The GLib g_byte_array_set_size() function does not zero the contents if the
array size is larger, which leads to unpredictable output when using valgrind.
The FWUPD_INSTALL_FLAG_FORCE flag has really unclear semantics, and ignoring a
file CRC, checksum or model ID should only be done when using fwupdtool actually
debugging a plugin or firmware parser.
Use the existing --force flag when we want a "gentle nudge" like reuploading
previously processed reports.
At the moment there are commands to convert one file format to another, but not
to 'merge' or alter them. Some firmware files are containers which can store
multiple images, each with optional id, idx and addresses.
This would allow us to, for instance, create a DfuSe file with two different
raw files that are flashed to different addresses on the SPI flash. It would
also allow us to create very small complicated container formats for fuzzing.
This can be used by writing a `firmware.builder.xml` file like:
<?xml version="1.0" encoding="UTF-8"?>
<firmware gtype="FuBcm57xxFirmware">
<version>1.2.3</version>
<image>
<version>4.5.6</version>
<id>header</id>
<idx>456</idx>
<addr>0x456</addr>
<filename>header.bin</filename>
</image>
<image>
<version>7.8.9</version>
<id>payload</id>
<idx>789</idx>
<addr>0x789</addr>
<data>aGVsbG8=</data>
</image>
</firmware>
...and then using something like:
# fwupdtool firmware-convert firmware.builder.xml firmware.dfu builder dfu
This is nice in theory, until you need to look at the bootloader status of the
parent, or of a different device entirely. Handle this in plugins for the few
cases we care about and stop setting or clearing IS_BOOTLOADER manually just to
get the vfuncs to be run.
Note: I do not think we want to use cleanup() for attaching devices not in
bootloader states -- as cleanup is only run at the end of the composite update.
If we say that the version format should be the same for the `version_lowest`
and the `version_bootloader` then it does not always make sense to set it at
the same time.
Moving the `version_format` to a standalone first-class property also means it
can be typically be set in the custom device `_init()` function, which means we
don't need to worry about *changing* ther version format as set by the USB and
UDev superclass helpers.
We don't actually need either of the things it provides (looking up in source
and built, and converting to an absolute path) so just replace it with
g_build_filename() instead.
This also has the advantage that it does the right thing on Windows.
Some plugins have devices with more than one protocol. Logically the protocol
belongs to the device, not the plugin, and in the future we could use this to
further check firmware that's about to be deployed.
This is also not exported into libfwupd (yet?) as it's remains a debug-feature
only -- protocols are not actually required for devices to be added.
We can't use the IOTA mechanism in bootloader mode, and failing to create the
FuSynapromDevice object means we can't recover the hardware if the flash failed.
There are several subtle bugs in various places in fwupd caused by not treating
user-provided offsets into buffers as unsafe. As fwupd runs as root we have to
assume that all user firmware is evil, and also that devices cannot be trusted.
Make a helper to put all the logic into one place and convert all users.
In many plugins we've wanted to use ->prepare_firmware() to parse the firmware
ahead of ->detach() and ->write_firmware() but this has the limitation that it
can only return a single blob of data.
For many devices, multiple binary blobs are required from one parsed image,
for instance providing signatures, config and data blobs that have to be pushed
to the device in different way.
This also means we parse the firmware *before* we ask the user to detach.
Break the internal FuDevice API to support these firmware types as they become
more popular.
This also allows us to move the Intel HEX and SREC parsing out of the dfu plugin
as they are used by a few plugins now, and resolving symbols between plugins
isn't exactly awesome.