We need to check errors before calling into a function that uses the result.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
This prevents a divide by zero if nstripes == nparities, and
also prevents propagation of invalid values if nstripes ends up
less than nparities.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
We just introduced an error return in grub_nilfs2_btree_node_lookup().
Make sure the callers catch it.
At the same time, make sure that grub_nilfs2_btree_node_lookup() always
inits the index pointer passed to it.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
NILFS2 reads the number of children a node has from the node. Unfortunately,
that's not trustworthy. Check if it's beyond what the filesystem permits and
reject it if so.
This blocks some OOB reads. I'm not sure how controllable the read is and what
could be done with invalidly read data later on.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
NILFS2 has up to 7 keys, per the data structure. Do not permit array
indices in excess of that.
This catches some OOB reads. I don't know how controllable the invalidly
read data is or if that could be used later in the program.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
It's possible with a fuzzed filesystem for JFS to keep getblk()-ing
the same data over and over again, leading to stack exhaustion.
Check if we'd be calling the function with exactly the same data as
was passed in, and if so abort.
I'm not sure what the performance impact of this is and am open to
better ideas.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
getblk() implicitly trusts that treehead->count is an accurate count of
the number of extents. However, that value is read from disk and is not
trustworthy, leading to OOB reads and crashes. I am not sure to what
extent the data read from OOB can influence subsequent program execution.
Require callers to pass in the maximum number of extents for which
they have storage.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Fuzzing JFS revealed crashes where a negative number would be passed
to le_to_cpu16_copy(). There it would be cast to a large positive number
and the copy would read and write off the end of the respective buffers.
Catch this at the top as well as the bottom of the loop.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
There's a read of the name of the root object that assumes that the name
is nul-terminated within the root block. This isn't guaranteed - it seems
SFS would require you to read multiple blocks to get a full name in general,
but maybe that doesn't apply to the root object.
Either way, figure out how much space is left in the root block and don't
over-read it. This fixes some OOB reads.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
HFS has issues such as infinite mutual recursion that are simply too
complex to fix for such a legacy format. So simply do not permit
it to be loaded under lockdown.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Valgrind identified the following use of uninitialized data:
==2782220== Conditional jump or move depends on uninitialised value(s)
==2782220== at 0x42B364: grub_hfsplus_btree_search (hfsplus.c:566)
==2782220== by 0x42B21D: grub_hfsplus_read_block (hfsplus.c:185)
==2782220== by 0x42A693: grub_fshelp_read_file (fshelp.c:386)
==2782220== by 0x42C598: grub_hfsplus_read_file (hfsplus.c:219)
==2782220== by 0x42C598: grub_hfsplus_mount (hfsplus.c:330)
==2782220== by 0x42B8C5: grub_hfsplus_dir (hfsplus.c:958)
==2782220== by 0x4C1AE6: grub_fs_probe (fs.c:73)
==2782220== by 0x407C94: grub_ls_list_files (ls.c:186)
==2782220== by 0x407C94: grub_cmd_ls (ls.c:284)
==2782220== by 0x4D7130: grub_extcmd_dispatcher (extcmd.c:55)
==2782220== by 0x4045A6: execute_command (grub-fstest.c:59)
==2782220== by 0x4045A6: fstest (grub-fstest.c:433)
==2782220== by 0x4045A6: main (grub-fstest.c:772)
==2782220== Uninitialised value was created by a heap allocation
==2782220== at 0x483C7F3: malloc (in /usr/lib/x86_64-linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)
==2782220== by 0x4C0305: grub_malloc (mm.c:42)
==2782220== by 0x42C21D: grub_hfsplus_mount (hfsplus.c:239)
==2782220== by 0x42B8C5: grub_hfsplus_dir (hfsplus.c:958)
==2782220== by 0x4C1AE6: grub_fs_probe (fs.c:73)
==2782220== by 0x407C94: grub_ls_list_files (ls.c:186)
==2782220== by 0x407C94: grub_cmd_ls (ls.c:284)
==2782220== by 0x4D7130: grub_extcmd_dispatcher (extcmd.c:55)
==2782220== by 0x4045A6: execute_command (grub-fstest.c:59)
==2782220== by 0x4045A6: fstest (grub-fstest.c:433)
==2782220== by 0x4045A6: main (grub-fstest.c:772)
This happens when the process of reading the catalog file goes sufficiently
wrong that there's an attempt to read the extent overflow file, which has
not yet been loaded. Keep track of when the extent overflow file is
fully loaded and refuse to use it before then.
