
 | 
						|
 | 
						|
static int test_keys (ELG_secret_key *sk, unsigned int nbits, int nodie);
 | 
						|
static gcry_mpi_t gen_k (gcry_mpi_t p, int small_k);
 | 
						|
static void generate (ELG_secret_key *sk, unsigned nbits, gcry_mpi_t **factors);
 | 
						|
static int  check_secret_key (ELG_secret_key *sk);
 | 
						|
static void do_encrypt (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
 | 
						|
                        ELG_public_key *pkey);
 | 
						|
static void decrypt (gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b,
 | 
						|
                     ELG_secret_key *skey);
 | 
						|
static void sign (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
 | 
						|
                  ELG_secret_key *skey);
 | 
						|
static int  verify (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
 | 
						|
                    ELG_public_key *pkey);
 | 
						|
 | 
						|
 | 
						|
static void (*progress_cb) (void *, const char *, int, int, int);
 | 
						|
static void *progress_cb_data;
 | 
						|
 | 
						|
void
 | 
						|
_gcry_register_pk_elg_progress (void (*cb) (void *, const char *,
 | 
						|
                                            int, int, int),
 | 
						|
				void *cb_data)
 | 
						|
{
 | 
						|
  progress_cb = cb;
 | 
						|
  progress_cb_data = cb_data;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void
 | 
						|
progress (int c)
 | 
						|
{
 | 
						|
  if (progress_cb)
 | 
						|
    progress_cb (progress_cb_data, "pk_elg", c, 0, 0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/****************
 | 
						|
 * Michael Wiener's table on subgroup sizes to match field sizes.
 | 
						|
 * (floating around somewhere, probably based on the paper from
 | 
						|
 * Eurocrypt 96, page 332)
 | 
						|
 */
 | 
						|
static unsigned int
 | 
						|
wiener_map( unsigned int n )
 | 
						|
{
 | 
						|
  static struct { unsigned int p_n, q_n; } t[] =
 | 
						|
    { /*   p	  q	 attack cost */
 | 
						|
      {  512, 119 },	/* 9 x 10^17 */
 | 
						|
      {  768, 145 },	/* 6 x 10^21 */
 | 
						|
      { 1024, 165 },	/* 7 x 10^24 */
 | 
						|
      { 1280, 183 },	/* 3 x 10^27 */
 | 
						|
      { 1536, 198 },	/* 7 x 10^29 */
 | 
						|
      { 1792, 212 },	/* 9 x 10^31 */
 | 
						|
      { 2048, 225 },	/* 8 x 10^33 */
 | 
						|
      { 2304, 237 },	/* 5 x 10^35 */
 | 
						|
      { 2560, 249 },	/* 3 x 10^37 */
 | 
						|
      { 2816, 259 },	/* 1 x 10^39 */
 | 
						|
      { 3072, 269 },	/* 3 x 10^40 */
 | 
						|
      { 3328, 279 },	/* 8 x 10^41 */
 | 
						|
      { 3584, 288 },	/* 2 x 10^43 */
 | 
						|
      { 3840, 296 },	/* 4 x 10^44 */
 | 
						|
      { 4096, 305 },	/* 7 x 10^45 */
 | 
						|
      { 4352, 313 },	/* 1 x 10^47 */
 | 
						|
      { 4608, 320 },	/* 2 x 10^48 */
 | 
						|
      { 4864, 328 },	/* 2 x 10^49 */
 | 
						|
      { 5120, 335 },	/* 3 x 10^50 */
 | 
						|
      { 0, 0 }
 | 
						|
    };
 | 
						|
  int i;
 | 
						|
 | 
						|
  for(i=0; t[i].p_n; i++ )
 | 
						|
    {
 | 
						|
      if( n <= t[i].p_n )
 | 
						|
        return t[i].q_n;
 | 
						|
    }
 | 
						|
  /* Not in table - use an arbitrary high number. */
 | 
						|
  return  n / 8 + 200;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
test_keys ( ELG_secret_key *sk, unsigned int nbits, int nodie )
 | 
						|
{
 | 
						|
  ELG_public_key pk;
 | 
						|
  gcry_mpi_t test = gcry_mpi_new ( 0 );
 | 
						|
  gcry_mpi_t out1_a = gcry_mpi_new ( nbits );
 | 
						|
  gcry_mpi_t out1_b = gcry_mpi_new ( nbits );
 | 
						|
  gcry_mpi_t out2 = gcry_mpi_new ( nbits );
 | 
						|
  int failed = 0;
 | 
						|
 | 
						|
  pk.p = sk->p;
 | 
						|
  pk.g = sk->g;
 | 
						|
  pk.y = sk->y;
 | 
						|
 | 
						|
  gcry_mpi_randomize ( test, nbits, GCRY_WEAK_RANDOM );
 | 
						|
 | 
						|
  do_encrypt ( out1_a, out1_b, test, &pk );
 | 
						|
  decrypt ( out2, out1_a, out1_b, sk );
 | 
						|
  if ( mpi_cmp( test, out2 ) )
 | 
						|
    failed |= 1;
 | 
						|
 | 
						|
  sign ( out1_a, out1_b, test, sk );
 | 
						|
  if ( !verify( out1_a, out1_b, test, &pk ) )
 | 
						|
    failed |= 2;
 | 
						|
 | 
						|
