This indicates the GUID in some way contributed to the result decided.
It also allows us to match the submitted HSI results back to a firmware
stream on the LVFS, which allows us to allow vendors to see a subset of
results for uploaded devices.
There is a lot of code in fwupd that just assigns a shared object type to
a FuPlugin, and then for each device on that plugin assigns that same shared
object to each FuDevice.
Rather than proxy several kinds of information stores over two different levels
of abstraction create a 'context' which contains the shared *system* state
between the daemon, the plugins and the daemon.
This will allow us to hold other per-machine state in the future, for instance
the system battery level or AC state.
The best way of not getting something wrong is to not require it in the first
place...
All plugins now use DeviceInstanceId-style quirk matches and we can just drop
the prefix in all files. We were treating HwId=, Guid= and DeviceInstanceId= in
exactly the same way -- they're just converted to GUIDs when building the silo!
When this is done, include:
* Including the hash
* Including anything that is not ABI stable in plugins yet
Suggested-by: Simon McVittie <smcv@debian.org>
This is much more efficient than parsing hundreds of lines of /proc/cpuinfo
and also causes hundreds of thousands less allocations at startup. For systems
with dozens of virtual CPUs the deduplication of device objects was increasing
start up time considerably.
Use the msr plugin to read the microcode version as this is not obtained using
CPUID, as it is instead being provided in an MSR.
To do this, rely on the AppStream ID to map to a translated string (providing a
fallback for clients that do not care) and switch the free-form result string
into a set of enumerated values that can be translated.
This fixes some of the problems where some things have to be enabled to "pass"
and other attributes have to be some other state. For cases where we want the
user to "do" something, provide a URL to a wiki page that we update out-of-band
of fwupd releases.
This only checks that it was available from the CPU.
To be complete an additional check should be made to show that it
was actually enabled from the firmware.
This will require a kernel modification though because MSR access
will be forbidden from userland while in kernel lockdown.
The HSI specification is currently incomplete and in active development.
Sample output for my Lenovo P50 Laptop:
Host Security ID: HSI:2+UA!
HSI-1
✔ UEFI dbx: OK
✔ TPM: v2.0
✔ SPI: Write disabled
✔ SPI: Lock enabled
✔ SPI: SMM required
✔ UEFI Secure Boot: Enabled
HSI-2
✔ TPM Reconstruction: Matched PCR0 reading
HSI-3
✘ Linux Kernel S3 Sleep: Deep sleep available
HSI-4
✘ Intel CET: Unavailable
Runtime Suffix -U
✔ Firmware Updates: Newest release is 8 months old
Runtime Suffix -A
✔ Firmware Attestation: OK
Runtime Suffix -!
✔ fwupd plugins: OK
✔ Linux Kernel: OK
✔ Linux Kernel: Locked down
✘ Linux Swap: Not encrypted
New enough hardware to have this feature isn't going to be in the marketplace
for a while. To use that newer hardware requires a very recent kernel (5.6 at
least, although it will probably be at least 5.9 by the time the hardware is
released).
The CET status will be used in future functionality.