The load valgrind doesn't like is btree->nodesize, and that's then used
to allocate a data structure. It looks like there are subsequently a lot
of reads based on that pointer so OOB reads are likely, and indeed crashes
(albeit difficult-to-replicate ones) have been observed in fuzzing.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Otherwise you get a wild pointer, leading to a bunch of invalid reads.
Check it falls inside the given node.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
A fuzzed HFS+ filesystem had log2blocksize = 22. This gave
log2blocksize + GRUB_DISK_SECTOR_BITS = 31. 1 << 31 = 0x80000000,
which is -1 as an int. This caused some wacky behavior later on in
the function, leading to out-of-bounds writes on the destination buffer.
Catch log2blocksize + GRUB_DISK_SECTOR_BITS >= 31. We could be stricter,
but this is the minimum that will prevent integer size weirdness.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
The node structure reference is being allocated but not freed if it
reaches the end of the function. If any of the hooks had returned
a non-zero value, then node would have been copied in to the context
reference, but otherwise node is not stored and should be freed.
Similarly, the call to grub_affs_create_node() replaces the allocated
memory in node with a newly allocated structure, leaking the existing
memory pointed by node.
Finally, when dir->parent is set, then we again replace node with newly
allocated memory, which seems unnecessary when we copy in the values
from dir->parent immediately after.
Fixes: CID 73759
Signed-off-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
While arguably the check for grub_errno is correct, we should really be
checking the return value from the function since it is always possible
that grub_errno was set elsewhere, making this code behave incorrectly.
Fixes: CID 73668
Signed-off-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
In all cases the problem is that the value being acted upon by
a left-shift is a 32-bit number which is then being used in the
context of a 64-bit number.
To avoid overflow we ensure that the number being shifted is 64-bit
before the shift is done.
Fixes: CID 73684, CID 73695, CID 73764
Signed-off-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
There are several exit points in dnode_get_path() that are causing possible
memory leaks.
In the while(1) the correct exit mechanism should not be to do a direct return,
but to instead break out of the loop, setting err first if it is not already set.
The reason behind this is that the dnode_path is a linked list, and while doing
through this loop, it is being allocated and built up - the only way to
correctly unravel it is to traverse it, which is what is being done at the end
of the function outside of the loop.
Several of the existing exit points correctly did a break, but not all so this
change makes that more consistent and should resolve the leaking of memory as
found by Coverity.
Fixes: CID 73741
Signed-off-by: Paulo Flabiano Smorigo <pfsmorigo@canonical.com>
Signed-off-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
While it is possible for the return value from zfs_log2() to be zero
(0), it is quite unlikely, given that the previous assignment to blksz
is shifted up by SPA_MINBLOCKSHIFT (9) before 9 is subtracted at the
assignment to epbs.
But, while unlikely during a normal operation, it may be that a carefully
crafted ZFS filesystem could result in a zero (0) value to the
dn_datalbkszsec field, which means that the shift left does nothing
and assigns zero (0) to blksz, resulting in a negative epbs value.
Fixes: CID 73608
Signed-off-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
HFS+ documentation suggests that the maximum filename and volume name is
255 Unicode characters in length.
So, when converting from big-endian to little-endian, we should ensure
that the name of the volume has a length that is between 0 and 255,
inclusive.
Fixes: CID 73641
Signed-off-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
The function grub_disk_get_size() is confusingly named because it actually
returns a sector count where the sectors are sized in the GRUB native sector
size. Rename to something more appropriate.
Suggested-by: Daniel Kiper <daniel.kiper@oracle.com>
Signed-off-by: Glenn Washburn <development@efficientek.com>
Reviewed-by: Patrick Steinhardt <ps@pks.im>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Both node->size and node->namelen come from the supplied filesystem,
which may be user-supplied. We can't trust them for the math unless we
know they don't overflow. Making sure they go through grub_add() or
grub_calloc() first will give us that.
Signed-off-by: Peter Jones <pjones@redhat.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
This attempts to fix the places where we do the following where
arithmetic_expr may include unvalidated data:
X = grub_malloc(arithmetic_expr);
It accomplishes this by doing the arithmetic ahead of time using grub_add(),
grub_sub(), grub_mul() and testing for overflow before proceeding.