  gcry_mpi_release ( test );
 | 
						|
  gcry_mpi_release ( out1_a );
 | 
						|
  gcry_mpi_release ( out1_b );
 | 
						|
  gcry_mpi_release ( out2 );
 | 
						|
 | 
						|
  if (failed && !nodie)
 | 
						|
    log_fatal ("Elgamal test key for %s %s failed\n",
 | 
						|
               (failed & 1)? "encrypt+decrypt":"",
 | 
						|
               (failed & 2)? "sign+verify":"");
 | 
						|
  if (failed && DBG_CIPHER)
 | 
						|
    log_debug ("Elgamal test key for %s %s failed\n",
 | 
						|
               (failed & 1)? "encrypt+decrypt":"",
 | 
						|
               (failed & 2)? "sign+verify":"");
 | 
						|
 | 
						|
  return failed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/****************
 | 
						|
 * Generate a random secret exponent k from prime p, so that k is
 | 
						|
 * relatively prime to p-1.  With SMALL_K set, k will be selected for
 | 
						|
 * better encryption performance - this must never be used signing!
 | 
						|
 */
 | 
						|
static gcry_mpi_t
 | 
						|
gen_k( gcry_mpi_t p, int small_k )
 | 
						|
{
 | 
						|
  gcry_mpi_t k = mpi_alloc_secure( 0 );
 | 
						|
  gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(p) );
 | 
						|
  gcry_mpi_t p_1 = mpi_copy(p);
 | 
						|
  unsigned int orig_nbits = mpi_get_nbits(p);
 | 
						|
  unsigned int nbits, nbytes;
 | 
						|
  char *rndbuf = NULL;
 | 
						|
 | 
						|
  if (small_k)
 | 
						|
    {
 | 
						|
      /* Using a k much lesser than p is sufficient for encryption and
 | 
						|
       * it greatly improves the encryption performance.  We use
 | 
						|
       * Wiener's table and add a large safety margin. */
 | 
						|
      nbits = wiener_map( orig_nbits ) * 3 / 2;
 | 
						|
      if( nbits >= orig_nbits )
 | 
						|
        BUG();
 | 
						|
    }
 | 
						|
  else
 | 
						|
    nbits = orig_nbits;
 | 
						|
 | 
						|
 | 
						|
  nbytes = (nbits+7)/8;
 | 
						|
  if( DBG_CIPHER )
 | 
						|
    log_debug("choosing a random k ");
 | 
						|
  mpi_sub_ui( p_1, p, 1);
 | 
						|
  for(;;)
 | 
						|
    {
 | 
						|
      if( !rndbuf || nbits < 32 )
 | 
						|
        {
 | 
						|
          gcry_free(rndbuf);
 | 
						|
          rndbuf = gcry_random_bytes_secure( nbytes, GCRY_STRONG_RANDOM );
 | 
						|
        }
 | 
						|
      else
 | 
						|
        {
 | 
						|
          /* Change only some of the higher bits.  We could improve
 | 
						|
             this by directly requesting more memory at the first call
 | 
						|
             to get_random_bytes() and use this the here maybe it is
 | 
						|
             easier to do this directly in random.c Anyway, it is
 | 
						|
             highly inlikely that we will ever reach this code. */
 | 
						|
          char *pp = gcry_random_bytes_secure( 4, GCRY_STRONG_RANDOM );
 | 
						|
          memcpy( rndbuf, pp, 4 );
 | 
						|
          gcry_free(pp);
 | 
						|
	}
 | 
						|
      _gcry_mpi_set_buffer( k, rndbuf, nbytes, 0 );
 | 
						|
 | 
						|
      for(;;)
 | 
						|
        {
 | 
						|
          if( !(mpi_cmp( k, p_1 ) < 0) )  /* check: k < (p-1) */
 | 
						|
            {
 | 
						|
              if( DBG_CIPHER )
 | 
						|
                progress('+');
 | 
						|
              break; /* no  */
 | 
						|
            }
 | 
						|
          if( !(mpi_cmp_ui( k, 0 ) > 0) )  /* check: k > 0 */
 | 
						|
            {
 | 
						|
              if( DBG_CIPHER )
 | 
						|
                progress('-');
 | 
						|
              break; /* no */
 | 
						|
            }
 | 
						|
          if (gcry_mpi_gcd( temp, k, p_1 ))
 | 
						|
            goto found;  /* okay, k is relative prime to (p-1) */
 | 
						|
          mpi_add_ui( k, k, 1 );
 | 
						|
          if( DBG_CIPHER )
 | 
						|
            progress('.');
 | 
						|
	}
 | 
						|
    }
 | 
						|
 found:
 | 
						|
  gcry_free(rndbuf);
 | 
						|
  if( DBG_CIPHER )
 | 
						|
    progress('\n');
 | 
						|
  mpi_free(p_1);
 | 
						|
  mpi_free(temp);
 | 
						|
 | 
						|
  return k;
 | 
						|
}
 | 
						|
 | 
						|
/****************
 | 
						|
 * Generate a key pair with a key of size NBITS
 | 
						|
 * Returns: 2 structures filled with all needed values
