This makes a lot more sense; we can parse a firmware and export the same XML
we would use in a .builder.xml file. This allows us to two two things:
* Check we can round trip from XML -> binary -> XML
* Using a .builder.xml file we can check ->write() is endian safe
The idea here is to return the size of the firmware, including the header,
footer or other encapsulation. It would be expected that this value would
include the alignment if provided.
This allows us to 'nest' firmware formats, and removes a ton of duplication.
The aim here is to deprecate FuFirmwareImage -- it's almost always acting
as a 'child' FuFirmware instance, and even copies most of the vfuncs to allow
custom types. If I'm struggling to work out what should be a FuFirmware and
what should be a FuFirmwareImage then a plugin author has no hope.
For simple payloads we were adding bytes into an image and then the image into
a firmware. This gets really messy when most plugins are treating the FuFirmware
*as* the binary firmware file.
The GBytes saved in the FuFirmware would be considered the payload with the
aim of not using FuFirmwareImage in the single-image case.
Keeping *internal* API and ABI compatibility makes working with an already
complex codebase more mentally demanding than it needs to be.
Remember: plugins should be in-tree and upstream! If your out of tree plugin
stops working then it should be upstream.
The public-facing libfwupd will remain API and ABI stable for obvious reasons.
We want to make it as easy as possible for devices to refuse to update on low
battery, as this will likely be one of the WWCB requirements.
Ideally devices will check the battery level inside the firmware, but by also
providing the battery level to fwupd we can give the user a warning *before*
the update has started and without switching the device into bootloader mode.
Rather than trying to guess typos, force each plugin to register the quirk
keys it supports, so we can show a sensible warning if required at startup on
the console.
NOTE that currently this is implemented for GATT characteristics only,
but can be extended to other types of objects.
Listening for property changes in a bluez characteristic requires a
long-lived connection or proxy, so this also refactors bluez device
UUIDs into a simple object that keeps the path, the proxy and the signal
id in case a callback is registered for this UUID.
An additional advantage of this is that fwupd no longer creates a
throwaway proxy object for every read and write UUID operation.
This is typically a Linux sysfs path or USB platform ID and is used in a
different way to the physical ID. The physical ID is only set for some devices
after setup() and depends on the subsystem list, and this would not be defined
for devices that do not match a plugin.
This also fixes an regression where the FuDeviceList fails to match the new
FuUdevDevice device in fu_device_list_get_by_guids_removed() and instead
silently gets 'fixed up' only if FWUPD_DEVICE_FLAG_NO_GUID_MATCHING is not set.
This also allows us to move the various backends device caches to FuBackend as
we now have a suitable ID that is for just the backend to use.
There are now two 'backends' of device plug/unplug events, and there is about
to become three. Rather than just adding two more vfuncs for every backend type
define common ones that all providers can use.
Also fix up the existing in-tree plugins to use the new vfunc names and filter
on the correct GType.
This allows us to check that the plugin is writing into a mutable buffer. Also
fix up the plugins that are currently 'wrong' and use the new function for the
plugins doing the right thing.
At the moment FuChunks are sometimes mutable, and sometimes immutable, and it's
all a bit too low level for comfort.
Before we can do any kind of optimisation or verification we need plugins to
stop reading directly from the C structure. The aim here is to make FuChunk
optionally mutable without making assumptions about the memory model, and also
to be able to introspect it for the docs.
This is really useful when working out HwId quirk values for remote systems.
fwupdtool export-hwids target.hwids
vim target.hwids
fwupdtool hwids target.hwids
It is impossible to choose a static default that is appropriate for both a tiny
ARM IoT device and a giant Xeon server.
Fixes https://github.com/fwupd/fwupd/issues/2760
That giant uint64_t isn't looking so big now, and we'll want to add even more
to it in the future. Split out some private flags that are never useful to the
client, although the #defines will have to remain until we break API again.
The fprint daemon only keeps the device open for 5 seconds and then releases it,
which seems like a small window to hit.
But! We're asking the user to authenticate with the same device we're about to
upgrade so a different part of the stack woke up the hardware just before we're
about to deploy an update onto it.
Just retry a few times to make sure the device is idle. Use a flag to prevent
accidentally causing regressions in other plugins.
Fixes https://github.com/fwupd/fwupd/issues/2650
This is a safer version of g_bytes_new_from_bytes() which returns a GError
if the offsets are invalid rather than emitting a critical warning.
This prevents a critical warning and potential crash when parsing invalid
bcm57xx firmware.
We have to supply it when using fu_device_bind_driver(), so we need to get the
old value for ->attach() to avoid guessing what driver was previously loaded.
The same plugin name was being added to the device from the quirk file more than
once, and so we enumerated the device *again* and tried to add a duplicate
device -- the device list correctly refusing to do so.
Check the plugin name does not already exist before adding it, and add a self
test to catch this for the future.