This function returns a list of sibling devices that have a chosen subsystem,
allowing callers to perform a limited walk of the device tree to locate related
devices.
This allows plugins to set the battery power state of the *machine* which means
we can automatically inhibit devices with FWUPD_DEVICE_FLAG_REQUIRE_AC set.
It also allows to set the BatteryThreshold to 25% for Lenovo hardware, and we
can override other vendors with further quirks as required.
Fixes https://github.com/fwupd/fwupd/issues/3084
The activation flag is stored into the history database, but not all
plugins will want to inherit it on coldplug the next time the daemon
is started.
For example the Dell Dock plugin will query this information from the
device and it will prevent getting into a bad state as a result.
Fixes: #3106
If only one plugin is enabled and there exists a device match for a GType that
has not been registered then the user sees a GType error about not being able
to create a device that wouldn't be created anyway.
By removing the error in the quirk parser we will catch actual errors in
fu_plugin_runner_backend_device_added() which actually does chcek for
FWUPD_PLUGIN_FLAG_DISABLED.
Fixes https://github.com/fwupd/fwupd/issues/3099
There is a lot of code in fwupd that just assigns a shared object type to
a FuPlugin, and then for each device on that plugin assigns that same shared
object to each FuDevice.
Rather than proxy several kinds of information stores over two different levels
of abstraction create a 'context' which contains the shared *system* state
between the daemon, the plugins and the daemon.
This will allow us to hold other per-machine state in the future, for instance
the system battery level or AC state.
We already have two things managing the UPDATABLE_HIDDEN->UPDATABLE transition,
and we're about to add a third.
Add a 'stackable' inhibit-style API so we do not accidentally mark a device as
updatable when it should remain hidden.
This makes a lot more sense; we can parse a firmware and export the same XML
we would use in a .builder.xml file. This allows us to two two things:
* Check we can round trip from XML -> binary -> XML
* Using a .builder.xml file we can check ->write() is endian safe
The idea here is to return the size of the firmware, including the header,
footer or other encapsulation. It would be expected that this value would
include the alignment if provided.
This allows us to 'nest' firmware formats, and removes a ton of duplication.
The aim here is to deprecate FuFirmwareImage -- it's almost always acting
as a 'child' FuFirmware instance, and even copies most of the vfuncs to allow
custom types. If I'm struggling to work out what should be a FuFirmware and
what should be a FuFirmwareImage then a plugin author has no hope.
For simple payloads we were adding bytes into an image and then the image into
a firmware. This gets really messy when most plugins are treating the FuFirmware
*as* the binary firmware file.
The GBytes saved in the FuFirmware would be considered the payload with the
aim of not using FuFirmwareImage in the single-image case.
Keeping *internal* API and ABI compatibility makes working with an already
complex codebase more mentally demanding than it needs to be.
Remember: plugins should be in-tree and upstream! If your out of tree plugin
stops working then it should be upstream.
The public-facing libfwupd will remain API and ABI stable for obvious reasons.