 | 
						|
 *	    and an array with n-1 factors of (p-1)
 | 
						|
 */
 | 
						|
static void
 | 
						|
generate ( ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t **ret_factors )
 | 
						|
{
 | 
						|
  gcry_mpi_t p;    /* the prime */
 | 
						|
  gcry_mpi_t p_min1;
 | 
						|
  gcry_mpi_t g;
 | 
						|
  gcry_mpi_t x;    /* the secret exponent */
 | 
						|
  gcry_mpi_t y;
 | 
						|
  unsigned int qbits;
 | 
						|
  unsigned int xbits;
 | 
						|
  byte *rndbuf;
 | 
						|
 | 
						|
  p_min1 = gcry_mpi_new ( nbits );
 | 
						|
  qbits = wiener_map( nbits );
 | 
						|
  if( qbits & 1 ) /* better have a even one */
 | 
						|
    qbits++;
 | 
						|
  g = mpi_alloc(1);
 | 
						|
  p = _gcry_generate_elg_prime( 0, nbits, qbits, g, ret_factors );
 | 
						|
  mpi_sub_ui(p_min1, p, 1);
 | 
						|
 | 
						|
 | 
						|
  /* Select a random number which has these properties:
 | 
						|
   *	 0 < x < p-1
 | 
						|
   * This must be a very good random number because this is the
 | 
						|
   * secret part.  The prime is public and may be shared anyway,
 | 
						|
   * so a random generator level of 1 is used for the prime.
 | 
						|
   *
 | 
						|
   * I don't see a reason to have a x of about the same size
 | 
						|
   * as the p.  It should be sufficient to have one about the size
 | 
						|
   * of q or the later used k plus a large safety margin. Decryption
 | 
						|
   * will be much faster with such an x.
 | 
						|
   */
 | 
						|
  xbits = qbits * 3 / 2;
 | 
						|
  if( xbits >= nbits )
 | 
						|
    BUG();
 | 
						|
  x = gcry_mpi_snew ( xbits );
 | 
						|
  if( DBG_CIPHER )
 | 
						|
    log_debug("choosing a random x of size %u", xbits );
 | 
						|
  rndbuf = NULL;
 | 
						|
  do
 | 
						|
    {
 | 
						|
      if( DBG_CIPHER )
 | 
						|
        progress('.');
 | 
						|
      if( rndbuf )
 | 
						|
        { /* Change only some of the higher bits */
 | 
						|
          if( xbits < 16 ) /* should never happen ... */
 | 
						|
            {
 | 
						|
              gcry_free(rndbuf);
 | 
						|
              rndbuf = gcry_random_bytes_secure( (xbits+7)/8,
 | 
						|
                                                 GCRY_VERY_STRONG_RANDOM );
 | 
						|
            }
 | 
						|
          else
 | 
						|
            {
 | 
						|
              char *r = gcry_random_bytes_secure( 2,
 | 
						|
                                                  GCRY_VERY_STRONG_RANDOM );
 | 
						|
              memcpy(rndbuf, r, 2 );
 | 
						|
              gcry_free(r);
 | 
						|
            }
 | 
						|
	}
 | 
						|
      else
 | 
						|
        {
 | 
						|
          rndbuf = gcry_random_bytes_secure( (xbits+7)/8,
 | 
						|
                                             GCRY_VERY_STRONG_RANDOM );
 | 
						|
	}
 | 
						|
      _gcry_mpi_set_buffer( x, rndbuf, (xbits+7)/8, 0 );
 | 
						|
      mpi_clear_highbit( x, xbits+1 );
 | 
						|
    }
 | 
						|
  while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, p_min1 )<0 ) );
 | 
						|
  gcry_free(rndbuf);
 | 
						|
 | 
						|
  y = gcry_mpi_new (nbits);
 | 
						|
  gcry_mpi_powm( y, g, x, p );
 | 
						|
 | 
						|
  if( DBG_CIPHER )
 | 
						|
    {
 | 
						|
      progress('\n');
 | 
						|
      log_mpidump("elg  p= ", p );
 | 
						|
      log_mpidump("elg  g= ", g );
 | 
						|
      log_mpidump("elg  y= ", y );
 | 
						|
      log_mpidump("elg  x= ", x );
 | 
						|
    }
 | 
						|
 | 
						|
  /* Copy the stuff to the key structures */
 | 
						|
  sk->p = p;
 | 
						|
  sk->g = g;
 | 
						|
  sk->y = y;
 | 
						|
  sk->x = x;
 | 
						|
 | 
						|
  gcry_mpi_release ( p_min1 );
 | 
						|
 | 
						|
  /* Now we can test our keys (this should never fail!) */
 | 
						|
  test_keys ( sk, nbits - 64, 0 );
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Generate a key pair with a key of size NBITS not using a random
 | 
						|
   value for the secret key but the one given as X.  This is useful to
 | 
						|
   implement a passphrase based decryption for a public key based
 | 
						|
   encryption.  It has appliactions in backup systems.
