Lenovo systems that offer a BIOS setting for ThunderboltAccess will
use this option to control whether the IOMMU is enabled by default
or not.
It may be counter-intuitive; but as there are other more physically
difficult to attack PCIe devices it's better to have the IOMMU
enabled pre-boot even if it enables access to Thunderbolt/USB4.
Fixes: #5314
Saving the quirks in the GResource section worked well, but it made the build
system very complicated and also meant the .data section was duplicated in
both `fwupd` and `fwupdtool` -- negating a lot of the hard-fought savings.
Simplify this feature so that we just `cat` all the quirk files together, then
gzip them into a single file. This means that at startup fwupd only needs to
check the mtime of one file, and weirdly it's actually faster to load a smaller
compressed file from disk that it is to load multiple uncompressed files.
Semantically it is the desire of the security attribute, not the bios
attribute, i.e. you could imagine that a specific attribute would have
to be *foo or bar or baz* for HSI-1 and *only foo* for HSI-2
Also make it easier to add possible BIOS attribute target values in
plugin code.
This means we don't need to worry about changing multiple
implementations if the HSI levels change for a specific ID.
It also means we can fake HSI results in the future without having
to also store the 'correct' level in the input file.
We tried to solve this by matching the org.fwupd.hsi AppStream ID, but
in some cases the resolution depends on what actually failed.
Add "the action the user is supposed to do" as flags so that the
front-end can translate this in the appropriate way, for instance,
using a different string for log events and HSI dialogs.
We were calling g_module_symbol() 2703 times, which is actually more
expensive than you'd think.
It also means the plugins are actually what we tell people they are:
A set of vfuncs that get run. The reality before that they were dlsym'd
functions that get called at pretty random times.
There are now multiple plugins using drm_dp_aux_dev interface which
may potentially be combined with an amdgpu. Prevent exercising this
interface with any plugin using DP aux unless a new enough kernel is
installed.
There is a lot of code in fwupd that just assigns a shared object type to
a FuPlugin, and then for each device on that plugin assigns that same shared
object to each FuDevice.
Rather than proxy several kinds of information stores over two different levels
of abstraction create a 'context' which contains the shared *system* state
between the daemon, the plugins and the daemon.
This will allow us to hold other per-machine state in the future, for instance
the system battery level or AC state.
The best way of not getting something wrong is to not require it in the first
place...
All plugins now use DeviceInstanceId-style quirk matches and we can just drop
the prefix in all files. We were treating HwId=, Guid= and DeviceInstanceId= in
exactly the same way -- they're just converted to GUIDs when building the silo!
There are now two 'backends' of device plug/unplug events, and there is about
to become three. Rather than just adding two more vfuncs for every backend type
define common ones that all providers can use.
Also fix up the existing in-tree plugins to use the new vfunc names and filter
on the correct GType.
When this is done, include:
* Including the hash
* Including anything that is not ABI stable in plugins yet
Suggested-by: Simon McVittie <smcv@debian.org>
To do this, rely on the AppStream ID to map to a translated string (providing a
fallback for clients that do not care) and switch the free-form result string
into a set of enumerated values that can be translated.
This fixes some of the problems where some things have to be enabled to "pass"
and other attributes have to be some other state. For cases where we want the
user to "do" something, provide a URL to a wiki page that we update out-of-band
of fwupd releases.