tristate features will automatically disable if dependencies marked
as required are missing.
Packagers can manually override using `auto_features`.
Link: https://mesonbuild.com/Build-options.html#features
We were calling g_module_symbol() 2703 times, which is actually more
expensive than you'd think.
It also means the plugins are actually what we tell people they are:
A set of vfuncs that get run. The reality before that they were dlsym'd
functions that get called at pretty random times.
It's actually quite hard to build a front-end for fwupd at the moment
as you're never sure when the progress bar is going to zip back to 0%
and start all over again. Some plugins go 0..100% for write, others
go 0..100% for erase, then again for write, then *again* for verify.
By creating a helper object we can easily split up the progress of the
specific task, e.g. write_firmware().
We can encode at the plugin level "the erase takes 50% of the time, the
write takes 40% and the read takes 10%". This means we can have a
progressbar which goes up just once at a consistent speed.
More than one person has asked about 'why call fu_plugin_update() for a
reinstall or downgrade' and I didn't have a very good answer.
The plugin API is not officially stable, and we should fix things to be
less confusing. Use the same verbs as the FuDevice vfuncs instead.
Based on a patch by Twain Byrnes <binarynewts@google.com>, many thanks.
Use this to test:
sudo FWUPD_TEST_PLUGIN_XML="<config><delay_decompress_ms>100</delay_decompress_ms></config>" \
./src/fwupdtool --plugins test get-devices -v
Currently the SUCCESS state overrides reboot-needed, thus making the
devices considered for successive git-upgrades within same boot. The
change preserves the REBOOT_NEEDED state. It also added a missed
'changed' signal, which otherwise would skip updating the persistent
state.
Change-Id: I6f60606f2253d89eab2f5bddceba19d19c4c9c97
The best way of not getting something wrong is to not require it in the first
place...
All plugins now use DeviceInstanceId-style quirk matches and we can just drop
the prefix in all files. We were treating HwId=, Guid= and DeviceInstanceId= in
exactly the same way -- they're just converted to GUIDs when building the silo!
Devices may want to support more than one protocol, and for some devices
(e.g. Unifying peripherals stuck in bootloader mode) you might not even be able
to query for the correct protocol anyway.
When this is done, include:
* Including the hash
* Including anything that is not ABI stable in plugins yet
Suggested-by: Simon McVittie <smcv@debian.org>
Asking the user for the UID mapping isn't working very well, as it requires lots
of manual handholding. It also doesn't work very well when the device vendor
does not actually have a PCI ID or if the vendor has split into two entities.
Just use the OUI address as an additional VendorID and match any of the device
IDs against any of the metadata-supplied values.
If we say that the version format should be the same for the `version_lowest`
and the `version_bootloader` then it does not always make sense to set it at
the same time.
Moving the `version_format` to a standalone first-class property also means it
can be typically be set in the custom device `_init()` function, which means we
don't need to worry about *changing* ther version format as set by the USB and
UDev superclass helpers.
Some hardware does not handle upgrading from version 1.2.2 to 1.2.4 and instead
needs to be upgraded from 1.2.2->1.2.3->1.2.4 so that on-device metadata can be
migrated correctly.
Add a new per-device flag `install-all-releases` which causes the daemon to not
skip directly to the newest release. This is designed to be set from a quirk
file.
This can obviously only be used for devices that can apply firmware "live" and
thus do not need a reboot or system shutdown to actually apply the firmware.
This also needs the cabinet archive to ship multiple versions of the firmware,
and for the metainfo.xml file to refer to multiple release objects.
Some plugins have devices with more than one protocol. Logically the protocol
belongs to the device, not the plugin, and in the future we could use this to
further check firmware that's about to be deployed.
This is also not exported into libfwupd (yet?) as it's remains a debug-feature
only -- protocols are not actually required for devices to be added.
This leads to madness, as some formats are supersets of the detected types,
e.g. 'intel-me' is detected as 'quad' and 'bcd' is detected as 'pair'.
Where the version format is defined in a specification or hardcoded in the
source use a hardcoded enum value, otherwise use a quirk override.
Additionally, warn if the version does not match the defined version format
This is intended for devices that it is not safe to immediately activate
the firmware. It may be called at a more convenient time instead.
Both fwupdmgr and fwupdtool support the feature.
- if called at runtime with fwupdmgr it uses the daemon
- during shutdown fwupdtool uses the pending.db to perform this feature.
Future metadata from the LVFS will set the protocol the firmware is expected to
use. As vendors love to re-use common terms like DFU for incompatible protocols,
namespace them with the controlling company ID with an approximate reverse DNS
namespace.
This also allows more than one plugin to define support for the same protocol,
for instance rts54hid+rts54hub and synapticsmst+dell-dock.
This allows a frontend to call update on an individual device ID which will
cause a CAB file to be downloaded, but then also re-use the same CAB file to
try to process devices with a relationship as part of a transaction.