 | 
						|
 | 
						|
   Returns: A structure filled with all needed values and an array
 | 
						|
 	    with n-1 factors of (p-1).  */
 | 
						|
static gcry_err_code_t
 | 
						|
generate_using_x (ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t x,
 | 
						|
                  gcry_mpi_t **ret_factors )
 | 
						|
{
 | 
						|
  gcry_mpi_t p;      /* The prime.  */
 | 
						|
  gcry_mpi_t p_min1; /* The prime minus 1.  */
 | 
						|
  gcry_mpi_t g;      /* The generator.  */
 | 
						|
  gcry_mpi_t y;      /* g^x mod p.  */
 | 
						|
  unsigned int qbits;
 | 
						|
  unsigned int xbits;
 | 
						|
 | 
						|
  sk->p = NULL;
 | 
						|
  sk->g = NULL;
 | 
						|
  sk->y = NULL;
 | 
						|
  sk->x = NULL;
 | 
						|
 | 
						|
  /* Do a quick check to see whether X is suitable.  */
 | 
						|
  xbits = mpi_get_nbits (x);
 | 
						|
  if ( xbits < 64 || xbits >= nbits )
 | 
						|
    return GPG_ERR_INV_VALUE;
 | 
						|
 | 
						|
  p_min1 = gcry_mpi_new ( nbits );
 | 
						|
  qbits  = wiener_map ( nbits );
 | 
						|
  if ( (qbits & 1) ) /* Better have an even one.  */
 | 
						|
    qbits++;
 | 
						|
  g = mpi_alloc (1);
 | 
						|
  p = _gcry_generate_elg_prime ( 0, nbits, qbits, g, ret_factors );
 | 
						|
  mpi_sub_ui (p_min1, p, 1);
 | 
						|
 | 
						|
  if (DBG_CIPHER)
 | 
						|
    log_debug ("using a supplied x of size %u", xbits );
 | 
						|
  if ( !(mpi_cmp_ui ( x, 0 ) > 0 && mpi_cmp ( x, p_min1 ) <0 ) )
 | 
						|
    {
 | 
						|
      gcry_mpi_release ( p_min1 );
 | 
						|
      gcry_mpi_release ( p );
 | 
						|
      gcry_mpi_release ( g );
 | 
						|
      return GPG_ERR_INV_VALUE;
 | 
						|
    }
 | 
						|
 | 
						|
  y = gcry_mpi_new (nbits);
 | 
						|
  gcry_mpi_powm ( y, g, x, p );
 | 
						|
 | 
						|
  if ( DBG_CIPHER )
 | 
						|
    {
 | 
						|
      progress ('\n');
 | 
						|
      log_mpidump ("elg  p= ", p );
 | 
						|
      log_mpidump ("elg  g= ", g );
 | 
						|
      log_mpidump ("elg  y= ", y );
 | 
						|
      log_mpidump ("elg  x= ", x );
 | 
						|
    }
 | 
						|
 | 
						|
  /* Copy the stuff to the key structures */
 | 
						|
  sk->p = p;
 | 
						|
  sk->g = g;
 | 
						|
  sk->y = y;
 | 
						|
  sk->x = gcry_mpi_copy (x);
 | 
						|
 | 
						|
  gcry_mpi_release ( p_min1 );
 | 
						|
 | 
						|
  /* Now we can test our keys. */
 | 
						|
  if ( test_keys ( sk, nbits - 64, 1 ) )
 | 
						|
    {
 | 
						|
      gcry_mpi_release ( sk->p ); sk->p = NULL;
 | 
						|
      gcry_mpi_release ( sk->g ); sk->g = NULL;
 | 
						|
      gcry_mpi_release ( sk->y ); sk->y = NULL;
 | 
						|
      gcry_mpi_release ( sk->x ); sk->x = NULL;
 | 
						|
      return GPG_ERR_BAD_SECKEY;
 | 
						|
    }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/****************
 | 
						|
 * Test whether the secret key is valid.
