Note that g_assert() should not be used in unit tests, since it is a
no-op when compiling with G_DISABLE_ASSERT. Use g_assert() in production
code, and g_assert_true() in unit tests.
See https://github.com/fwupd/fwupd/issues/3790
It's actually quite hard to build a front-end for fwupd at the moment
as you're never sure when the progress bar is going to zip back to 0%
and start all over again. Some plugins go 0..100% for write, others
go 0..100% for erase, then again for write, then *again* for verify.
By creating a helper object we can easily split up the progress of the
specific task, e.g. write_firmware().
We can encode at the plugin level "the erase takes 50% of the time, the
write takes 40% and the read takes 10%". This means we can have a
progressbar which goes up just once at a consistent speed.
Currently the SUCCESS state overrides reboot-needed, thus making the
devices considered for successive git-upgrades within same boot. The
change preserves the REBOOT_NEEDED state. It also added a missed
'changed' signal, which otherwise would skip updating the persistent
state.
Change-Id: I6f60606f2253d89eab2f5bddceba19d19c4c9c97
The "return error and hope the client resubmits the firmware again"
pattern is clunky. There are two plugins doing this now, and about to
be one more.
This adds FwupdRequest which provides a structured way of asking the
user to perform an action, e.g. to replug the device or to press a
special key or button.
This replaces much of the UpdateMessage and UpdateImage API although
it is still used internally. Clients capable of processing the new
DeviceRequest signal should add REQUESTS to their feature flags.
Also, this allows us go back to the old meaning of _NEEDS_BOOTLOADER,
which was "needs rebooting into a bootloader mode" rather than the
slightly weird "user needs to do something and resubmit request".
This also means we no longer pass in just one device to the
fu_device_list_wait_for_replug() function, but we rather wait for *all*
of the active devices.
This also cleans up the confusion on whether the engine should wait for
the 'root' device or the child device as either (or both) can be set as
required.
This makes the replug far more predictable for devices that have
children even in bootloader mode.
At the moment the device list auto-removes children when the parent is
removed. This was originally working around the bug that the child
devices had no backend ID, and thus were not matched like the parent
in fu_engine_backend_device_removed_cb() and removed automatically.
Using the workaround means that the children are potentially removed
before the parent depending on the order of the device list -- which
might be modified by replug events.
I think the old cleanup is probably an anti-pattern, and going forward
composite devices should probably define _NO_AUTO_REMOVE_CHILDREN but
we don't want to change this behaviour for plugins already expecting
the old flow, or for devices with no parent backend IDs.
The activation flag is stored into the history database, but not all
plugins will want to inherit it on coldplug the next time the daemon
is started.
For example the Dell Dock plugin will query this information from the
device and it will prevent getting into a bad state as a result.
Fixes: #3106
There is a lot of code in fwupd that just assigns a shared object type to
a FuPlugin, and then for each device on that plugin assigns that same shared
object to each FuDevice.
Rather than proxy several kinds of information stores over two different levels
of abstraction create a 'context' which contains the shared *system* state
between the daemon, the plugins and the daemon.
This will allow us to hold other per-machine state in the future, for instance
the system battery level or AC state.
Devices may want to support more than one protocol, and for some devices
(e.g. Unifying peripherals stuck in bootloader mode) you might not even be able
to query for the correct protocol anyway.
It is far too easy to forget to set FWUPD_DEVICE_FLAG_NO_GUID_MATCHING for new
plugins, and without it it all works really well *until* a user has two devices
of the same type installed at the same time and then one 'disappears' for hard
to explain reasons. Typically we only need it for replug anyway!
Explicitly opt-in to this rarely-required behaviour, with the default to just
use the physical and logical IDs. Also document the update behavior for each
plugin to explain why the flag is being used.
This allows you to have two identical Unifying plugged in without one of them
being hidden from the user, at the same time allowing a HIDRAW<->USB transition
when going to and from bootloader and runtime modes.
This removes the workaround added in 99eb3f06b6.
Fixes https://github.com/fwupd/fwupd/issues/2915
The end year is legally and functionally redundant, and more importantly causes
cherry-pick conflicts when trying to maintain old branches. Use git for history.
Asking the user for the UID mapping isn't working very well, as it requires lots
of manual handholding. It also doesn't work very well when the device vendor
does not actually have a PCI ID or if the vendor has split into two entities.
Just use the OUI address as an additional VendorID and match any of the device
IDs against any of the metadata-supplied values.
Checking this requirement at daemon startup meant that trust was
evaluated before releases could actually be checked.
It's only important to check at install time.
Loosen the requirement of the user ID to match root for the following
actions:
* Install release
* Activate firmware
For install release action, reject CAB files not signed by LVFS
Rather than using a recursive GMainLoop, just run a single iteration of the
mainloop every 1ms while we're waiting.
This simplifies the device lifecycle dramatically as we don't have to worry
about reentrant removals. It's also a lot simpler to debug as we know the only
way to return is the timeout elapsing or FWUPD_DEVICE_FLAG_WAIT_FOR_REPLUG being
unset.
If multiple devices got removed and we're waiting for one to re-appear, also
wait for all devices to come back before returning to the main loop.
In the worst case, this causes the device list to wait the full removal_delay
for the device rather than returning when the first device matches. This allows
us to simplify the hub update when we reboot the entire device and various
devices from different plugins come back in an unpredictable order.
Fixes the other half of https://github.com/fwupd/fwupd/issues/2376
For instance, we can tell the user that UEFI UpdateCapsule is disabled in the
system firmware, or that efivarfs is not mounted. This is much better than
creating "dummy" devices which are really just hacks around the problem because
no better API existed. THe dummy devices cause as many problems as they solve.
