Until gi-docgen is declared stable support either of them.
This effectively means that hand builds and CI builds will use
gi-docgen, but distro builds use gtk-doc-tools.
This makes a lot more sense; we can parse a firmware and export the same XML
we would use in a .builder.xml file. This allows us to two two things:
* Check we can round trip from XML -> binary -> XML
* Using a .builder.xml file we can check ->write() is endian safe
This allows us to 'nest' firmware formats, and removes a ton of duplication.
The aim here is to deprecate FuFirmwareImage -- it's almost always acting
as a 'child' FuFirmware instance, and even copies most of the vfuncs to allow
custom types. If I'm struggling to work out what should be a FuFirmware and
what should be a FuFirmwareImage then a plugin author has no hope.
For simple payloads we were adding bytes into an image and then the image into
a firmware. This gets really messy when most plugins are treating the FuFirmware
*as* the binary firmware file.
The GBytes saved in the FuFirmware would be considered the payload with the
aim of not using FuFirmwareImage in the single-image case.
This is a safer version of g_bytes_new_from_bytes() which returns a GError
if the offsets are invalid rather than emitting a critical warning.
This prevents a critical warning and potential crash when parsing invalid
bcm57xx firmware.
fmap is a Google flash layout format that is used in several of Google's
firmware projects, including Chrome OS Embedded Controller and the Chrome OS
coreboot firmwares. Introduce it as a firmware format in libfwupdplugin.