 | 
						|
 * Returns: if this is a valid key.
 | 
						|
 */
 | 
						|
static int
 | 
						|
check_secret_key( ELG_secret_key *sk )
 | 
						|
{
 | 
						|
  int rc;
 | 
						|
  gcry_mpi_t y = mpi_alloc( mpi_get_nlimbs(sk->y) );
 | 
						|
 | 
						|
  gcry_mpi_powm( y, sk->g, sk->x, sk->p );
 | 
						|
  rc = !mpi_cmp( y, sk->y );
 | 
						|
  mpi_free( y );
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void
 | 
						|
do_encrypt(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey )
 | 
						|
{
 | 
						|
  gcry_mpi_t k;
 | 
						|
 | 
						|
  /* Note: maybe we should change the interface, so that it
 | 
						|
   * is possible to check that input is < p and return an
 | 
						|
   * error code.
 | 
						|
   */
 | 
						|
 | 
						|
  k = gen_k( pkey->p, 1 );
 | 
						|
  gcry_mpi_powm( a, pkey->g, k, pkey->p );
 | 
						|
  /* b = (y^k * input) mod p
 | 
						|
   *	 = ((y^k mod p) * (input mod p)) mod p
 | 
						|
   * and because input is < p
 | 
						|
   *	 = ((y^k mod p) * input) mod p
 | 
						|
   */
 | 
						|
  gcry_mpi_powm( b, pkey->y, k, pkey->p );
 | 
						|
  gcry_mpi_mulm( b, b, input, pkey->p );
 | 
						|
#if 0
 | 
						|
  if( DBG_CIPHER )
 | 
						|
    {
 | 
						|
      log_mpidump("elg encrypted y= ", pkey->y);
 | 
						|
      log_mpidump("elg encrypted p= ", pkey->p);
 | 
						|
      log_mpidump("elg encrypted k= ", k);
 | 
						|
      log_mpidump("elg encrypted M= ", input);
 | 
						|
      log_mpidump("elg encrypted a= ", a);
 | 
						|
      log_mpidump("elg encrypted b= ", b);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  mpi_free(k);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static void
 | 
						|
decrypt(gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b, ELG_secret_key *skey )
 | 
						|
{
 | 
						|
  gcry_mpi_t t1 = mpi_alloc_secure( mpi_get_nlimbs( skey->p ) );
 | 
						|
 | 
						|
  /* output = b/(a^x) mod p */
 | 
						|
  gcry_mpi_powm( t1, a, skey->x, skey->p );
 | 
						|
  mpi_invm( t1, t1, skey->p );
 | 
						|
  mpi_mulm( output, b, t1, skey->p );
 | 
						|
#if 0
 | 
						|
  if( DBG_CIPHER )
 | 
						|
    {
 | 
						|
      log_mpidump("elg decrypted x= ", skey->x);
 | 
						|
      log_mpidump("elg decrypted p= ", skey->p);
 | 
						|
      log_mpidump("elg decrypted a= ", a);
 | 
						|
      log_mpidump("elg decrypted b= ", b);
 | 
						|
      log_mpidump("elg decrypted M= ", output);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  mpi_free(t1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/****************
 | 
						|
 * Make an Elgamal signature out of INPUT
 | 
						|
 */
 | 
						|
 | 
						|
static void
 | 
						|
sign(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_secret_key *skey )
 | 
						|
{
 | 
						|
    gcry_mpi_t k;
 | 
						|
    gcry_mpi_t t   = mpi_alloc( mpi_get_nlimbs(a) );
 | 
						|
    gcry_mpi_t inv = mpi_alloc( mpi_get_nlimbs(a) );
 | 
						|
    gcry_mpi_t p_1 = mpi_copy(skey->p);
 | 
						|
 | 
						|
   /*
 | 
						|
    * b = (t * inv) mod (p-1)
 | 
						|
    * b = (t * inv(k,(p-1),(p-1)) mod (p-1)
 | 
						|
    * b = (((M-x*a) mod (p-1)) * inv(k,(p-1),(p-1))) mod (p-1)
 | 
						|
    *
 | 
						|
    */
 | 
						|
    mpi_sub_ui(p_1, p_1, 1);
 | 
						|
    k = gen_k( skey->p, 0 /* no small K ! */ );
 | 
						|
    gcry_mpi_powm( a, skey->g, k, skey->p );
 | 
						|
    mpi_mul(t, skey->x, a );
 | 
						|
    mpi_subm(t, input, t, p_1 );
 | 
						|
    mpi_invm(inv, k, p_1 );
 | 
						|
    mpi_mulm(b, t, inv, p_1 );
 | 
						|
 | 
						|
#if 0
 | 
						|
    if( DBG_CIPHER )
 | 
						|
      {
 | 
						|
	log_mpidump("elg sign p= ", skey->p);
 | 
						|
	log_mpidump("elg sign g= ", skey->g);
 | 
						|
	log_mpidump("elg sign y= ", skey->y);
 | 
						|
	log_mpidump("elg sign x= ", skey->x);
 | 
						|
	log_mpidump("elg sign k= ", k);
 | 
						|
	log_mpidump("elg sign M= ", input);
 | 
						|
	log_mpidump("elg sign a= ", a);
 | 
						|
	log_mpidump("elg sign b= ", b);
 | 
						|
      }
 | 
						|
#endif
 | 
						|
    mpi_free(k);
 | 
						|
    mpi_free(t);
 | 
						|
    mpi_free(inv);
 | 
						|
    mpi_free(p_1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/****************
 | 
						|
 * Returns true if the signature composed of A and B is valid.
