Note that g_assert() should not be used in unit tests, since it is a
no-op when compiling with G_DISABLE_ASSERT. Use g_assert() in production
code, and g_assert_true() in unit tests.
See https://github.com/fwupd/fwupd/issues/3790
It's actually quite hard to build a front-end for fwupd at the moment
as you're never sure when the progress bar is going to zip back to 0%
and start all over again. Some plugins go 0..100% for write, others
go 0..100% for erase, then again for write, then *again* for verify.
By creating a helper object we can easily split up the progress of the
specific task, e.g. write_firmware().
We can encode at the plugin level "the erase takes 50% of the time, the
write takes 40% and the read takes 10%". This means we can have a
progressbar which goes up just once at a consistent speed.
The CustomFlags feature is a bit of a hack where we just join the flags
and store in the device metadata section as a string. This makes it
inefficient to check if just one flag exists as we have to split the
string to a temporary array each time.
Rather than adding to the hack by splitting, appending (if not exists)
then joining again, store the flags in the plugin privdata directly.
This allows us to support negating custom properties (e.g. ~hint) and
also allows quirks to append custom values without duplicating them on
each GUID match, e.g.
[USB\VID_17EF&PID_307F]
Plugin = customflag1
[USB\VID_17EF&PID_307F&HUB_0002]
Flags = customflag2
...would result in customflag1,customflag2 which is the same as you'd
get from an enumerated device flag doing the same thing.
This will improve the pre-commit hook coverage.
For dfu: waive pre-commit checks for internal header file
This is internal to the plugin not to the library.
Until gi-docgen is declared stable support either of them.
This effectively means that hand builds and CI builds will use
gi-docgen, but distro builds use gtk-doc-tools.
This allows us to 'nest' firmware formats, and removes a ton of duplication.
The aim here is to deprecate FuFirmwareImage -- it's almost always acting
as a 'child' FuFirmware instance, and even copies most of the vfuncs to allow
custom types. If I'm struggling to work out what should be a FuFirmware and
what should be a FuFirmwareImage then a plugin author has no hope.
For simple payloads we were adding bytes into an image and then the image into
a firmware. This gets really messy when most plugins are treating the FuFirmware
*as* the binary firmware file.
The GBytes saved in the FuFirmware would be considered the payload with the
aim of not using FuFirmwareImage in the single-image case.