Some Poly usb devices report zero in the bwPollTimeout field of
GET_STATUS request. The host can issue the next DFU_DNLOAD
request immediately without any delay.
Introduced a private flag to skip the default DNLOAD timeout
(5ms) fix. It could remarkably reduce the firmware downloading
time taking into account the large firmware (more than 500MB).
The best way of not getting something wrong is to not require it in the first
place...
All plugins now use DeviceInstanceId-style quirk matches and we can just drop
the prefix in all files. We were treating HwId=, Guid= and DeviceInstanceId= in
exactly the same way -- they're just converted to GUIDs when building the silo!
This bootloader is *weird* -- the chip ID is the first two bytes of the serial
number and the data is offset and encoded in UTF-8, not UTF-16.
The sector information is also wrong. Gah!
As described in DFU protocol (7. Manifestation Phase), after the
firmware reprogramming is done, if bitWillDetach = 1, it doesn't
require the host to issue a USB bus reset, but the device can
generate a detach-attach sequence itself to go back to normal.
Add a quirk flag "no-bus-reset-attach" to skip the bus reset in
dfu_device_attach(), and increase the "RemoveDelay" as well.
For some Poly USB Cameras, it takes a longer time than the
default (FU_DEVICE_REMOVE_DELAY_RE_ENUMERATE) for being detached
to DFU or attached to normal mode. Need to specify the timeout in
"RemoveDelay" quirk key.
Also replace the hard-coded timeout with fu_device_get_remove_delay()
in dfu-tool.c.
Some devices may accumulate the firmware image and perform the
entire reprogramming operation at one time. In this case, the
device enters dfuMANIFEST-SYNC or dfuMANIFEST state after
dfuDNLOAD-IDLE.
The fwupd shall be able to poll the status from the device via
DFU_GETSTATUS until the device completes the reprogramming or
reports an error.
For details, please refer to Section 7. Manifestation Phase and
A.1 Interface State Transition Diagram in the USB DFU protocol.
https://www.usb.org/sites/default/files/DFU_1.1.pdf
For not affecting the other DFU capable devices, introduce a quirk
"manifest-poll" to limit the logic.
MATEKF722SE has unconvetional behavior for dfu protocol, where the sector size
isn't specified and sector type is shiffted left by 1. This happens only for
one sector.
Sector parsing from MATEKF722SE:
* `016Kg`
* `64Kg`
* `128Kg`
* `048 e`
* `528e`
* `004 e`
This also lets us remove the call to dfu_device_wait_for_replug() which was
causing a deadlock due to unsafe main context usage. Splitting the code allows
us to use the device list to watch for replug, without adding even more Jabra-
specific plugin code to the DFU plugin.
Looking at this with a 40,000ft view, the Jabra runtime really doesn't have
much in common with DFU and the reason it was originally all lumped together
was that the daemon couldn't "change" plugins between detach and update.
It's unfortunate that we have to include a sleep() in the DFU code after the
DFU probe, but this is specified by Jabra themselves. Attempting to open the
device without waiting reboots the hub back into runtime firmware mode, so we
can't even retry the failing setup action.
This makes startup quicker as we no longer have to probe every USB device, and
is now possible with the new GUIDs we added. Devices not using the
specification-provided values can (and already are) worked around with quirks.
These are GUIDs that are related to the main device, but should not be used for
quirk matching. For instance, we might want to list the GUIDs for a bootloader
mode, but we don't want to import all the quirks for the bootloader when in the
runtime mode.
This pivots the data storage so that the group is used as the preconditon
and the key name is used as the parameter to change. This allows a more natural
data flow, where a new device needs one new group and a few few keys, rather
than multiple groups, each with one key.
This also allows us to remove the key globbing when matching the version format
which is often a source of confusion.
Whilst changing all the quirk files, change the key prefixes to be more familiar
to Windows users (e.g. Hwid -> Smbios, and FuUsbDevice -> DeviceInstanceId)
who have to use the same IDs in Windows Update.
This also allows us to pre-match the desired plugin, rather than calling the
probe() function on each plugin.
This allows us to flash hardware like the Retrode and other devices using chips
like the AT90USB1287.
The test files can be re-generated using the sample code found here:
https://github.com/hughsie/fwupd-test-firmware and are designed
to be used on the AT90USBKEY2 development board.
This also adds an *almost* throw-away python script to import the chip-ids from
the default conf file from the avrdude project. I've imported it here in case we
have to start caring about different page sizes or application offsets.
Notably, bootloaders for this class of device export an incorrect DFU interface.
Additionally, allow setting the buffer size for the UPLOAD to a larger size
than the defined device transfer size, which allows us to return the full
packet from the larger XMEGA devices.
Ignoring the warning is not good enough when we're setting policy based on the
specific version. Use the new quirk functionality to do this easily, which
also allows us to remove one more thing in the quirk mega-bitfield.
This allows us to remove the Jabra-specific quirk entry in the device bitfield,
and more importantly allows us to support some more Jabra devices in the future
without code changes.
This is slightly more verbose than desired as we also have to include the quirk
information when running the dfu-tool, which does not have an already set-up
FuQuirks object as it has no plugin.