Among other issues, this fixes:
- allocation of integer overflow in grub_video_bitmap_create()
reported by Chris Coulson,
- allocation of integer overflow in grub_png_decode_image_header()
reported by Chris Coulson,
- allocation of integer overflow in grub_squash_read_symlink()
reported by Chris Coulson,
- allocation of integer overflow in grub_ext2_read_symlink()
reported by Chris Coulson,
- allocation of integer overflow in read_section_as_string()
reported by Chris Coulson.
Fixes: CVE-2020-14309, CVE-2020-14310, CVE-2020-14311
Signed-off-by: Peter Jones <pjones@redhat.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
This modifies most of the places we do some form of:
X = malloc(Y * Z);
to use calloc(Y, Z) instead.
Among other issues, this fixes:
- allocation of integer overflow in grub_png_decode_image_header()
reported by Chris Coulson,
- allocation of integer overflow in luks_recover_key()
reported by Chris Coulson,
- allocation of integer overflow in grub_lvm_detect()
reported by Chris Coulson.
Fixes: CVE-2020-14308
Signed-off-by: Peter Jones <pjones@redhat.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
We bumped into the build error while testing gcc-10 pre-release.
In file included from ../../include/grub/file.h:22,
from ../../grub-core/fs/zfs/zfs.c:34:
../../grub-core/fs/zfs/zfs.c: In function 'zap_leaf_lookup':
../../grub-core/fs/zfs/zfs.c:2263:44: error: array subscript '<unknown>' is outside the bounds of an interior zero-length array 'grub_uint16_t[0]' {aka 'short unsigned int[0]'} [-Werror=zero-length-bounds]
2263 | for (chunk = grub_zfs_to_cpu16 (l->l_hash[LEAF_HASH (blksft, h, l)], endian);
../../include/grub/types.h:241:48: note: in definition of macro 'grub_le_to_cpu16'
241 | # define grub_le_to_cpu16(x) ((grub_uint16_t) (x))
| ^
../../grub-core/fs/zfs/zfs.c:2263:16: note: in expansion of macro 'grub_zfs_to_cpu16'
2263 | for (chunk = grub_zfs_to_cpu16 (l->l_hash[LEAF_HASH (blksft, h, l)], endian);
| ^~~~~~~~~~~~~~~~~
In file included from ../../grub-core/fs/zfs/zfs.c:48:
../../include/grub/zfs/zap_leaf.h:72:16: note: while referencing 'l_hash'
72 | grub_uint16_t l_hash[0];
| ^~~~~~
Here I'd like to quote from the gcc document [1] which seems best to
explain what is going on here.
"Although the size of a zero-length array is zero, an array member of
this kind may increase the size of the enclosing type as a result of
tail padding. The offset of a zero-length array member from the
beginning of the enclosing structure is the same as the offset of an
array with one or more elements of the same type. The alignment of a
zero-length array is the same as the alignment of its elements.
Declaring zero-length arrays in other contexts, including as interior
members of structure objects or as non-member objects, is discouraged.
Accessing elements of zero-length arrays declared in such contexts is
undefined and may be diagnosed."
The l_hash[0] is apparnetly an interior member to the enclosed structure
while l_entries[0] is the trailing member. And the offending code tries
to access members in l_hash[0] array that triggers the diagnose.
Given that the l_entries[0] is used to get proper alignment to access
leaf chunks, we can accomplish the same thing through the ALIGN_UP macro
thus eliminating l_entries[0] from the structure. In this way we can
pacify the warning as l_hash[0] now becomes the last member to the
enclosed structure.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
Signed-off-by: Michael Chang <mchang@suse.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
This allows comparing file ages on EFI system partitions.
Signed-off-by: David Michael <fedora.dm0@gmail.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
This provides the node's attributes outside the iterator function
so the file modification time can be accessed and reported.
Signed-off-by: David Michael <fedora.dm0@gmail.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
gcc says:
grub-core/fs/squash4.c: In function ‘direct_read’:
grub-core/fs/squash4.c:868:10: error: ‘err’ may be used uninitialized in
this function [-Werror=maybe-uninitialized]
868 | if (err)
| ^
cc1: all warnings being treated as errors
This patch initializes it to GRUB_ERR_NONE.
