This allows us to 'nest' firmware formats, and removes a ton of duplication.
The aim here is to deprecate FuFirmwareImage -- it's almost always acting
as a 'child' FuFirmware instance, and even copies most of the vfuncs to allow
custom types. If I'm struggling to work out what should be a FuFirmware and
what should be a FuFirmwareImage then a plugin author has no hope.
For simple payloads we were adding bytes into an image and then the image into
a firmware. This gets really messy when most plugins are treating the FuFirmware
*as* the binary firmware file.
The GBytes saved in the FuFirmware would be considered the payload with the
aim of not using FuFirmwareImage in the single-image case.
Devices may want to support more than one protocol, and for some devices
(e.g. Unifying peripherals stuck in bootloader mode) you might not even be able
to query for the correct protocol anyway.
It is far too easy to forget to set FWUPD_DEVICE_FLAG_NO_GUID_MATCHING for new
plugins, and without it it all works really well *until* a user has two devices
of the same type installed at the same time and then one 'disappears' for hard
to explain reasons. Typically we only need it for replug anyway!
Explicitly opt-in to this rarely-required behaviour, with the default to just
use the physical and logical IDs. Also document the update behavior for each
plugin to explain why the flag is being used.
This allows you to have two identical Unifying plugged in without one of them
being hidden from the user, at the same time allowing a HIDRAW<->USB transition
when going to and from bootloader and runtime modes.
This removes the workaround added in 99eb3f06b6.
Fixes https://github.com/fwupd/fwupd/issues/2915
The end year is legally and functionally redundant, and more importantly causes
cherry-pick conflicts when trying to maintain old branches. Use git for history.
Conceptually we were trying to stuff subtly different actions into one vfunc:
* Read firmware from the device to update the verification checksums
* Read a firmware blob from the device for debugging
For the first action we might want to mask out the sections of the flash with
serial numbers (so the verification hashes match the ones published on the LVFS)
and for the second we want just a raw ROM file from the hardware with no
pre-processing that we can compare against an external SPI dumper.
Split out ->dump_firmware to get the raw blob, and allow plugins to also
implement ->read_firmware() if they have to mask out specific offsets or remove
specific images from the FuFirmware container.
In the common case when masking is not required, fall back to using a 'binary'
FuFirmware automatically to make most plugins simpler.
If we say that the version format should be the same for the `version_lowest`
and the `version_bootloader` then it does not always make sense to set it at
the same time.
Moving the `version_format` to a standalone first-class property also means it
can be typically be set in the custom device `_init()` function, which means we
don't need to worry about *changing* ther version format as set by the USB and
UDev superclass helpers.
Some plugins have devices with more than one protocol. Logically the protocol
belongs to the device, not the plugin, and in the future we could use this to
further check firmware that's about to be deployed.
This is also not exported into libfwupd (yet?) as it's remains a debug-feature
only -- protocols are not actually required for devices to be added.
There are several subtle bugs in various places in fwupd caused by not treating
user-provided offsets into buffers as unsafe. As fwupd runs as root we have to
assume that all user firmware is evil, and also that devices cannot be trusted.
Make a helper to put all the logic into one place and convert all users.
In many plugins we've wanted to use ->prepare_firmware() to parse the firmware
ahead of ->detach() and ->write_firmware() but this has the limitation that it
can only return a single blob of data.
For many devices, multiple binary blobs are required from one parsed image,
for instance providing signatures, config and data blobs that have to be pushed
to the device in different way.
This also means we parse the firmware *before* we ask the user to detach.
Break the internal FuDevice API to support these firmware types as they become
more popular.
This also allows us to move the Intel HEX and SREC parsing out of the dfu plugin
as they are used by a few plugins now, and resolving symbols between plugins
isn't exactly awesome.
This leads to madness, as some formats are supersets of the detected types,
e.g. 'intel-me' is detected as 'quad' and 'bcd' is detected as 'pair'.
Where the version format is defined in a specification or hardcoded in the
source use a hardcoded enum value, otherwise use a quirk override.
Additionally, warn if the version does not match the defined version format
The daemon creates a baseclass of either FuUsbDevice or FuUdevDevice when the
devices are added or coldplugged to match the quirk database and to find out
what plugin to run.
This is proxied to plugins, but they are given the GUsbDevice or GUdevDevice and
the FuDevice is just thrown away. Most plugins either use a FuUsbDevice or
superclassed version like FuNvmeDevice and so we re-create the FuDevice, re-probe
the hardware, re-query the quirk database and then return this to the daemon.
In some cases, plugins actually probe the hardware three times (!) by creating
a FuUsbDevice to get the quirks, so that the plugin knows what kind of
superclass to create, which then itself probes the hardware again.
Passing the temporary FuDevice to the plugins means that the simplest ones can
just fu_plugin_device_add() the passed in object, or create a superclass and
incorporate the actual GUsbDevice and all the GUIDs.
This breaks internal plugin API but speeds up startup substantially and deletes
a lot of code.
GLib creates two static inline functions for paramaters that may
not be used that set off warnings in clang but not gcc.
Ignore these on clang builds everywhere that
G_DEFINE_AUTOPTR_CLEANUP_FUNC is used.
This makes more sense; we're updating the device, not the plugin itself.
This also means we don't need to funnel everything through callbacks like
GFileProgressCallback and we can also update the state without adding an
explicit callback to each derived device type.
It's actually less scary to see a SHA1 hash than it is to see a path like
/sys/devices/pci0000:00/0000:00:1d.0/usb1/1-1/1-1.2. It's also way easier to
copy and paste into the various fwupdmgr command that require a device ID and
also means we can match a partial prefix much like git allows.
If we also move to a model where plugins can be changed during different stages
of the update (e.g. during detach) then the device might change connection type
and then the sysfs path not only becomes difficult to paste, but incorrect.
Session software doesn't care about the format of the device ID (it is supposed
to be an implementation detail) and so there's no API or ABI break here. A few
plugins also needed to be ported, but nothing too worrying.