Before this change calling FuUsbDevice->open() opened the device, and
also unconditionally added various GUIDs and InstanceIDs which we
normally do in setup.
Then fu_device_setup() would call the FuSubclass->setup() vfunc which
would have no way of either opting out of the FuUsbDevice->setup()-like
behaviour, or controlling if the parent class ->setup is run before or
after the subclass setup.
Split up FuUsbDevice->open() into clear ->open() and ->setup() phases
and add the parent class calls where appropriate.
This means that ->setup() now behaves the same as all the other vfuncs.
This makes a lot more sense; we can parse a firmware and export the same XML
we would use in a .builder.xml file. This allows us to two two things:
* Check we can round trip from XML -> binary -> XML
* Using a .builder.xml file we can check ->write() is endian safe
This allows us to 'nest' firmware formats, and removes a ton of duplication.
The aim here is to deprecate FuFirmwareImage -- it's almost always acting
as a 'child' FuFirmware instance, and even copies most of the vfuncs to allow
custom types. If I'm struggling to work out what should be a FuFirmware and
what should be a FuFirmwareImage then a plugin author has no hope.
For simple payloads we were adding bytes into an image and then the image into
a firmware. This gets really messy when most plugins are treating the FuFirmware
*as* the binary firmware file.
The GBytes saved in the FuFirmware would be considered the payload with the
aim of not using FuFirmwareImage in the single-image case.
The best way of not getting something wrong is to not require it in the first
place...
All plugins now use DeviceInstanceId-style quirk matches and we can just drop
the prefix in all files. We were treating HwId=, Guid= and DeviceInstanceId= in
exactly the same way -- they're just converted to GUIDs when building the silo!
Devices may want to support more than one protocol, and for some devices
(e.g. Unifying peripherals stuck in bootloader mode) you might not even be able
to query for the correct protocol anyway.
It is far too easy to forget to set FWUPD_DEVICE_FLAG_NO_GUID_MATCHING for new
plugins, and without it it all works really well *until* a user has two devices
of the same type installed at the same time and then one 'disappears' for hard
to explain reasons. Typically we only need it for replug anyway!
Explicitly opt-in to this rarely-required behaviour, with the default to just
use the physical and logical IDs. Also document the update behavior for each
plugin to explain why the flag is being used.
This allows you to have two identical Unifying plugged in without one of them
being hidden from the user, at the same time allowing a HIDRAW<->USB transition
when going to and from bootloader and runtime modes.
This removes the workaround added in 99eb3f06b6.
Fixes https://github.com/fwupd/fwupd/issues/2915
When this is done, include:
* Including the hash
* Including anything that is not ABI stable in plugins yet
Suggested-by: Simon McVittie <smcv@debian.org>
If we say that the version format should be the same for the `version_lowest`
and the `version_bootloader` then it does not always make sense to set it at
the same time.
Moving the `version_format` to a standalone first-class property also means it
can be typically be set in the custom device `_init()` function, which means we
don't need to worry about *changing* ther version format as set by the USB and
UDev superclass helpers.