Signed-off-by: Peter Jones <pjones@redhat.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
New 3- and 4-copy variants of RAID1 were merged into Linux kernel 5.5.
Add the two new profiles to the list of recognized ones. As this builds
on the same code as RAID1, only the redundancy level needs to be
adjusted, the rest is done by the existing code.
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Disable the -Wadress-of-packaed-member diagnostic for the grub_f2fs_label
function since the result is found to be false postive.
A pointer to the 'volume_name' member of 'struct grub_f2fs_superblock' is
guaranteed to be aligned as the offset of 'volume_name' within the struct
is dividable by the natural alignment on both 32- and 64-bit targets.
grub-core/fs/f2fs.c: In function ‘grub_f2fs_label’:
grub-core/fs/f2fs.c:1253:60: error: taking address of packed member of ‘struct grub_f2fs_superblock’ may result in an unaligned pointer value [-Werror=address-of-packed-member]
1253 | *label = (char *) grub_f2fs_utf16_to_utf8 (data->sblock.volume_name);
| ~~~~~~~~~~~~^~~~~~~~~~~~
cc1: all warnings being treated as errors
Reported-by: Neil MacLeod <neil@nmacleod.com>
Signed-off-by: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Tested-by: Neil MacLeod <neil@nmacleod.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
The function grub_get_node_path() could return uninitialized offset with
level == 0 if the block is greater than direct_index + 2 * direct_blks +
2 * indirect_blks + dindirect_blks. The uninitialized offset is then used
by function grub_f2fs_get_block() because level == 0 is valid and
meaningful return to be processed.
The fix is to set level = -1 as return value by grub_get_node_path() to
signify an error that the input block cannot be handled. Any caller
should therefore check level is negative or not before processing the
output.
Reported-by: Neil MacLeod <neil@nmacleod.com>
Signed-off-by: Michael Chang <mchang@suse.com>
Tested-by: Neil MacLeod <neil@nmacleod.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
The catkey->name could be unaligned since the address of 'void* record'
is calculated as offset in bytes to a malloc buffer.
The fix is using aligned buffer allocated by grub_malloc for holding
the UTF16 string copied from catkey->name. And use that buffer as
argument for grub_utf16_to_utf8 to convert to UTF8 strings.
In addition, using a new copy of buffer rather than catkey->name itself
for processing the endianess conversion, we can also get rid of the hunk
restoring byte order of catkey->name to what it was previously.
[ 59s] ../grub-core/fs/hfsplus.c: In function 'list_nodes':
[ 59s] ../grub-core/fs/hfsplus.c:738:57: error: taking address of packed member of 'struct grub_hfsplus_catkey' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 738 | *grub_utf16_to_utf8 ((grub_uint8_t *) filename, catkey->name,
[ 59s] | ~~~~~~^~~~~~
[ 59s] ../grub-core/fs/hfsplus.c: In function 'grub_hfsplus_label':
[ 59s] ../grub-core/fs/hfsplus.c:1019:57: error: taking address of packed member of 'struct grub_hfsplus_catkey' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 1019 | *grub_utf16_to_utf8 ((grub_uint8_t *) (*label), catkey->name,
[ 59s] | ~~~~~~^~~~~~
Signed-off-by: Michael Chang <mchang@suse.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Disable the -Wadress-of-packaed-member diagnostic for the
grub_jfs_getent function since the result is found to be false postive.
The leaf is read into memory as continous chunks in size of 32 bytes and
the pointer to its base is aligned, which also guarentee its member
leaf->namepart is aligned.
[ 60s] ../grub-core/fs/jfs.c: In function 'grub_jfs_getent':
[ 60s] ../grub-core/fs/jfs.c:557:44: error: taking address of packed member of 'struct grub_jfs_leaf_dirent' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 60s] 557 | le_to_cpu16_copy (filename + strpos, leaf->namepart, len < diro->data->namecomponentlen ? len
[ 60s] | ~~~~^~~~~~~~~~
[ 60s] ../grub-core/fs/jfs.c:570:48: error: taking address of packed member of 'struct grub_jfs_leaf_next_dirent' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 60s] 570 | le_to_cpu16_copy (filename + strpos, next_leaf->namepart, len < 15 ? len : 15);
[ 60s] | ~~~~~~~~~^~~~~~~~~~
[ 60s] cc1: all warnings being treated as errors
Signed-off-by: Michael Chang <mchang@suse.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Disable the -Wadress-of-packaed-member diagnostic for the
grub_cpio_find_file function since the result is found to be false
postive. Any pointers to member of the 'struct head hd' is aligned even
if the structure is packed without paddings.
