This allows plugins to load an archive supplied as the 'deliverable' of the
cabinet archive. This means plugins can bundle up a set of images in a cross
platform way, for instance adding boot.img+os.img+manifest.xml into a zip file,
rather than having to (ab)use the DfuSe file format or deal with libarchive
directly.
This metadata key is now unnecessary, as firmwares are expected to set the
version format in the metadata.
If the metadata is missing, the LVFS allows a per-vendor default for non-semver
release versions which is now unconditionally set in metadata.
Plugins are allowed to 'opt-out' of this behaviour using _RULE_INHIBITS_IDLE.
This should be used where waking up the hardware to coldplug is expensive,
either from a power consumption point of view, or if other artifacts are going
to be seem -- for instance if the screen flickers when probing display devices.
This functionality is also inhibited when the actual upgrade is happening,
for obvious reasons.
Admins can turn off this auto-sleep behaviour by editing the daemon.conf file.
Fixes https://github.com/hughsie/fwupd/issues/417
This speeds up matching for GUIDs by about 90%, taking the query from 3.17ms to
about 0.33ms on my Thinkpad. This is more important for slow ARM hardware,
where strcmp() is more expensive than on x64.
The same information can be seen in `/usr/libexec/fwupd/fwupdtool hwids` and
for most users verbose mode is turned off -- so we're doing all those expensive
allocations for nothing.
This means we don't have to have all the thousands of GUIDs as tiny allocated
strings being passed around to all plugins in a GPtrArray.
This also reduces our heap usage by about 6%.
These are set from the AppStream metadata and are specific to the firmware
release.
If not provided, the install duration falls back to the per-device duration
values which can be set in the quirk files.
This fixes a regression in 1.2.0 -- the XML files are metainfo.xml files and
thus don't have the surrounding <components> parent tag.
We also want to return XML without the <description> wrapper node, so switch to
including siblings instead.
If the FuDevice is changed during a replug then the `UPDATE_STATE_SUCCESS` will
not be stored on the current FuDevice, which means we store an update-state of
`unknown` to the history database.
Which means we get no success or failure reports, which is bad.
This means we are storing the distro that was used to perform the update,
rather than the distro that was used to do the upload.
Fixes https://github.com/hughsie/fwupd/issues/838
We want the XML to look like:
<custom>
<value key="fwupd::RemoteId">lvfs</value>
</custom>
not:
<custom>
<fwupd::RemoteId>lvfs</fwupd::RemoteId>
</custom>
Also, fix the XPath query string to actually match the container checksum, and
actually save the custom node to the builder source.
This fixes a regression in 1.2.0 where no reports could be uploaded.
If the poll source is scheduled just at the right time, we might only get 8x
'10ms ticks' in a 100ms window. This fixes an occasional build failure on
slower hardware and in CI.
The libxmlb library is much faster to query, and does not require the daemon
to parse the XML metadata at startup. It's a zero-copy mmap design that is more
modern and less clunky.
RSS has reduced from 3Mb (peak 3.61Mb) to 1Mb (peak 1.07Mb) and the startup
time has gone from 280ms to 250ms.
This allows a frontend to call update on an individual device ID which will
cause a CAB file to be downloaded, but then also re-use the same CAB file to
try to process devices with a relationship as part of a transaction.
With handling composite CAB files this information isn't relayed to the
frontend on which release is being handled, but was rather guessed.
Avoid showing invalid information in this instance.
At the moment firmware can declare that it has certain requirements, for
instance the existing firmware version, the bootloader version, or the
vendor ID of the device.
In some situations we actually want to check the firmware version of a
*different* device. Good examples here would be only allowing an EC upgrade if
a specific BIOS update has already been done, or only allowing a wireless
reciever to be updated if the attached wireless devices have been updated first.
To use this, you can do something like:
<requires>
<id compare="ge" version="1.1.3">org.freedesktop.fwupd</id>
<firmware compare="ge" version="0.9.0">guid-of-other-device</firmware>
</requires>
The profiling data is of limited use, and better data can be obtained using
kcachegrind and massif. Additionally, the profile samples were the cause of the
small RSS growth over time, when in reality the data would only be shown when
the verbose switch is used at daemon startup.
Asserts mean crashes, and crashes mean reported bugs. In this case the cause is
an older daemon loading plugins using newer features than it knew how to handle.
Now devices can have multiple GUIDs and do not share platform IDs there is
really no point waiting to add the device.
This allows us to remove a whole lot of code for this now-unused functionality.
It wasn't hugely clear what the platform ID was actually meant to represent. In
some cases it was being used like a physical ID, in others it was a logical ID,
and in others it was both. In some cases it was even used as a sysfs path.
Clear up all the confusion by splitting the platform ID into two parts, an
optional *physical* ID to represent the electrical connection, and an optional
*logical* ID to disambiguate composite devices with the same physical ID.
Also create an explicit sysfs_path getter for FuUdevDevice to make this clear.
This allows WAIT_FOR_REPLUG to always work, rather than depending on the order
that the GUIDs were added, and that the kernel would always return the same
sysfs path (which it doesn't have to do, especially for hidraw devices).