This is a safer version of g_bytes_new_from_bytes() which returns a GError
if the offsets are invalid rather than emitting a critical warning.
This prevents a critical warning and potential crash when parsing invalid
bcm57xx firmware.
This allows the plugin to force a reload of the device using a new GUdevDevice
object. This is required as the values are cached in the immutable object.
We have to supply it when using fu_device_bind_driver(), so we need to get the
old value for ->attach() to avoid guessing what driver was previously loaded.
This would allow us to add other component types in the future, for instance a
'generic' type that adds information to the composite device.
Any generic components would need to have a requirement of 1.5.2 to avoid
showing a runtime warning when trying to get the local file details.
The former drags on glib-networking and then gsettings-desktop-schemas, which
add over 5Mb to the minimal IoT and CoreOS composes. Everything already uses
libcurl (even NetworkManager!) and so this is an easy way to reduce image size.
The logic here is that the attestation is more than just the PCR0 value, and
multiple device firmware (such as EC, ME, etc.) needs to be included to validate
the system.
By the same logic, updates for the system firmware do not tell the whole story,
and confuse HSI as a specification. Remove them.
The FuDevice derives from FwupdDevice, and yet both objects have a (potentially
different) parent and set of children. This is super confusing, and just not
required.
Removing the duplication also removes a sizable memory leak when hotplugging
composite devices as the parent was ref'd by the child and the child was ref'd
by the parent in different objects... Fun to debug...
The same plugin name was being added to the device from the quirk file more than
once, and so we enumerated the device *again* and tried to add a duplicate
device -- the device list correctly refusing to do so.
Check the plugin name does not already exist before adding it, and add a self
test to catch this for the future.
The GLib g_byte_array_set_size() function does not zero the contents if the
array size is larger, which leads to unpredictable output when using valgrind.