[ 59s] In file included from ../grub-core/fs/cpio.c:51:
[ 59s] ../grub-core/fs/cpio_common.c: In function 'grub_cpio_find_file':
[ 59s] ../grub-core/fs/cpio_common.c:58:31: error: taking address of packed member of 'struct head' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 58 | data->size = read_number (hd.filesize, ARRAY_SIZE (hd.filesize));
[ 59s] | ~~^~~~~~~~~
[ 59s] ../grub-core/fs/cpio_common.c:60:29: error: taking address of packed member of 'struct head' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 60 | *mtime = read_number (hd.mtime, ARRAY_SIZE (hd.mtime));
[ 59s] | ~~^~~~~~
[ 59s] ../grub-core/fs/cpio_common.c:61:28: error: taking address of packed member of 'struct head' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 61 | modeval = read_number (hd.mode, ARRAY_SIZE (hd.mode));
[ 59s] | ~~^~~~~
[ 59s] ../grub-core/fs/cpio_common.c:62:29: error: taking address of packed member of 'struct head' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 62 | namesize = read_number (hd.namesize, ARRAY_SIZE (hd.namesize));
[ 59s] | ~~^~~~~~~~~
[ 59s] In file included from ../grub-core/fs/cpio_be.c:51:
[ 59s] ../grub-core/fs/cpio_common.c: In function 'grub_cpio_find_file':
[ 59s] ../grub-core/fs/cpio_common.c:58:31: error: taking address of packed member of 'struct head' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 58 | data->size = read_number (hd.filesize, ARRAY_SIZE (hd.filesize));
[ 59s] | ~~^~~~~~~~~
[ 59s] ../grub-core/fs/cpio_common.c:60:29: error: taking address of packed member of 'struct head' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 60 | *mtime = read_number (hd.mtime, ARRAY_SIZE (hd.mtime));
[ 59s] | ~~^~~~~~
[ 59s] ../grub-core/fs/cpio_common.c:61:28: error: taking address of packed member of 'struct head' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 61 | modeval = read_number (hd.mode, ARRAY_SIZE (hd.mode));
[ 59s] | ~~^~~~~
[ 59s] ../grub-core/fs/cpio_common.c:62:29: error: taking address of packed member of 'struct head' may result in an unaligned pointer value [-Werror=address-of-packed-member]
[ 59s] 62 | namesize = read_number (hd.namesize, ARRAY_SIZE (hd.namesize));
[ 59s] | ~~^~~~~~~~~
Signed-off-by: Michael Chang <mchang@suse.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
- Adds zstd support to the btrfs module.
- Adds a test case for btrfs zstd support.
- Changes top_srcdir to srcdir in the btrfs module's lzo include
following comments from Daniel Kiper about the zstd include.
Tested on Ubuntu-18.04 with a btrfs /boot partition with and without zstd
compression. A test case was also added to the test suite that fails before
the patch, and passes after.
Signed-off-by: Nick Terrell <terrelln@fb.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Let's provide file type info to the I/O layer. This way verifiers
framework and its users will be able to differentiate files and verify
only required ones.
This is preparatory patch.
Signed-off-by: Vladimir Serbinenko <phcoder@gmail.com>
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Reviewed-by: Ross Philipson <ross.philipson@oracle.com>
Add the RAID 6 recovery, in order to use a RAID 6 filesystem even if some
disks (up to two) are missing. This code use the md RAID 6 code already
present in grub.
Signed-off-by: Goffredo Baroncelli <kreijack@inwind.it>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Add support for recovery for a RAID 5 btrfs profile. In addition
it is added some code as preparatory work for RAID 6 recovery code.
Signed-off-by: Goffredo Baroncelli <kreijack@inwind.it>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Move the code in charge to read the data from disk into a separate
function. This helps to separate the error handling logic (which
depends on the different raid profiles) from the read from disk
logic. Refactoring this code increases the general readability too.
This is a preparatory patch, to help the adding of the RAID 5/6 recovery code.