 | 
						|
 */
 | 
						|
static int
 | 
						|
verify(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey )
 | 
						|
{
 | 
						|
  int rc;
 | 
						|
  gcry_mpi_t t1;
 | 
						|
  gcry_mpi_t t2;
 | 
						|
  gcry_mpi_t base[4];
 | 
						|
  gcry_mpi_t ex[4];
 | 
						|
 | 
						|
  if( !(mpi_cmp_ui( a, 0 ) > 0 && mpi_cmp( a, pkey->p ) < 0) )
 | 
						|
    return 0; /* assertion	0 < a < p  failed */
 | 
						|
 | 
						|
  t1 = mpi_alloc( mpi_get_nlimbs(a) );
 | 
						|
  t2 = mpi_alloc( mpi_get_nlimbs(a) );
 | 
						|
 | 
						|
#if 0
 | 
						|
  /* t1 = (y^a mod p) * (a^b mod p) mod p */
 | 
						|
  gcry_mpi_powm( t1, pkey->y, a, pkey->p );
 | 
						|
  gcry_mpi_powm( t2, a, b, pkey->p );
 | 
						|
  mpi_mulm( t1, t1, t2, pkey->p );
 | 
						|
 | 
						|
  /* t2 = g ^ input mod p */
 | 
						|
  gcry_mpi_powm( t2, pkey->g, input, pkey->p );
 | 
						|
 | 
						|
  rc = !mpi_cmp( t1, t2 );
 | 
						|
#elif 0
 | 
						|
  /* t1 = (y^a mod p) * (a^b mod p) mod p */
 | 
						|
  base[0] = pkey->y; ex[0] = a;
 | 
						|
  base[1] = a;       ex[1] = b;
 | 
						|
  base[2] = NULL;    ex[2] = NULL;
 | 
						|
  mpi_mulpowm( t1, base, ex, pkey->p );
 | 
						|
 | 
						|
  /* t2 = g ^ input mod p */
 | 
						|
  gcry_mpi_powm( t2, pkey->g, input, pkey->p );
 | 
						|
 | 
						|
  rc = !mpi_cmp( t1, t2 );
 | 
						|
#else
 | 
						|
  /* t1 = g ^ - input * y ^ a * a ^ b  mod p */
 | 
						|
  mpi_invm(t2, pkey->g, pkey->p );
 | 
						|
  base[0] = t2     ; ex[0] = input;
 | 
						|
  base[1] = pkey->y; ex[1] = a;
 | 
						|
  base[2] = a;       ex[2] = b;
 | 
						|
  base[3] = NULL;    ex[3] = NULL;
 | 
						|
  mpi_mulpowm( t1, base, ex, pkey->p );
 | 
						|
  rc = !mpi_cmp_ui( t1, 1 );
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
  mpi_free(t1);
 | 
						|
  mpi_free(t2);
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
/*********************************************
 | 
						|
 **************  interface  ******************
 | 
						|
 *********************************************/
 | 
						|
 | 
						|
static gpg_err_code_t
 | 
						|
elg_generate_ext (int algo, unsigned int nbits, unsigned long evalue,
 | 
						|
                  const gcry_sexp_t genparms,
 | 
						|
                  gcry_mpi_t *skey, gcry_mpi_t **retfactors,
 | 
						|
                  gcry_sexp_t *r_extrainfo)
 | 
						|
{
 | 
						|
  gpg_err_code_t ec;
 | 
						|
  ELG_secret_key sk;
 | 
						|
  gcry_mpi_t xvalue = NULL;
 | 
						|
  gcry_sexp_t l1;
 | 
						|
 | 
						|
  (void)algo;
 | 
						|
  (void)evalue;
 | 
						|
  (void)r_extrainfo;
 | 
						|
 | 
						|
  if (genparms)
 | 
						|
    {
 | 
						|
      /* Parse the optional xvalue element. */
 | 
						|
      l1 = gcry_sexp_find_token (genparms, "xvalue", 0);
 | 
						|
      if (l1)
 | 
						|
        {
 | 
						|
          xvalue = gcry_sexp_nth_mpi (l1, 1, 0);
 | 
						|
          gcry_sexp_release (l1);
 | 
						|
          if (!xvalue)
 | 
						|
            return GPG_ERR_BAD_MPI;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
  if (xvalue)
 | 
						|
