This allows us to print better warning strings, and in the future
would allow us to profile each operation in a meaningful way.
Also, add context to some of the progress steps as required.
Provide a device instance builder that allows plugins to easily
create multiple instance IDs based on parent attributes.
Also fix a lot of the instance ID orders, so that we add more generic
IDs first, and more specific IDs after.
tristate features will automatically disable if dependencies marked
as required are missing.
Packagers can manually override using `auto_features`.
Link: https://mesonbuild.com/Build-options.html#features
This allows us to replace the 'dfu-tool replace' with a much more
controlled 'fwupdtool firmware-patch' command that patches at a set of
specific offsets.
Drop in the new functionality into the existing firmware ->write()
vfuncs so that the image headers, footers and/or checksums are correct.
We now have 9 different plugins all using this functionality, and we're
about to add one more. Move this into common code so that all the
plugins are using the same endian and bufsz-safe versions.
We were calling g_module_symbol() 2703 times, which is actually more
expensive than you'd think.
It also means the plugins are actually what we tell people they are:
A set of vfuncs that get run. The reality before that they were dlsym'd
functions that get called at pretty random times.
We only had to pile everything into the src/fuzzing/firmware directory
because honggfuzz could not cope with more than one input path.
This way each plugin is self contained and easy to copy.
Also, install the fuzzing builder objects as this fixes the installed
tests when srcdir does not exist.
Based on a patch by Jan Tojnar <jtojnar@gmail.com>, many thanks.
We actually check for fu_device_add_guid() not being an actual GUID,
but in the future we'll be warning if we do this magic fallback as it
hides not-quite-GUID typos.
No behaviour change.
It's actually quite hard to build a front-end for fwupd at the moment
as you're never sure when the progress bar is going to zip back to 0%
and start all over again. Some plugins go 0..100% for write, others
go 0..100% for erase, then again for write, then *again* for verify.
By creating a helper object we can easily split up the progress of the
specific task, e.g. write_firmware().
We can encode at the plugin level "the erase takes 50% of the time, the
write takes 40% and the read takes 10%". This means we can have a
progressbar which goes up just once at a consistent speed.
There are now multiple plugins using drm_dp_aux_dev interface which
may potentially be combined with an amdgpu. Prevent exercising this
interface with any plugin using DP aux unless a new enough kernel is
installed.
There is a lot of code in fwupd that just assigns a shared object type to
a FuPlugin, and then for each device on that plugin assigns that same shared
object to each FuDevice.
Rather than proxy several kinds of information stores over two different levels
of abstraction create a 'context' which contains the shared *system* state
between the daemon, the plugins and the daemon.
This will allow us to hold other per-machine state in the future, for instance
the system battery level or AC state.