Signed-off-by: Goffredo Baroncelli <kreijack@inwind.it>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
A portion of the logging code is moved outside of internal for(;;). The part
that is left inside is the one which depends on the internal for(;;) index.
This is a preparatory patch. The next one will refactor the code inside
the for(;;) into an another function.
Signed-off-by: Goffredo Baroncelli <kreijack@inwind.it>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Currently read from missing device triggers rescan. However, it is never
recorded that the device is missing. So, each read of a missing device
triggers rescan again and again. This behavior causes a lot of unneeded
rescans leading to huge slowdowns.
This patch fixes above mentioned issue. Information about missing devices
is stored in the data->devices_attached[] array as NULL value in dev
member. Rescan is triggered only if no information is found for a given
device. This means that only first time read triggers rescan.
The patch drops premature return. This way data->devices_attached[] is
filled even when a given device is missing.
Signed-off-by: Goffredo Baroncelli <kreikack@inwind.it>
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
The caller knows better if this error is fatal or not, i.e. another disk is
available or not.
This is a preparatory patch.
Signed-off-by: Goffredo Baroncelli <kreijack@inwind.it>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
This helper is used in a few places to help the debugging. As
conservative approach the error is only logged.
This does not impact the error handling.
Signed-off-by: Goffredo Baroncelli <kreijack@inwind.it>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
The sparse inode metadata format became a mkfs.xfs default in
xfsprogs-4.16.0, and such filesystems are now rejected by grub as
containing an incompatible feature.
In essence, this feature allows xfs to allocate inodes into fragmented
freespace. (Without this feature, if xfs could not allocate contiguous
space for 64 new inodes, inode creation would fail.)
In practice, the disk format change is restricted to the inode btree,
which as far as I can tell is not used by grub. If all you're doing
today is parsing a directory, reading an inode number, and converting
that inode number to a disk location, then ignoring this feature
should be fine, so I've added it to XFS_SB_FEAT_INCOMPAT_SUPPORTED
I did some brief testing of this patch by hacking up the regression
tests to completely fragment freespace on the test xfs filesystem, and
then write a large-ish number of inodes to consume any existing
contiguous 64-inode chunk. This way any files the grub tests add and
traverse would be in such a fragmented inode allocation. Tests passed,
but I'm not sure how to cleanly integrate that into the test harness.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Tested-by: Chris Murphy <lists@colorremedies.com>
"F2FS (Flash-Friendly File System) is flash-friendly file system which was merged
into Linux kernel v3.8 in 2013.
The motive for F2FS was to build a file system that from the start, takes into
account the characteristics of NAND flash memory-based storage devices (such as
solid-state disks, eMMC, and SD cards).
F2FS was designed on a basis of a log-structured file system approach, which
remedies some known issues of the older log structured file systems, such as
the snowball effect of wandering trees and high cleaning overhead. In addition,
since a NAND-based storage device shows different characteristics according to
its internal geometry or flash memory management scheme (such as the Flash
Translation Layer or FTL), it supports various parameters not only for
configuring on-disk layout, but also for selecting allocation and cleaning
algorithm.", quote by https://en.wikipedia.org/wiki/F2FS.
The source codes for F2FS are available from:
http://git.kernel.org/cgit/linux/kernel/git/jaegeuk/f2fs.githttp://git.kernel.org/cgit/linux/kernel/git/jaegeuk/f2fs-tools.git
This patch has been integrated in OpenMandriva Lx 3.
https://www.openmandriva.org/
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Pete Batard <pete@akeo.ie>
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
When building with GCC 8, there are several errors regarding packed-not-aligned.
./include/grub/gpt_partition.h:79:1: error: alignment 1 of ‘struct grub_gpt_partentry’ is less than 8 [-Werror=packed-not-aligned]
This patch fixes the build error by cleaning up the ambiguity of placing
aligned structure in a packed one. In "struct grub_btrfs_time" and "struct
grub_gpt_part_type", the aligned attribute seems to be superfluous, and also
has to be packed, to ensure the structure is bit-to-bit mapped to the format
laid on disk. I think we could blame to copy and paste error here for the
mistake. In "struct efi_variable", we have to use grub_efi_packed_guid_t, as
the name suggests. :)
Signed-off-by: Michael Chang <mchang@suse.com>
Tested-by: Michael Chang <mchang@suse.com>
Tested-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>