    ec = generate_using_x (&sk, nbits, xvalue, retfactors);
 | 
						|
  else
 | 
						|
    {
 | 
						|
      generate (&sk, nbits, retfactors);
 | 
						|
      ec = 0;
 | 
						|
    }
 | 
						|
 | 
						|
  skey[0] = sk.p;
 | 
						|
  skey[1] = sk.g;
 | 
						|
  skey[2] = sk.y;
 | 
						|
  skey[3] = sk.x;
 | 
						|
 | 
						|
  return ec;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static gcry_err_code_t
 | 
						|
elg_generate (int algo, unsigned int nbits, unsigned long evalue,
 | 
						|
              gcry_mpi_t *skey, gcry_mpi_t **retfactors)
 | 
						|
{
 | 
						|
  ELG_secret_key sk;
 | 
						|
 | 
						|
  (void)algo;
 | 
						|
  (void)evalue;
 | 
						|
 | 
						|
  generate (&sk, nbits, retfactors);
 | 
						|
  skey[0] = sk.p;
 | 
						|
  skey[1] = sk.g;
 | 
						|
  skey[2] = sk.y;
 | 
						|
  skey[3] = sk.x;
 | 
						|
 | 
						|
  return GPG_ERR_NO_ERROR;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static gcry_err_code_t
 | 
						|
elg_check_secret_key (int algo, gcry_mpi_t *skey)
 | 
						|
{
 | 
						|
  gcry_err_code_t err = GPG_ERR_NO_ERROR;
 | 
						|
  ELG_secret_key sk;
 | 
						|
 | 
						|
  (void)algo;
 | 
						|
 | 
						|
  if ((! skey[0]) || (! skey[1]) || (! skey[2]) || (! skey[3]))
 | 
						|
    err = GPG_ERR_BAD_MPI;
 | 
						|
  else
 | 
						|
    {
 | 
						|
      sk.p = skey[0];
 | 
						|
      sk.g = skey[1];
 | 
						|
      sk.y = skey[2];
 | 
						|
      sk.x = skey[3];
 | 
						|
 | 
						|
      if (! check_secret_key (&sk))
 | 
						|
	err = GPG_ERR_BAD_SECKEY;
 | 
						|
    }
 | 
						|
 | 
						|
  return err;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static gcry_err_code_t
 | 
						|
elg_encrypt (int algo, gcry_mpi_t *resarr,
 | 
						|
             gcry_mpi_t data, gcry_mpi_t *pkey, int flags)
 | 
						|
{
 | 
						|
  gcry_err_code_t err = GPG_ERR_NO_ERROR;
 | 
						|
  ELG_public_key pk;
 | 
						|
 | 
						|
  (void)algo;
 | 
						|
  (void)flags;
 | 
						|
 | 
						|
  if ((! data) || (! pkey[0]) || (! pkey[1]) || (! pkey[2]))
 | 
						|
    err = GPG_ERR_BAD_MPI;
 | 
						|
  else
 | 
						|
    {
 | 
						|
      pk.p = pkey[0];
 | 
						|
      pk.g = pkey[1];
 | 
						|
      pk.y = pkey[2];
 | 
						|
      resarr[0] = mpi_alloc (mpi_get_nlimbs (pk.p));
 | 
						|
      resarr[1] = mpi_alloc (mpi_get_nlimbs (pk.p));
 | 
						|
      do_encrypt (resarr[0], resarr[1], data, &pk);
 | 
						|
    }
 | 
						|
  return err;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static gcry_err_code_t
 | 
						|
elg_decrypt (int algo, gcry_mpi_t *result,
 | 
						|
             gcry_mpi_t *data, gcry_mpi_t *skey, int flags)
 | 
						|
{
 | 
						|
  gcry_err_code_t err = GPG_ERR_NO_ERROR;
 | 
						|
  ELG_secret_key sk;
 | 
						|
 | 
						|
  (void)algo;
 | 
						|
  (void)flags;
 | 
						|
 | 
						|
  if ((! data[0]) || (! data[1])
 | 
						|
      || (! skey[0]) || (! skey[1]) || (! skey[2]) || (! skey[3]))
 | 
						|
    err = GPG_ERR_BAD_MPI;
 | 
						|
  else
 | 
						|
    {
 | 
						|
      sk.p = skey[0];
 | 
