The only real value of the optionrom plugin is the ability to store and verify
the ROM checksum; parsing the image is not actually required and is a source of
anxiety for various security teams.
There are now two 'backends' of device plug/unplug events, and there is about
to become three. Rather than just adding two more vfuncs for every backend type
define common ones that all providers can use.
Also fix up the existing in-tree plugins to use the new vfunc names and filter
on the correct GType.
The generate_binary.sh is a script that calls the objcopy tool and
genpeimg in the case of Windows, to generate a PE binary file.
But doesn't have to be a shell script and could be rewritten as a
python script. This will make this code to generate a PE binary
easier to extend if needed.
Also, the only reason that's a template is to define the objcopy
tool used, but this can also be passed as a positional argument.
This allows us to check that the plugin is writing into a mutable buffer. Also
fix up the plugins that are currently 'wrong' and use the new function for the
plugins doing the right thing.
At the moment FuChunks are sometimes mutable, and sometimes immutable, and it's
all a bit too low level for comfort.
Before we can do any kind of optimisation or verification we need plugins to
stop reading directly from the C structure. The aim here is to make FuChunk
optionally mutable without making assumptions about the memory model, and also
to be able to introspect it for the docs.
This bootloader is *weird* -- the chip ID is the first two bytes of the serial
number and the data is offset and encoded in UTF-8, not UTF-16.
The sector information is also wrong. Gah!
Some systems remove the BootXXXX entry we add (so we can run fwupdx64.efi) and
thus the firmware update does not run. Most commonly this failure is seen with
Lenovo systems that call the helpful option 'Boot Order Lock'.
Hopefully when we depend on the new kernel bios interface sysfs API in we can
check in ->prepare(), not after reboot, but until that we can mark the update
failure as transient as the user can actually fix the problem themselves.
Fixes https://github.com/fwupd/fwupd/issues/2801
This plugin supports reading the keyboard firmware version at runtime and
rebooting the keyboard to USB DFU mode. Tested with firmware uploaded to
embargo-system76.
When this is done, include:
* Including the hash
* Including anything that is not ABI stable in plugins yet
Suggested-by: Simon McVittie <smcv@debian.org>
This allows much better compression (-60%) than gziping them individually and
also allows us to build the capsule UX images as part of the build stage.
Also add more popular screen resolutions for laptops you can buy in 2021.
The coreboot plugin never actually gained the ability to write. As it stands a
coreboot system now adds *two* system-firmware devices (from both flashrom and
coreboot) which isn't ideal.
Just allow flashrom to enumerate quirked devices and add coreboot-specific
metadata as required. If we require some kind of cbfs parsing then we can do
that in FuFlashromDevice->prepare_firmware().
Although we could reconstruct the PCR0 value on the LVFS from the (already
included) event log, it's much more scalable if the client just provides the
data that we want to filter by.
I was asked the other day how many machines would support a /dev/mem mmap'd
update mechanism, and I had to say that I didn't know. We use direct port IO in
the SuperIO plugin too, and it would be good to know how quickly we need to
port this to something else.
It's unusual, but if BIOS lock enable is enabled (so we cannot *change* the
value of BIOSWE) but the BIOS is already WE then we can write to the hardware
just fine.