Plugins have to set FWUPD_PLUGIN_FLAG_USER_WARNING if a warning should be shown
to the user, and only one warning will be shown of each failure type.
It is expected that GUI clients like gnome-software and gnome-firmware would use
this API to notify the user the localized message for why firmware updates are
not being shown.
Fixes https://github.com/fwupd/fwupd/issues/2456
If the device parent is added using fu_device_add_parent_guid() or ParentGuid
from a quirk file then the child is not returned in fu_device_get_children() by
design as the physical ID will be likely different.
This means we cannot reliably 'depsolve' the order in FuDevice as we need the
full list of devices that might be parents. The existing algorithm had several
logical problems when dealing with more than a single parent and child.
The FuDeviceList object is the right place to do this as it knows about all
added devices on the system.
This means the addition of a logical device causes the root logical device
(and all it's children, and grandchildren) to be re-ordered. This allows
firmware on deeply nested composite devices like hubs to be installed in the
correct order.
At the moment we just blindly assume the capabilities of the front-end client
when installing firmware. We can somewhat work around by requiring a new enough
fwupd daemon version, but the client software may be older or just incomplete.
This would allow, for instance, the firmware to specify that it requries the
client to be able to show a detach image. This would not be set by a command
line tool using FwupdClient, but would be set by a GUI client that is capable
of downloading a URL and showing a PNG image.
Clients that do not register features are assumed to be dumb.
To do this, rely on the AppStream ID to map to a translated string (providing a
fallback for clients that do not care) and switch the free-form result string
into a set of enumerated values that can be translated.
This fixes some of the problems where some things have to be enabled to "pass"
and other attributes have to be some other state. For cases where we want the
user to "do" something, provide a URL to a wiki page that we update out-of-band
of fwupd releases.
This exports FuSecurityAttrs into libfwupdplugin so that we can pass the plugins
this object rather than a 'bare' GPtrArray. This greatly simplifies the object
ownership, and also allows us to check the object type before adding.
In the future we could also check for duplicate appstream IDs or missing
properties at insertion time.
This change also changes the fu_plugin_add_security_attrs() to not return an
error. This forces the plugin to handle the error, storing the failure in the
attribute itself.
Only the plugin know if a missing file it needs to read indicates a runtime
problem or a simple failure to obtain a specific HSI level.
The HSI specification assigns a simple text ID to the current state of firmware
security. As new vulnerabilities are found, and as protection measures are
updated, new requirements will be added to the required firmware behaviours for
each HSI value.
The HSI specification is currently incomplete and in active development, and
so the --force flag is required in all command line tools. The current ID value
will probably change on a given platform so please do not start using the result
for any kind of compliance requirements.
Some plugins are just simple wrappers around custom GType creators and which
specific plugin created is not a good way to make a policy decision.
If this was added to work around a bug, we need to find a better solution or
fix the root cause.
We use the ParentGuid quirk key to logically 'tie-together' different discrete
devices into one logical device, for instance making the USB soundcard in a hub
the child of the USB controller on the same PCB.
Setting the discrete child is sometimes correct, for instance when rebooting
the hub, the audio device also goes away -- but it's also sometimes wrong.
If we set the child for a discrete device and the parent does *not* go away
then we get to a situation where the child reference may no longer be valid
if it comes back as a different object.
When we try to remove this no-longer-valid device with the removal timeout the
daemon segfaults. This is realy bad.
Continue to allow using fu_device_add_child() in plugins, where we know the
child lifecycle is is matched by the the parent. In the engine just set the
weak parent directly and let the client use this information to show the tree
of logical devices correctly. There's no benefit to setting up the children as
referenced objects anyway.
We use the ParentGuid quirk key to logically 'tie-together' different discrete
devices into one logical device, for instance making the USB soundcard in a hub
the child of the USB controller on the same PCB.
Setting the discrete child is sometimes correct, for instance when rebooting
the hub, the audio device also goes away -- but it's also sometimes wrong.
If we set the child for a discrete device and the parent does *not* go away
then we get to a situation where the child reference may no longer be valid
if it comes back as a different object.
When we try to remove this no-longer-valid device with the removal timeout the
daemon segfaults. This is realy bad.
Continue to allow using fu_device_add_child() in plugins, where we know the
child lifecycle is is matched by the the parent. In the engine just set the
parent ID directly and let the client use this information to show the tree of
logical devices correctly. There's no benefit to setting up the children as
referenced objects anyway.
A Jcat file can be used to store GPG, PKCS-7 and SHA-256 checksums for multiple
files. This allows us to sign a firmware or metadata multiple times (perhaps
by the OEM and also then the LVFS) which further decentralizes the trust model
of the LVFS.
The Jcat format was chosen as the Microsoft catalog format is nonfree and not
documented. We also don't want to modify an existing .cat file created from WU
as this may make it unsuitable to use on Windows.
More information can be found here: https://github.com/hughsie/libjcat
If we say that the version format should be the same for the `version_lowest`
and the `version_bootloader` then it does not always make sense to set it at
the same time.
Moving the `version_format` to a standalone first-class property also means it
can be typically be set in the custom device `_init()` function, which means we
don't need to worry about *changing* ther version format as set by the USB and
UDev superclass helpers.
Some Dell devices offer the exact same GUID in UEFI as well as in NVME
plugins. These devices can be flashed in either way, but the payload
for them is different.
The UEFI payload includes relevant headers and metadata to be acceptable
from a capsule. The NVME payload is raw data that the drive will process.
Since baa9e75ca8, fwupd should enforce that
the correct device is flashed with the correct protocol.