						|
      sk.g = skey[1];
 | 
						|
      sk.y = skey[2];
 | 
						|
      sk.x = skey[3];
 | 
						|
      *result = mpi_alloc_secure (mpi_get_nlimbs (sk.p));
 | 
						|
      decrypt (*result, data[0], data[1], &sk);
 | 
						|
    }
 | 
						|
  return err;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static gcry_err_code_t
 | 
						|
elg_sign (int algo, gcry_mpi_t *resarr, gcry_mpi_t data, gcry_mpi_t *skey)
 | 
						|
{
 | 
						|
  gcry_err_code_t err = GPG_ERR_NO_ERROR;
 | 
						|
  ELG_secret_key sk;
 | 
						|
 | 
						|
  (void)algo;
 | 
						|
 | 
						|
  if ((! data)
 | 
						|
      || (! skey[0]) || (! skey[1]) || (! skey[2]) || (! skey[3]))
 | 
						|
    err = GPG_ERR_BAD_MPI;
 | 
						|
  else
 | 
						|
    {
 | 
						|
      sk.p = skey[0];
 | 
						|
      sk.g = skey[1];
 | 
						|
      sk.y = skey[2];
 | 
						|
      sk.x = skey[3];
 | 
						|
      resarr[0] = mpi_alloc (mpi_get_nlimbs (sk.p));
 | 
						|
      resarr[1] = mpi_alloc (mpi_get_nlimbs (sk.p));
 | 
						|
      sign (resarr[0], resarr[1], data, &sk);
 | 
						|
    }
 | 
						|
 | 
						|
  return err;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static gcry_err_code_t
 | 
						|
elg_verify (int algo, gcry_mpi_t hash, gcry_mpi_t *data, gcry_mpi_t *pkey,
 | 
						|
            int (*cmp) (void *, gcry_mpi_t), void *opaquev)
 | 
						|
{
 | 
						|
  gcry_err_code_t err = GPG_ERR_NO_ERROR;
 | 
						|
  ELG_public_key pk;
 | 
						|
 | 
						|
  (void)algo;
 | 
						|
  (void)cmp;
 | 
						|
  (void)opaquev;
 | 
						|
 | 
						|
  if ((! data[0]) || (! data[1]) || (! hash)
 | 
						|
      || (! pkey[0]) || (! pkey[1]) || (! pkey[2]))
 | 
						|
    err = GPG_ERR_BAD_MPI;
 | 
						|
  else
 | 
						|
    {
 | 
						|
      pk.p = pkey[0];
 | 
						|
      pk.g = pkey[1];
 | 
						|
      pk.y = pkey[2];
 | 
						|
      if (! verify (data[0], data[1], hash, &pk))
 | 
						|
	err = GPG_ERR_BAD_SIGNATURE;
 | 
						|
    }
 | 
						|
 | 
						|
  return err;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static unsigned int
 | 
						|
elg_get_nbits (int algo, gcry_mpi_t *pkey)
 | 
						|
{
 | 
						|
  (void)algo;
 | 
						|
 | 
						|
  return mpi_get_nbits (pkey[0]);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static const char *elg_names[] =
 | 
						|
  {
 | 
						|
    "elg",
 | 
						|
    "openpgp-elg",
 | 
						|
    "openpgp-elg-sig",
 | 
						|
    NULL,
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
gcry_pk_spec_t _gcry_pubkey_spec_elg =
 | 
						|
  {
 | 
						|
    "ELG", elg_names,
 | 
						|
    "pgy", "pgyx", "ab", "rs", "pgy",
 | 
						|
    GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR,
 | 
						|
    elg_generate,
 | 
						|
    elg_check_secret_key,
 | 
						|
    elg_encrypt,
 | 
						|
    elg_decrypt,
 | 
						|
    elg_sign,
 | 
						|
    elg_verify,
 | 
						|
    elg_get_nbits
 | 
						|
  };
 | 
						|
 | 
						|
pk_extra_spec_t _gcry_pubkey_extraspec_elg =
 | 
						|
  {
 | 
						|
    NULL,
 | 
						|
    elg_generate_ext,
 | 
						|
    NULL
 | 
						|
  };
 |